Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103.275
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 187(5): 1206-1222.e16, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428395

RESUMO

Plasmids are extrachromosomal genetic elements that often encode fitness-enhancing features. However, many bacteria carry "cryptic" plasmids that do not confer clear beneficial functions. We identified one such cryptic plasmid, pBI143, which is ubiquitous across industrialized gut microbiomes and is 14 times as numerous as crAssphage, currently established as the most abundant extrachromosomal genetic element in the human gut. The majority of mutations in pBI143 accumulate in specific positions across thousands of metagenomes, indicating strong purifying selection. pBI143 is monoclonal in most individuals, likely due to the priority effect of the version first acquired, often from one's mother. pBI143 can transfer between Bacteroidales, and although it does not appear to impact bacterial host fitness in vivo, it can transiently acquire additional genetic content. We identified important practical applications of pBI143, including its use in identifying human fecal contamination and its potential as an alternative approach to track human colonic inflammatory states.


Assuntos
Bactérias , Trato Gastrointestinal , Metagenoma , Plasmídeos , Humanos , Bactérias/genética , Bacteroidetes/genética , Fezes/microbiologia , Plasmídeos/genética
2.
Cell ; 187(8): 1853-1873.e15, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38574728

RESUMO

This study has followed a birth cohort for over 20 years to find factors associated with neurodevelopmental disorder (ND) diagnosis. Detailed, early-life longitudinal questionnaires captured infection and antibiotic events, stress, prenatal factors, family history, and more. Biomarkers including cord serum metabolome and lipidome, human leukocyte antigen (HLA) genotype, infant microbiota, and stool metabolome were assessed. Among the 16,440 Swedish children followed across time, 1,197 developed an ND. Significant associations emerged for future ND diagnosis in general and for specific ND subtypes, spanning intellectual disability, speech disorder, attention-deficit/hyperactivity disorder, and autism. This investigation revealed microbiome connections to future diagnosis as well as early emerging mood and gastrointestinal problems. The findings suggest links to immunodysregulation and metabolism, compounded by stress, early-life infection, and antibiotics. The convergence of infant biomarkers and risk factors in this prospective, longitudinal study on a large-scale population establishes a foundation for early-life prediction and intervention in neurodevelopment.


Assuntos
Biomarcadores , Microbioma Gastrointestinal , Transtornos do Neurodesenvolvimento , Criança , Feminino , Humanos , Lactente , Gravidez , Transtorno do Espectro Autista/microbiologia , Estudos Longitudinais , Estudos Prospectivos , Fezes/microbiologia , Transtornos do Humor/microbiologia
3.
Cell ; 187(8): 1834-1852.e19, 2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38569543

RESUMO

Accumulating evidence suggests that cardiovascular disease (CVD) is associated with an altered gut microbiome. Our understanding of the underlying mechanisms has been hindered by lack of matched multi-omic data with diagnostic biomarkers. To comprehensively profile gut microbiome contributions to CVD, we generated stool metagenomics and metabolomics from 1,429 Framingham Heart Study participants. We identified blood lipids and cardiovascular health measurements associated with microbiome and metabolome composition. Integrated analysis revealed microbial pathways implicated in CVD, including flavonoid, γ-butyrobetaine, and cholesterol metabolism. Species from the Oscillibacter genus were associated with decreased fecal and plasma cholesterol levels. Using functional prediction and in vitro characterization of multiple representative human gut Oscillibacter isolates, we uncovered conserved cholesterol-metabolizing capabilities, including glycosylation and dehydrogenation. These findings suggest that cholesterol metabolism is a broad property of phylogenetically diverse Oscillibacter spp., with potential benefits for lipid homeostasis and cardiovascular health.


Assuntos
Bactérias , Doenças Cardiovasculares , Colesterol , Microbioma Gastrointestinal , Humanos , Bactérias/metabolismo , Doenças Cardiovasculares/metabolismo , Colesterol/análise , Colesterol/sangue , Colesterol/metabolismo , Fezes/química , Estudos Longitudinais , Metaboloma , Metabolômica , RNA Ribossômico 16S/metabolismo
4.
Cell ; 187(12): 2969-2989.e24, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38776919

RESUMO

The gut fungal community represents an essential element of human health, yet its functional and metabolic potential remains insufficiently elucidated, largely due to the limited availability of reference genomes. To address this gap, we presented the cultivated gut fungi (CGF) catalog, encompassing 760 fungal genomes derived from the feces of healthy individuals. This catalog comprises 206 species spanning 48 families, including 69 species previously unidentified. We explored the functional and metabolic attributes of the CGF species and utilized this catalog to construct a phylogenetic representation of the gut mycobiome by analyzing over 11,000 fecal metagenomes from Chinese and non-Chinese populations. Moreover, we identified significant common disease-related variations in gut mycobiome composition and corroborated the associations between fungal signatures and inflammatory bowel disease (IBD) through animal experimentation. These resources and findings substantially enrich our understanding of the biological diversity and disease relevance of the human gut mycobiome.


Assuntos
Fungos , Microbioma Gastrointestinal , Micobioma , Animais , Humanos , Masculino , Camundongos , Fezes/microbiologia , Fungos/genética , Fungos/classificação , Fungos/isolamento & purificação , Genoma Fúngico/genética , Genômica , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/genética , Metagenoma , Filogenia , Feminino , Adulto , Pessoa de Meia-Idade
5.
Cell ; 187(12): 2952-2968.e13, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38795705

RESUMO

Recent studies suggest that human-associated bacteria interact with host-produced steroids, but the mechanisms and physiological impact of such interactions remain unclear. Here, we show that the human gut bacteria Gordonibacter pamelaeae and Eggerthella lenta convert abundant biliary corticoids into progestins through 21-dehydroxylation, thereby transforming a class of immuno- and metabo-regulatory steroids into a class of sex hormones and neurosteroids. Using comparative genomics, homologous expression, and heterologous expression, we identify a bacterial gene cluster that performs 21-dehydroxylation. We also uncover an unexpected role for hydrogen gas production by gut commensals in promoting 21-dehydroxylation, suggesting that hydrogen modulates secondary metabolism in the gut. Levels of certain bacterial progestins, including allopregnanolone, better known as brexanolone, an FDA-approved drug for postpartum depression, are substantially increased in feces from pregnant humans. Thus, bacterial conversion of corticoids into progestins may affect host physiology, particularly in the context of pregnancy and women's health.


Assuntos
Microbioma Gastrointestinal , Glucocorticoides , Hidrogênio , Progestinas , Humanos , Progestinas/metabolismo , Hidrogênio/metabolismo , Feminino , Glucocorticoides/metabolismo , Gravidez , Animais , Família Multigênica , Fezes/microbiologia , Pregnanolona/metabolismo , Camundongos
6.
Cell ; 187(13): 3373-3389.e16, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38906102

RESUMO

The gut microbiota influences the clinical responses of cancer patients to immunecheckpoint inhibitors (ICIs). However, there is no consensus definition of detrimental dysbiosis. Based on metagenomics (MG) sequencing of 245 non-small cell lung cancer (NSCLC) patient feces, we constructed species-level co-abundance networks that were clustered into species-interacting groups (SIGs) correlating with overall survival. Thirty-seven and forty-five MG species (MGSs) were associated with resistance (SIG1) and response (SIG2) to ICIs, respectively. When combined with the quantification of Akkermansia species, this procedure allowed a person-based calculation of a topological score (TOPOSCORE) that was validated in an additional 254 NSCLC patients and in 216 genitourinary cancer patients. Finally, this TOPOSCORE was translated into a 21-bacterial probe set-based qPCR scoring that was validated in a prospective cohort of NSCLC patients as well as in colorectal and melanoma patients. This approach could represent a dynamic diagnosis tool for intestinal dysbiosis to guide personalized microbiota-centered interventions.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Microbioma Gastrointestinal , Imunoterapia , Neoplasias Pulmonares , Neoplasias , Feminino , Humanos , Masculino , Akkermansia , Carcinoma Pulmonar de Células não Pequenas/microbiologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/imunologia , Disbiose/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inibidores de Checkpoint Imunológico/uso terapêutico , Inibidores de Checkpoint Imunológico/farmacologia , Imunoterapia/métodos , Neoplasias Pulmonares/microbiologia , Neoplasias Pulmonares/tratamento farmacológico , Metagenômica/métodos , Neoplasias/microbiologia , Resultado do Tratamento
7.
Cell ; 186(6): 1087, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931236

RESUMO

Rebyota is a rectally administered fecal microbiota suspension for prevention of recurrence of Clostridioides difficile infection. The mechanism of action of Rebyota probably involves competitive exclusion of C. difficile by donor microbes with reduced toxin production; other factors may include restoration of protective taxa and modulation of the recipient's microbiome by phage, donor microbes, or metabolites.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbiota , Humanos , Transplante de Microbiota Fecal , Fezes , Infecções por Clostridium/terapia , Recidiva
8.
Cell ; 186(12): 2705-2718.e17, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37295406

RESUMO

Discerning the effect of pharmacological exposures on intestinal bacterial communities in cancer patients is challenging. Here, we deconvoluted the relationship between drug exposures and changes in microbial composition by developing and applying a new computational method, PARADIGM (parameters associated with dynamics of gut microbiota), to a large set of longitudinal fecal microbiome profiles with detailed medication-administration records from patients undergoing allogeneic hematopoietic cell transplantation. We observed that several non-antibiotic drugs, including laxatives, antiemetics, and opioids, are associated with increased Enterococcus relative abundance and decreased alpha diversity. Shotgun metagenomic sequencing further demonstrated subspecies competition, leading to increased dominant-strain genetic convergence during allo-HCT that is significantly associated with antibiotic exposures. We integrated drug-microbiome associations to predict clinical outcomes in two validation cohorts on the basis of drug exposures alone, suggesting that this approach can generate biologically and clinically relevant insights into how pharmacological exposures can perturb or preserve microbiota composition. The application of a computational method called PARADIGM to a large dataset of cancer patients' longitudinal fecal specimens and detailed daily medication records reveals associations between drug exposures and the intestinal microbiota that recapitulate in vitro findings and are also predictive of clinical outcomes.


Assuntos
Microbioma Gastrointestinal , Transplante de Células-Tronco Hematopoéticas , Microbiota , Neoplasias , Humanos , Microbioma Gastrointestinal/genética , Fezes/microbiologia , Metagenoma , Antibacterianos , Neoplasias/tratamento farmacológico
9.
Cell ; 185(23): 4280-4297.e12, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36323316

RESUMO

The gut microbiome has an important role in infant health and development. We characterized the fecal microbiome and metabolome of 222 young children in Dhaka, Bangladesh during the first two years of life. A distinct Bifidobacterium longum clade expanded with introduction of solid foods and harbored enzymes for utilizing both breast milk and solid food substrates. The clade was highly prevalent in Bangladesh, present globally (at lower prevalence), and correlated with many other gut taxa and metabolites, indicating an important role in gut ecology. We also found that the B. longum clades and associated metabolites were implicated in childhood diarrhea and early growth, including positive associations between growth measures and B. longum subsp. infantis, indolelactate and N-acetylglutamate. Our data demonstrate geographic, cultural, seasonal, and ecological heterogeneity that should be accounted for when identifying microbiome factors implicated in and potentially benefiting infant development.


Assuntos
Bifidobacterium longum , Lactente , Criança , Feminino , Humanos , Pré-Escolar , Bifidobacterium longum/metabolismo , Bifidobacterium/metabolismo , Desmame , Oligossacarídeos/metabolismo , Bangladesh , Leite Humano , Fezes/microbiologia
10.
Cell ; 185(26): 4921-4936.e15, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36563663

RESUMO

The perinatal period represents a critical window for cognitive and immune system development, promoted by maternal and infant gut microbiomes and their metabolites. Here, we tracked the co-development of microbiomes and metabolomes from late pregnancy to 1 year of age using longitudinal multi-omics data from a cohort of 70 mother-infant dyads. We discovered large-scale mother-to-infant interspecies transfer of mobile genetic elements, frequently involving genes associated with diet-related adaptations. Infant gut metabolomes were less diverse than maternal but featured hundreds of unique metabolites and microbe-metabolite associations not detected in mothers. Metabolomes and serum cytokine signatures of infants who received regular-but not extensively hydrolyzed-formula were distinct from those of exclusively breastfed infants. Taken together, our integrative analysis expands the concept of vertical transmission of the gut microbiome and provides original insights into the development of maternal and infant microbiomes and metabolomes during late pregnancy and early life.


Assuntos
Microbioma Gastrointestinal , Microbiota , Feminino , Humanos , Lactente , Gravidez , Microbioma Gastrointestinal/genética , Microbiota/genética , Mães , Aleitamento Materno , Fezes , Sequências Repetitivas Dispersas
11.
Cell ; 185(19): 3617-3636.e19, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-36070752

RESUMO

Efforts to model the human gut microbiome in mice have led to important insights into the mechanisms of host-microbe interactions. However, the model communities studied to date have been defined or complex, but not both, limiting their utility. Here, we construct and characterize in vitro a defined community of 104 bacterial species composed of the most common taxa from the human gut microbiota (hCom1). We then used an iterative experimental process to fill open niches: germ-free mice were colonized with hCom1 and then challenged with a human fecal sample. We identified new species that engrafted following fecal challenge and added them to hCom1, yielding hCom2. In gnotobiotic mice, hCom2 exhibited increased stability to fecal challenge and robust colonization resistance against pathogenic Escherichia coli. Mice colonized by either hCom2 or a human fecal community are phenotypically similar, suggesting that this consortium will enable a mechanistic interrogation of species and genes on microbiome-associated phenotypes.


Assuntos
Microbioma Gastrointestinal , Microbiota , Animais , Bactérias/genética , Escherichia coli , Fezes , Microbioma Gastrointestinal/genética , Vida Livre de Germes , Humanos , Camundongos
12.
Cell ; 184(24): 5916-5931.e17, 2021 11 24.
Artigo em Inglês | MEDLINE | ID: mdl-34767757

RESUMO

There is increasing interest in the potential contribution of the gut microbiome to autism spectrum disorder (ASD). However, previous studies have been underpowered and have not been designed to address potential confounding factors in a comprehensive way. We performed a large autism stool metagenomics study (n = 247) based on participants from the Australian Autism Biobank and the Queensland Twin Adolescent Brain project. We found negligible direct associations between ASD diagnosis and the gut microbiome. Instead, our data support a model whereby ASD-related restricted interests are associated with less-diverse diet, and in turn reduced microbial taxonomic diversity and looser stool consistency. In contrast to ASD diagnosis, our dataset was well powered to detect microbiome associations with traits such as age, dietary intake, and stool consistency. Overall, microbiome differences in ASD may reflect dietary preferences that relate to diagnostic features, and we caution against claims that the microbiome has a driving role in ASD.


Assuntos
Transtorno Autístico/microbiologia , Comportamento Alimentar , Microbioma Gastrointestinal , Adolescente , Fatores Etários , Transtorno Autístico/diagnóstico , Comportamento , Criança , Pré-Escolar , Fezes/microbiologia , Feminino , Humanos , Masculino , Fenótipo , Filogenia , Especificidade da Espécie
13.
Cell ; 184(15): 3884-3898.e11, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34143954

RESUMO

Immune-microbe interactions early in life influence the risk of allergies, asthma, and other inflammatory diseases. Breastfeeding guides healthier immune-microbe relationships by providing nutrients to specialized microbes that in turn benefit the host's immune system. Such bacteria have co-evolved with humans but are now increasingly rare in modern societies. Here we show that a lack of bifidobacteria, and in particular depletion of genes required for human milk oligosaccharide (HMO) utilization from the metagenome, is associated with systemic inflammation and immune dysregulation early in life. In breastfed infants given Bifidobacterium infantis EVC001, which expresses all HMO-utilization genes, intestinal T helper 2 (Th2) and Th17 cytokines were silenced and interferon ß (IFNß) was induced. Fecal water from EVC001-supplemented infants contains abundant indolelactate and B. infantis-derived indole-3-lactic acid (ILA) upregulated immunoregulatory galectin-1 in Th2 and Th17 cells during polarization, providing a functional link between beneficial microbes and immunoregulation during the first months of life.


Assuntos
Bifidobacterium/fisiologia , Sistema Imunitário/crescimento & desenvolvimento , Sistema Imunitário/microbiologia , Antibacterianos/farmacologia , Biomarcadores/metabolismo , Aleitamento Materno , Linfócitos T CD4-Positivos/imunologia , Polaridade Celular , Proliferação de Células , Citocinas/metabolismo , Fezes/química , Fezes/microbiologia , Galectina 1/metabolismo , Microbioma Gastrointestinal , Humanos , Indóis/metabolismo , Recém-Nascido , Inflamação/sangue , Inflamação/genética , Mucosa Intestinal/imunologia , Metaboloma , Leite Humano/química , Oligossacarídeos/metabolismo , Células Th17/imunologia , Células Th2/imunologia , Água
14.
Cell ; 184(9): 2302-2315.e12, 2021 04 29.
Artigo em Inglês | MEDLINE | ID: mdl-33838112

RESUMO

By following up the gut microbiome, 51 human phenotypes and plasma levels of 1,183 metabolites in 338 individuals after 4 years, we characterize microbial stability and variation in relation to host physiology. Using these individual-specific and temporally stable microbial profiles, including bacterial SNPs and structural variations, we develop a microbial fingerprinting method that shows up to 85% accuracy in classifying metagenomic samples taken 4 years apart. Application of our fingerprinting method to the independent HMP cohort results in 95% accuracy for samples taken 1 year apart. We further observe temporal changes in the abundance of multiple bacterial species, metabolic pathways, and structural variation, as well as strain replacement. We report 190 longitudinal microbial associations with host phenotypes and 519 associations with plasma metabolites. These associations are enriched for cardiometabolic traits, vitamin B, and uremic toxins. Finally, mediation analysis suggests that the gut microbiome may influence cardiometabolic health through its metabolites.


Assuntos
Bactérias/genética , Proteínas de Bactérias/metabolismo , Microbioma Gastrointestinal , Metaboloma , Metagenoma , Microbiota , Adulto , Idoso , Idoso de 80 Anos ou mais , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Resistência Microbiana a Medicamentos , Fezes/microbiologia , Feminino , Instabilidade Genômica , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Fenótipo , Polimorfismo de Nucleotídeo Único , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Adulto Jovem
15.
Cell ; 184(8): 2053-2067.e18, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33794144

RESUMO

Industrialization has impacted the human gut ecosystem, resulting in altered microbiome composition and diversity. Whether bacterial genomes may also adapt to the industrialization of their host populations remains largely unexplored. Here, we investigate the extent to which the rates and targets of horizontal gene transfer (HGT) vary across thousands of bacterial strains from 15 human populations spanning a range of industrialization. We show that HGTs have accumulated in the microbiome over recent host generations and that HGT occurs at high frequency within individuals. Comparison across human populations reveals that industrialized lifestyles are associated with higher HGT rates and that the functions of HGTs are related to the level of host industrialization. Our results suggest that gut bacteria continuously acquire new functionality based on host lifestyle and that high rates of HGT may be a recent development in human history linked to industrialization.


Assuntos
Bactérias/genética , Microbioma Gastrointestinal , Transferência Genética Horizontal , Bactérias/classificação , Bactérias/isolamento & purificação , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Fezes/microbiologia , Genoma Bacteriano , Humanos , Filogenia , População Rural , Análise de Sequência de DNA , População Urbana , Sequenciamento Completo do Genoma
16.
Cell ; 184(4): 1017-1031.e14, 2021 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-33548172

RESUMO

Antibodies mediate natural and vaccine-induced immunity against viral and bacterial pathogens, whereas fungi represent a widespread kingdom of pathogenic species for which neither vaccine nor neutralizing antibody therapies are clinically available. Here, using a multi-kingdom antibody profiling (multiKAP) approach, we explore the human antibody repertoires against gut commensal fungi (mycobiota). We identify species preferentially targeted by systemic antibodies in humans, with Candida albicans being the major inducer of antifungal immunoglobulin G (IgG). Fungal colonization of the gut induces germinal center (GC)-dependent B cell expansion in extraintestinal lymphoid tissues and generates systemic antibodies that confer protection against disseminated C. albicans or C. auris infection. Antifungal IgG production depends on the innate immunity regulator CARD9 and CARD9+CX3CR1+ macrophages. In individuals with invasive candidiasis, loss-of-function mutations in CARD9 are associated with impaired antifungal IgG responses. These results reveal an important role of gut commensal fungi in shaping the human antibody repertoire through CARD9-dependent induction of host-protective antifungal IgG.


Assuntos
Anticorpos Antifúngicos/imunologia , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/microbiologia , Imunidade , Imunoglobulina G/imunologia , Micobioma/imunologia , Animais , Linfócitos B/imunologia , Candida albicans/imunologia , Candidíase/imunologia , Candidíase/microbiologia , Fezes/microbiologia , Centro Germinativo/imunologia , Humanos , Camundongos Endogâmicos C57BL , Fagócitos/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , Transdução de Sinais
17.
Cell ; 184(21): 5405-5418.e16, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34619078

RESUMO

Lyme disease is on the rise. Caused by a spirochete Borreliella burgdorferi, it affects an estimated 500,000 people in the United States alone. The antibiotics currently used to treat Lyme disease are broad spectrum, damage the microbiome, and select for resistance in non-target bacteria. We therefore sought to identify a compound acting selectively against B. burgdorferi. A screen of soil micro-organisms revealed a compound highly selective against spirochetes, including B. burgdorferi. Unexpectedly, this compound was determined to be hygromycin A, a known antimicrobial produced by Streptomyces hygroscopicus. Hygromycin A targets the ribosomes and is taken up by B. burgdorferi, explaining its selectivity. Hygromycin A cleared the B. burgdorferi infection in mice, including animals that ingested the compound in a bait, and was less disruptive to the fecal microbiome than clinically relevant antibiotics. This selective antibiotic holds the promise of providing a better therapeutic for Lyme disease and eradicating it in the environment.


Assuntos
Antibacterianos/uso terapêutico , Doença de Lyme/tratamento farmacológico , Animais , Borrelia burgdorferi/efeitos dos fármacos , Calibragem , Cinamatos/química , Cinamatos/farmacologia , Cinamatos/uso terapêutico , Avaliação Pré-Clínica de Medicamentos , Fezes/microbiologia , Feminino , Células HEK293 , Células Hep G2 , Humanos , Higromicina B/análogos & derivados , Higromicina B/química , Higromicina B/farmacologia , Higromicina B/uso terapêutico , Doença de Lyme/microbiologia , Camundongos , Testes de Sensibilidade Microbiana , Microbiota/efeitos dos fármacos
18.
Cell ; 184(7): 1740-1756.e16, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33705688

RESUMO

The core symptoms of many neurological disorders have traditionally been thought to be caused by genetic variants affecting brain development and function. However, the gut microbiome, another important source of variation, can also influence specific behaviors. Thus, it is critical to unravel the contributions of host genetic variation, the microbiome, and their interactions to complex behaviors. Unexpectedly, we discovered that different maladaptive behaviors are interdependently regulated by the microbiome and host genes in the Cntnap2-/- model for neurodevelopmental disorders. The hyperactivity phenotype of Cntnap2-/- mice is caused by host genetics, whereas the social-behavior phenotype is mediated by the gut microbiome. Interestingly, specific microbial intervention selectively rescued the social deficits in Cntnap2-/- mice through upregulation of metabolites in the tetrahydrobiopterin synthesis pathway. Our findings that behavioral abnormalities could have distinct origins (host genetic versus microbial) may change the way we think about neurological disorders and how to treat them.


Assuntos
Microbioma Gastrointestinal , Locomoção , Comportamento Social , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Biopterinas/análogos & derivados , Biopterinas/metabolismo , Modelos Animais de Doenças , Potenciais Pós-Sinápticos Excitadores , Transplante de Microbiota Fecal , Fezes/microbiologia , Limosilactobacillus reuteri/metabolismo , Limosilactobacillus reuteri/fisiologia , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Transtornos do Neurodesenvolvimento/microbiologia , Transtornos do Neurodesenvolvimento/patologia , Transtornos do Neurodesenvolvimento/terapia , Análise de Componente Principal , Agitação Psicomotora/patologia , Transmissão Sináptica
19.
Cell ; 184(19): 5015-5030.e16, 2021 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-34407392

RESUMO

Group 3 innate lymphoid cells (ILC3s) regulate immunity and inflammation, yet their role in cancer remains elusive. Here, we identify that colorectal cancer (CRC) manifests with altered ILC3s that are characterized by reduced frequencies, increased plasticity, and an imbalance with T cells. We evaluated the consequences of these changes in mice and determined that a dialog between ILC3s and T cells via major histocompatibility complex class II (MHCII) is necessary to support colonization with microbiota that subsequently induce type-1 immunity in the intestine and tumor microenvironment. As a result, mice lacking ILC3-specific MHCII develop invasive CRC and resistance to anti-PD-1 immunotherapy. Finally, humans with dysregulated intestinal ILC3s harbor microbiota that fail to induce type-1 immunity and immunotherapy responsiveness when transferred to mice. Collectively, these data define a protective role for ILC3s in cancer and indicate that their inherent disruption in CRC drives dysfunctional adaptive immunity, tumor progression, and immunotherapy resistance.


Assuntos
Neoplasias do Colo/imunologia , Neoplasias do Colo/terapia , Progressão da Doença , Imunidade Inata , Imunoterapia , Linfócitos/imunologia , Animais , Comunicação Celular/efeitos dos fármacos , Plasticidade Celular/efeitos dos fármacos , Neoplasias do Colo/microbiologia , Fezes/microbiologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Inibidores de Checkpoint Imunológico/farmacologia , Imunidade Inata/efeitos dos fármacos , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/patologia , Intestinos/patologia , Linfócitos/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Microbiota/efeitos dos fármacos , Invasividade Neoplásica , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Doadores de Tecidos
20.
Cell ; 183(2): 324-334.e5, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33007265

RESUMO

Infants born by vaginal delivery are colonized with maternal fecal microbes. Cesarean section (CS) birth disturbs mother-to-neonate transmission. In this study (NCT03568734), we evaluated whether disturbed intestinal microbiota development could be restored in term CS-born infants by postnatal, orally delivered fecal microbiota transplantation (FMT). We recruited 17 mothers, of whom seven were selected after careful screening. Their infants received a diluted fecal sample from their own mothers, taken 3 weeks prior to delivery. All seven infants had an uneventful clinical course during the 3-month follow-up and showed no adverse effects. The temporal development of the fecal microbiota composition of FMT-treated CS-born infants no longer resembled that of untreated CS-born infants but showed significant similarity to that of vaginally born infants. This proof-of-concept study demonstrates that the intestinal microbiota of CS-born infants can be restored postnatally by maternal FMT. However, this should only be done after careful clinical and microbiological screening.


Assuntos
Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Adulto , Cesárea/efeitos adversos , Parto Obstétrico , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Microbiota/fisiologia , Mães , Gravidez , Estudo de Prova de Conceito , Vagina/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA