Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(19): e2318757121, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38691591

RESUMO

How breathing is generated by the preBötzinger complex (preBötC) remains divided between two ideological frameworks, and a persistent sodium current (INaP) lies at the heart of this debate. Although INaP is widely expressed, the pacemaker hypothesis considers it essential because it endows a small subset of neurons with intrinsic bursting or "pacemaker" activity. In contrast, burstlet theory considers INaP dispensable because rhythm emerges from "preinspiratory" spiking activity driven by feed-forward network interactions. Using computational modeling, we find that small changes in spike shape can dissociate INaP from intrinsic bursting. Consistent with many experimental benchmarks, conditional effects on spike shape during simulated changes in oxygenation, development, extracellular potassium, and temperature alter the prevalence of intrinsic bursting and preinspiratory spiking without altering the role of INaP. Our results support a unifying hypothesis where INaP and excitatory network interactions, but not intrinsic bursting or preinspiratory spiking, are critical interdependent features of preBötC rhythmogenesis.


Assuntos
Potenciais de Ação , Animais , Potenciais de Ação/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Respiração , Rede Nervosa/fisiologia , Centro Respiratório/fisiologia , Simulação por Computador , Sódio/metabolismo
2.
Annu Rev Neurosci ; 41: 475-499, 2018 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-29709210

RESUMO

Rhythmicity is a universal timing mechanism in the brain, and the rhythmogenic mechanisms are generally dynamic. This is illustrated for the neuronal control of breathing, a behavior that occurs as a one-, two-, or three-phase rhythm. Each breath is assembled stochastically, and increasing evidence suggests that each phase can be generated independently by a dedicated excitatory microcircuit. Within each microcircuit, rhythmicity emerges through three entangled mechanisms: ( a) glutamatergic transmission, which is amplified by ( b) intrinsic bursting and opposed by ( c) concurrent inhibition. This rhythmogenic triangle is dynamically tuned by neuromodulators and other network interactions. The ability of coupled oscillators to reconfigure and recombine may allow breathing to remain robust yet plastic enough to conform to nonventilatory behaviors such as vocalization, swallowing, and coughing. Lessons learned from the respiratory network may translate to other highly dynamic and integrated rhythmic systems, if approached one breath at a time.


Assuntos
Encéfalo/fisiologia , Modelos Neurológicos , Periodicidade , Respiração , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Humanos , Rede Nervosa/fisiologia , Dinâmica não Linear
3.
Proc Natl Acad Sci U S A ; 119(29): e2121095119, 2022 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-35858334

RESUMO

The coordination of swallowing with breathing, in particular inspiration, is essential for homeostasis in most organisms. While much has been learned about the neuronal network critical for inspiration in mammals, the pre-Bötzinger complex (preBötC), little is known about how this network interacts with swallowing. Here we activate within the preBötC excitatory neurons (defined as Vglut2 and Sst neurons) and inhibitory neurons (defined as Vgat neurons) and inhibit and activate neurons defined by the transcription factor Dbx1 to gain an understanding of the coordination between the preBötC and swallow behavior. We found that stimulating inhibitory preBötC neurons did not mimic the premature shutdown of inspiratory activity caused by water swallows, suggesting that swallow-induced suppression of inspiratory activity is not directly mediated by the inhibitory neurons in the preBötC. By contrast, stimulation of preBötC Dbx1 neurons delayed laryngeal closure of the swallow sequence. Inhibition of Dbx1 neurons increased laryngeal closure duration and stimulation of Sst neurons pushed swallow occurrence to later in the respiratory cycle, suggesting that excitatory neurons from the preBötC connect to the laryngeal motoneurons and contribute to the timing of swallowing. Interestingly, the delayed swallow sequence was also caused by chronic intermittent hypoxia (CIH), a model for sleep apnea, which is 1) known to destabilize inspiratory activity and 2) associated with dysphagia. This delay was not present when inhibiting Dbx1 neurons. We propose that a stable preBötC is essential for normal swallow pattern generation and disruption may contribute to the dysphagia seen in obstructive sleep apnea.


Assuntos
Deglutição , Optogenética , Respiração , Centro Respiratório , Animais , Deglutição/fisiologia , Transtornos de Deglutição/fisiopatologia , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Interneurônios/fisiologia , Laringe , Camundongos , Camundongos Transgênicos , Neurônios Motores/fisiologia , Centro Respiratório/fisiologia
4.
J Exp Biol ; 226(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37665261

RESUMO

Breathing is generated by a rhythmic neural circuit in the brainstem, which contains conserved elements across vertebrate groups. In adult frogs, the 'lung area' located in the reticularis parvocellularis is thought to represent the core rhythm generator for breathing. Although this region is necessary for breathing-related motor output, whether it functions as an endogenous oscillator when isolated from other brainstem centers is not clear. Therefore, we generated thick brainstem sections that encompass the lung area to determine whether it can generate breathing-related motor output in a highly reduced preparation. Brainstem sections did not produce activity. However, subsaturating block of glycine receptors reliably led to the emergence of rhythmic motor output that was further enhanced by blockade of GABAA receptors. Output occurred in singlets and multi-burst episodes resembling the intact network. However, burst frequency was slower and individual bursts had longer durations than those produced by the intact preparation. In addition, burst frequency was reduced by noradrenaline and µ-opioids, and increased by serotonin, as observed in the intact network and in vivo. These results suggest that the lung area can be activated to produce rhythmic respiratory-related motor output in a reduced brainstem section and provide new insights into respiratory rhythm generation in adult amphibians. First, clustering breaths into episodes can occur within the rhythm-generating network without long-range input from structures such as the pons. Second, local inhibition near, or within, the rhythmogenic center may need to be overridden to express the respiratory rhythm.


Assuntos
Tronco Encefálico , Norepinefrina , Animais , Rana catesbeiana , Respiração , Anuros
5.
J Physiol ; 600(9): 2049-2075, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35294064

RESUMO

Twenty-five years ago, a new physiological preparation called the working heart-brainstem preparation (WHBP) was introduced with the claim it would provide a new platform allowing studies not possible before in cardiovascular, neuroendocrine, autonomic and respiratory research. Herein, we review some of the progress made with the WHBP, some advantages and disadvantages along with potential future applications, and provide photographs and technical drawings of all the customised equipment used for the preparation. Using mice or rats, the WHBP is an in situ experimental model that is perfused via an extracorporeal circuit benefitting from unprecedented surgical access, mechanical stability of the brain for whole cell recording and an uncompromised use of pharmacological agents akin to in vitro approaches. The preparation has revealed novel mechanistic insights into, for example, the generation of distinct respiratory rhythms, the neurogenesis of sympathetic activity, coupling between respiration and the heart and circulation, hypothalamic and spinal control mechanisms, and peripheral and central chemoreceptor mechanisms. Insights have been gleaned into diseases such as hypertension, heart failure and sleep apnoea. Findings from the in situ preparation have been ratified in conscious in vivo animals and when tested have translated to humans. We conclude by discussing potential future applications of the WHBP including two-photon imaging of peripheral and central nervous systems and adoption of pharmacogenetic tools that will improve our understanding of physiological mechanisms and reveal novel mechanisms that may guide new treatment strategies for cardiorespiratory diseases.


Assuntos
Tronco Encefálico , Coração , Animais , Tronco Encefálico/fisiologia , Fenômenos Fisiológicos Cardiovasculares , Coração/fisiologia , Pulmão , Camundongos , Ratos , Respiração
6.
Proc Natl Acad Sci U S A ; 116(15): 7493-7502, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30918122

RESUMO

The ability of neuronal networks to reconfigure is a key property underlying behavioral flexibility. Networks with recurrent topology are particularly prone to reconfiguration through changes in synaptic and intrinsic properties. Here, we explore spatial reconfiguration in the reticular networks of the medulla that generate breathing. Combined results from in vitro and in vivo approaches demonstrate that the network architecture underlying generation of the inspiratory phase of breathing is not static but can be spatially redistributed by shifts in the balance of excitatory and inhibitory network influences. These shifts in excitation/inhibition allow the size of the active network to expand and contract along a rostrocaudal medullary column during behavioral or metabolic challenges to breathing, such as changes in sensory feedback, sighing, and gasping. We postulate that the ability of this rhythm-generating network to spatially reconfigure contributes to the remarkable robustness and flexibility of breathing.


Assuntos
Inalação/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Feminino , Camundongos , Camundongos Transgênicos , Rede Nervosa/citologia
7.
Int J Mol Sci ; 22(3)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573259

RESUMO

In order for locomotion to occur, a complex pattern of muscle activation is required. For more than a century, it has been known that the timing and pattern of stepping movements in mammals are generated by neural networks known as central pattern generators (CPGs), which comprise multiple interneuron cell types located entirely within the spinal cord. A genetic approach has recently been successful in identifying several populations of spinal neurons that make up this neural network, as well as the specific role they play during stepping. In spite of this progress, the identity of the neurons responsible for generating the locomotor rhythm and the manner in which they are interconnected have yet to be deciphered. In this review, we summarize key features considered to be expressed by locomotor rhythm-generating neurons and describe the different genetically defined classes of interneurons which have been proposed to be involved.


Assuntos
Interneurônios/fisiologia , Locomoção/fisiologia , Músculo Esquelético/inervação , Rede Nervosa/fisiologia , Medula Espinal/fisiologia , Animais , Humanos , Músculo Esquelético/fisiologia , Medula Espinal/citologia
8.
J Physiol ; 598(11): 2061-2079, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32100293

RESUMO

KEY POINTS: The functional neuroanatomy of the mammalian respiratory network is far from being understood since experimental tools that measure neural activity across this brainstem-wide circuit are lacking. Here, we use silicon multi-electrode arrays to record respiratory local field potentials (rLFPs) from 196-364 electrode sites within 8-10 mm3 of brainstem tissue in single arterially perfused brainstem preparations with respect to the ongoing respiratory motor pattern of inspiration (I), post-inspiration (PI) and late-expiration (E2). rLFPs peaked specifically at the three respiratory phase transitions, E2-I, I-PI and PI-E2. We show, for the first time, that only the I-PI transition engages a brainstem-wide network, and that rLFPs during the PI-E2 transition identify a hitherto unknown role for the dorsal respiratory group. Volumetric mapping of pontomedullary rLFPs in single preparations could become a reliable tool for assessing the functional neuroanatomy of the respiratory network in health and disease. ABSTRACT: While it is widely accepted that inspiratory rhythm generation depends on the pre-Bötzinger complex, the functional neuroanatomy of the neural circuits that generate expiration is debated. We hypothesized that the compartmental organization of the brainstem respiratory network is sufficient to generate macroscopic local field potentials (LFPs), and if so, respiratory (r) LFPs could be used to map the functional neuroanatomy of the respiratory network. We developed an approach using silicon multi-electrode arrays to record spontaneous LFPs from hundreds of electrode sites in a volume of brainstem tissue while monitoring the respiratory motor pattern on phrenic and vagal nerves in the perfused brainstem preparation. Our results revealed the expression of rLFPs across the pontomedullary brainstem. rLFPs occurred specifically at the three transitions between respiratory phases: (1) from late expiration (E2) to inspiration (I), (2) from I to post-inspiration (PI), and (3) from PI to E2. Thus, respiratory network activity was maximal at respiratory phase transitions. Spatially, the E2-I, and PI-E2 transitions were anatomically localized to the ventral and dorsal respiratory groups, respectively. In contrast, our data show, for the first time, that the generation of controlled expiration during the post-inspiratory phase engages a distributed neuronal population within ventral, dorsal and pontine network compartments. A group-wise independent component analysis demonstrated that all preparations exhibited rLFPs with a similar temporal structure and thus share a similar functional neuroanatomy. Thus, volumetric mapping of rLFPs could allow for the physiological assessment of global respiratory network organization in health and disease.


Assuntos
Tronco Encefálico , Neuroanatomia , Animais , Neurônios , Ratos , Respiração , Nervo Vago
9.
J Integr Neurosci ; 18(3): 313-325, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31601082

RESUMO

Preinspiratory discharge manifests in the neuronal recordings of the pre-Bötzinger complex, parafacial respiratory group, retrotrapezoid nucleus, and Kölliker-Fuse nucleus, as well as the efferent neural discharge of respiratory-related nerves innervating upper airway musculature. This neural component of triphasic eupnea contemporaneously contributes to the genesis of native and originate respiratory rhythmic activity, as well as the preinspiratory component of efferent neural respiratory discharges. In the course of our investigations evaluating hypoglossal discharge in response to asphyxia, we noted a curious pattern of neural respiratory recovery following postasphyxia resuscitation in hypoglossal, vagal, and phrenic neurograms in unanesthetized decerebrate rats. Specifically, we observed a gradual return of a pseudobiphasic eupnea characterized by initial transition bursts followed by robust eupneic bursts with dynamics inclusive of a gradually and progressively increasing duration of the hypoglossal eupneic bursts and duration and amplitude of the preinspiratory component of these bursts, as well as progressively lengthening expiratory interval between these bursts in the phrenic nerve discharge. This was followed by conversion to regular triphasic eupnea. We discuss our extrapolations based on these findings regarding eupneic respiratory central pattern generation and mechanisms contributing to the genesis of preinspiratory activity in hypoglossal discharge.


Assuntos
Nervo Hipoglosso/fisiologia , Respiração , Animais , Geradores de Padrão Central/fisiologia , Humanos
10.
J Neurophysiol ; 117(3): 1030-1042, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27974449

RESUMO

The role of the dorsolateral pons in the control of expiratory duration (Te) and breathing frequency is incompletely understood. A subregion of the pontine parabrachial-Kölliker-Fuse (PB-KF) complex of dogs was identified via microinjections, in which localized pharmacologically induced increases in neuronal activity produced increases in breathing rate while decreases in neuronal activity produced decreases in breathing rate. This subregion is also very sensitive to local and systemic opioids. The purpose of this study was to precisely characterize the relationship between the PB-KF subregion pattern of altered neuronal activity and the control of respiratory phase timing as well as the time course of the phrenic nerve activity/neurogram (PNG). Pulse train electrical stimulation patterns synchronized with the onset of the expiratory (E) and/or phrenic inspiratory (I) phase were delivered via a small concentric bipolar electrode while the PNG was recorded in decerebrate, vagotomized dogs. Step frequency patterns during the E phase produced a marked frequency-dependent decrease in Te, while similar step inputs during the I phase increased inspiratory duration (Ti) by 14 ± 3%. Delayed pulse trains were capable of pacing the breathing rate by terminating the E phase and also of triggering a consistent stereotypical inspiratory PNG pattern, even when evoked during apnea. This property suggests that the I-phase pattern generator functions in a monostable circuit mode with a stable E phase and a transient I phase. Thus the I-pattern generator must contain neurons with nonlinear pacemaker-like properties, which allow the network to rapidly obtain a full on-state followed by relatively slow inactivation. The activated network can be further modulated and supplies excitatory drive to the neurons involved with pattern generation.NEW & NOTEWORTHY A circumscribed subregion of the pontine medial parabrachial nucleus plays a key role in the control of breathing frequency primarily via changes in expiratory duration. Excitation of this subregion triggers the onset of the inspiratory phase, resulting in a stereotypical ramplike phrenic activity pattern independent of time within the expiratory phase. The ability to pace the I-burst rate suggests that the in vivo I-pattern generating network must contain functioning pacemaker neurons.


Assuntos
Expiração , Núcleos Parabraquiais/fisiologia , Nervo Frênico/fisiologia , Taxa Respiratória , Animais , Cães , Estimulação Elétrica , Agonistas de Aminoácidos Excitatórios/administração & dosagem , Expiração/efeitos dos fármacos , Feminino , Masculino , Núcleos Parabraquiais/efeitos dos fármacos , Nervo Frênico/efeitos dos fármacos , Respiração/efeitos dos fármacos , Taxa Respiratória/efeitos dos fármacos , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiônico/administração & dosagem
11.
J Neurophysiol ; 118(6): 2956-2974, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28855288

RESUMO

Mapping the expression of transcription factors in the mouse spinal cord has identified ten progenitor domains, four of which are cardinal classes of molecularly defined, ventrally located interneurons that are integrated in the locomotor circuitry. This review focuses on the properties of these interneuronal populations and their contribution to hindlimb locomotor central pattern generation. Interneuronal populations are categorized based on their excitatory or inhibitory functions and their axonal projections as predictors of their role in locomotor rhythm generation and coordination. The synaptic connectivity and functions of these interneurons in the locomotor central pattern generators (CPGs) have been assessed by correlating their activity patterns with motor output responses to rhythmogenic neurochemicals and sensory and descending fibers stimulations as well as analyzing kinematic gait patterns in adult mice. The observed complex organization of interneurons in the locomotor CPG circuitry, some with seemingly similar physiological functions, reflects the intricate repertoire associated with mammalian motor control and is consistent with high transcriptional heterogeneity arising from cardinal interneuronal classes. This review discusses insights derived from recent studies to describe innovative approaches and limitations in experimental model systems and to identify missing links in current investigational enterprise.


Assuntos
Geradores de Padrão Central/fisiologia , Interneurônios/fisiologia , Locomoção , Medula Espinal/fisiologia , Animais , Geradores de Padrão Central/citologia , Interneurônios/classificação , Camundongos , Medula Espinal/citologia , Potenciais Sinápticos
12.
Adv Exp Med Biol ; 1015: 147-161, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29080026

RESUMO

Breathing is a continuous behavior essential for life in mammals and one of the few behaviors that can be studied in vivo in intact animals awake, anesthetized or decerebrated and in highly reduced in vitro and in situ preparations. The preBötzinger complex (preBötC) is a small nucleus in the brainstem that plays an essential role in normal breathing and is widely accepted as the site necessary and sufficient for generation of the inspiratory phase of the respiratory rhythm. Substantial advances in understanding the anatomical and cellular basis of respiratory rhythmogenesis have arisen from in vitro and in vivo studies in the past 25 years; however, the underlying cellular mechanisms remain unknown.


Assuntos
Geradores de Padrão Central/fisiologia , Respiração , Centro Respiratório/fisiologia , Mecânica Respiratória/fisiologia , Animais , Neurônios/fisiologia
13.
14.
J Neurophysiol ; 115(5): 2593-607, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-26888109

RESUMO

Degeneracy of respiratory network function would imply that anatomically discrete aspects of the brain stem are capable of producing respiratory rhythm. To test this theory we a priori transected brain stem preparations before reperfusion and reoxygenation at 4 rostrocaudal levels: 1.5 mm caudal to obex (n = 5), at obex (n = 5), and 1.5 (n = 7) and 3 mm (n = 6) rostral to obex. The respiratory activity of these preparations was assessed via recordings of phrenic and vagal nerves and lumbar spinal expiratory motor output. Preparations with a priori transection at level of the caudal brain stem did not produce stable rhythmic respiratory bursting, even when the arterial chemoreceptors were stimulated with sodium cyanide (NaCN). Reperfusion of brain stems that preserved the pre-Bötzinger complex (pre-BötC) showed spontaneous and sustained rhythmic respiratory bursting at low phrenic nerve activity (PNA) amplitude that occurred simultaneously in all respiratory motor outputs. We refer to this rhythm as the pre-BötC burstlet-type rhythm. Conserving circuitry up to the pontomedullary junction consistently produced robust high-amplitude PNA at lower burst rates, whereas sequential motor patterning across the respiratory motor outputs remained absent. Some of the rostrally transected preparations expressed both burstlet-type and regular PNA amplitude rhythms. Further analysis showed that the burstlet-type rhythm and high-amplitude PNA had 1:2 quantal relation, with burstlets appearing to trigger high-amplitude bursts. We conclude that no degenerate rhythmogenic circuits are located in the caudal medulla oblongata and confirm the pre-BötC as the primary rhythmogenic kernel. The absence of sequential motor patterning in a priori transected preparations suggests that pontine circuits govern respiratory pattern formation.


Assuntos
Tronco Encefálico/fisiologia , Respiração , Animais , Artérias/citologia , Artérias/fisiologia , Células Quimiorreceptoras/fisiologia , Feminino , Masculino , Neurônios Motores/fisiologia , Nervo Frênico/fisiologia , Ratos , Ratos Sprague-Dawley , Músculos Respiratórios/inervação , Músculos Respiratórios/fisiologia , Nervo Vago/fisiologia
15.
J Neurophysiol ; 115(2): 1063-70, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26655824

RESUMO

Study of acute brain stem slice preparations in vitro has advanced our understanding of the cellular and synaptic mechanisms of respiratory rhythm generation, but their inherent limitations preclude long-term manipulation and recording experiments. In the current study, we have developed an organotypic slice culture preparation containing the preBötzinger complex (preBötC), the core inspiratory rhythm generator of the ventrolateral brain stem. We measured bilateral synchronous network oscillations, using calcium-sensitive fluorescent dyes, in both ventrolateral (presumably the preBötC) and dorsomedial regions of slice cultures at 7-43 days in vitro. These calcium oscillations appear to be driven by periodic bursts of inspiratory neuronal activity, because whole cell recordings from ventrolateral neurons in culture revealed inspiratory-like drive potentials, and no oscillatory activity was detected from glial fibrillary associated protein-expressing astrocytes in cultures. Acute slices showed a burst frequency of 10.9 ± 4.2 bursts/min, which was not different from that of brain stem slice cultures (13.7 ± 10.6 bursts/min). However, slice cocultures that include two cerebellar explants placed along the dorsolateral border of the brainstem displayed up to 193% faster burst frequency (22.4 ± 8.3 bursts/min) and higher signal amplitude (340%) compared with acute slices. We conclude that preBötC-containing slice cultures retain inspiratory-like rhythmic function and therefore may facilitate lines of experimentation that involve extended incubation (e.g., genetic transfection or chronic drug exposure) while simultaneously being amenable to imaging and electrophysiology at cellular, synaptic, and network levels.


Assuntos
Tronco Encefálico/citologia , Sinalização do Cálcio , Geradores de Padrão Central/citologia , Técnicas de Cultura de Tecidos/métodos , Potenciais de Ação , Animais , Astrócitos/metabolismo , Astrócitos/fisiologia , Respiração Celular , Proteína Glial Fibrilar Ácida/genética , Proteína Glial Fibrilar Ácida/metabolismo , Camundongos , Neurônios/metabolismo , Neurônios/fisiologia
16.
Eur J Neurosci ; 44(12): 3011-3022, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711993

RESUMO

The spontaneous rhythmic firing of action potentials in pacemaker neurons depends on the biophysical properties of voltage-gated ion channels and background leak currents. The background leak current includes a large K+ and a small Na+ component. We previously reported that a Na+ -leak current via U-type channels is required to generate spontaneous action potential firing in the identified respiratory pacemaker neuron, RPeD1, in the freshwater pond snail Lymnaea stagnalis. We further investigated the functional significance of the background Na+ current in rhythmic spiking of RPeD1 neurons. Whole-cell patch-clamp recording and computational modeling approaches were carried out in isolated RPeD1 neurons. The whole-cell current of the major ion channel components in RPeD1 neurons were characterized, and a conductance-based computational model of the rhythmic pacemaker activity was simulated with the experimental measurements. We found that the spiking rate is more sensitive to changes in the Na+ leak current as compared to the K+ leak current, suggesting a robust function of Na+ leak current in regulating spontaneous neuronal firing activity. Our study provides new insight into our current understanding of the role of Na+ leak current in intrinsic properties of pacemaker neurons.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Canais de Sódio/fisiologia , Animais , Relógios Biológicos , Lymnaea , Potenciais da Membrana , Canais de Potássio/fisiologia , Canais de Potássio de Domínios Poros em Tandem , Cultura Primária de Células , Respiração
17.
J Neurophysiol ; 113(4): 1175-83, 2015 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-25429120

RESUMO

The pre-Bötzinger complex (preBötC) underlies inspiratory rhythm generation. As a result of network interactions, preBötC neurons burst synchronously to produce rhythmic premotor inspiratory activity. Each inspiratory burst consists of action potentials (APs) on top of a 10- to 20-mV synchronous depolarization lasting 0.3-0.8 s known as inspiratory drive potential. The mechanisms underlying the initiation and termination of the inspiratory burst are unclear, and the role of Ca(2+) is a matter of intense debate. To investigate the role of extracellular Ca(2+) in inspiratory burst initiation and termination, we substituted extracellular Ca(2+) with Sr(2+). We found for the first time an ionic manipulation that significantly interferes with burst termination. In a rhythmically active slice, we current-clamped preBötC neurons (Vm ≅ -60 mV) while recording integrated hypoglossal nerve (∫XIIn) activity as motor output. Substitution of extracellular Ca(2+) with either 1.5 or 2.5 mM Sr(2+) significantly prolonged the duration of inspiratory bursts from 653.4 ± 30.7 ms in control conditions to 981.6 ± 78.5 ms in 1.5 mM Sr(2+) and 2,048.2 ± 448.5 ms in 2.5 mM Sr(2+), with a concomitant increase in decay time and area. Substitution of extracellular Ca(2+) by Sr(2+) is a well-established method to desynchronize neurotransmitter release. Our findings suggest that the increase in inspiratory burst duration is determined by a presynaptic mechanism involving desynchronization of glutamate release within the network.


Assuntos
Potenciais de Ação , Cálcio/farmacologia , Inalação , Interneurônios/efeitos dos fármacos , Bulbo/citologia , Estrôncio/farmacologia , Animais , Nervo Hipoglosso/efeitos dos fármacos , Nervo Hipoglosso/fisiologia , Interneurônios/fisiologia , Bulbo/efeitos dos fármacos , Bulbo/fisiologia , Ratos
18.
J Neurophysiol ; 114(1): 400-10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25904708

RESUMO

In individuals with motor-complete spinal cord injury, epidural stimulation of the lumbosacral spinal cord at 2 Hz evokes unmodulated reflexes in the lower limbs, while stimulation at 22-60 Hz can generate rhythmic burstlike activity. Here we elaborated on an output pattern emerging at transitional stimulation frequencies with consecutively elicited reflexes alternating between large and small. We analyzed responses concomitantly elicited in thigh and leg muscle groups bilaterally by epidural stimulation in eight motor-complete spinal cord-injured individuals. Periodic amplitude modulation of at least 20 successive responses occurred in 31.4% of all available data sets with stimulation frequency set at 5-26 Hz, with highest prevalence at 16 Hz. It could be evoked in a single muscle group only but was more strongly expressed and consistent when occurring in pairs of antagonists or in the same muscle group bilaterally. Latencies and waveforms of the modulated reflexes corresponded to those of the unmodulated, monosynaptic responses to 2-Hz stimulation. We suggest that the cyclical changes of reflex excitability resulted from the interaction of facilitatory and inhibitory mechanisms emerging after specific delays and with distinct durations, including postactivation depression, recurrent inhibition and facilitation, as well as reafferent feedback activation. The emergence of large responses within the patterns at a rate of 5.5/s or 8/s may further suggest the entrainment of spinal mechanisms as involved in clonus. The study demonstrates that the human lumbosacral spinal cord can organize a simple form of rhythmicity through the repetitive activation of spinal reflex circuits.


Assuntos
Reflexo/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Medula Espinal/fisiopatologia , Adolescente , Adulto , Estimulação Elétrica/métodos , Eletromiografia , Feminino , Humanos , Perna (Membro)/fisiopatologia , Região Lombossacral , Masculino , Músculo Esquelético/fisiopatologia , Adulto Jovem
19.
J Neurophysiol ; 112(1): 147-55, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24717347

RESUMO

Rostral segments of the spinal cord hindlimb enlargement are more important than caudal segments for generating locomotion and scratching rhythms in limbed vertebrates, but the adequacy of rostral segments has not been directly compared between locomotion and scratching. We separated caudal segments from immobilized low-spinal turtles by sequential spinal cord transections. After separation of the caudal four segments of the five-segment hindlimb enlargement, the remaining enlargement segment and five preenlargement segments still produced rhythms for forward swimming and both rostral and pocket scratching. The swimming rhythm frequency was usually maintained. Some animals continued to generate swimming and scratching rhythms even with no enlargement segments remaining, using only preenlargement segments. The preenlargement segments and rostral-most enlargement segment were also sufficient to maintain hip flexor (HF) motoneuron quiescence between HF bursts [which normally occurs during each hip extensor (HE) phase] during swimming. In contrast, the HF-quiescent phase was increasingly absent (i.e., HE-phase deletions) during rostral and pocket scratching. Moreover, respiratory motoneurons that normally burst during HE bursts continued to burst during the HF quiescence of swimming even with the caudal segments separated. Thus the same segments are sufficient to generate the basic rhythms for both locomotion and scratching. These segments are also sufficient to produce a reliable HE phase during locomotion but not during rostral or pocket scratching. We hypothesize that the rostral HE-phase interneurons that rhythmically inhibit HF motoneurons and interneurons are sufficient to generate HF quiescence during HE-biased swimming but not during the more HF-biased rostral and pocket scratching.


Assuntos
Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Medula Espinal/fisiologia , Natação , Potenciais de Ação , Animais , Quadril/inervação , Quadril/fisiologia , Contração Muscular , Músculo Esquelético/fisiologia , Periodicidade , Medula Espinal/citologia , Tartarugas
20.
bioRxiv ; 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37808787

RESUMO

Obstructive sleep apnea (OSA) is a prevalent sleep-related breathing disorder that results in multiple bouts of intermittent hypoxia. OSA has many neurologic and systemic comorbidities including dysphagia, or disordered swallow, and discoordination with breathing. However, the mechanism in which chronic intermittent hypoxia (CIH) causes dysphagia is unknown. Recently we showed the Postinspiratory complex (PiCo) acts as an interface between the swallow pattern generator (SPG) and the inspiratory rhythm generator, the preBötzinger Complex, to regulate proper swallow-breathing coordination (Huff et al., 2023). PiCo is characterized by interneurons co-expressing transporters for glutamate (Vglut2) and acetylcholine (ChAT). Here we show that optogenetic stimulation of ChATcre:Ai32, Vglut2cre:Ai32, and ChATcre:Vglut2FlpO:ChR2 mice exposed to CIH does not alter swallow-breathing coordination, but unexpectedly disrupts swallow behavior via triggering variable swallow motor patterns. This suggests, glutamatergic-cholinergic neurons in PiCo are not only critical for the regulation of swallow-breathing coordination, but also play an important role in the modulation of swallow motor patterning. Our study also suggests that swallow disruption, as seen in OSA, involves central nervous mechanisms interfering with swallow motor patterning and laryngeal activation. These findings are crucial for understanding the mechanisms underlying dysphagia, both in OSA and other breathing and neurological disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA