Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 560(7718): 372-376, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30046109

RESUMO

Regeneration of myelin is mediated by oligodendrocyte progenitor cells-an abundant stem cell population in the central nervous system (CNS) and the principal source of new myelinating oligodendrocytes. Loss of myelin-producing oligodendrocytes in the CNS underlies a number of neurological diseases, including multiple sclerosis and diverse genetic diseases1-3. High-throughput chemical screening approaches have been used to identify small molecules that stimulate the formation of oligodendrocytes from oligodendrocyte progenitor cells and functionally enhance remyelination in vivo4-10. Here we show that a wide range of these pro-myelinating small molecules function not through their canonical targets but by directly inhibiting CYP51, TM7SF2, or EBP, a narrow range of enzymes within the cholesterol biosynthesis pathway. Subsequent accumulation of the 8,9-unsaturated sterol substrates of these enzymes is a key mechanistic node that promotes oligodendrocyte formation, as 8,9-unsaturated sterols are effective when supplied to oligodendrocyte progenitor cells in purified form whereas analogous sterols that lack this structural feature have no effect. Collectively, our results define a unifying sterol-based mechanism of action for most known small-molecule enhancers of oligodendrocyte formation and highlight specific targets to propel the development of optimal remyelinating therapeutics.


Assuntos
Bainha de Mielina/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Remielinização , Esteróis/química , Esteróis/metabolismo , Inibidores de 14-alfa Desmetilase/farmacologia , Animais , Colesterol/biossíntese , Células HEK293 , Ensaios de Triagem em Larga Escala , Humanos , Imidazóis/farmacologia , Masculino , Proteínas de Membrana/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos C57BL , Esclerose Múltipla , Oligodendroglia/efeitos dos fármacos , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Remielinização/efeitos dos fármacos , Esferoides Celulares/efeitos dos fármacos , Esferoides Celulares/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Esteroide Isomerases/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Especificidade por Substrato
2.
Parasitol Res ; 123(6): 248, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38904688

RESUMO

Sterol 14-demethylase (CYP51) inhibitors, encompassing new chemical entities and repurposed drugs, have emerged as promising candidates for Chagas disease treatment, based on preclinical studies reporting anti-Trypanosoma cruzi activity. Triazoles like ravuconazole (RAV) and posaconazole (POS) progressed to clinical trials. Unexpectedly, their efficacy was transient in chronic Chagas disease patients, and their activity was not superior to benznidazole (BZ) treatment. This paper aims to summarize evidence on the global activity of CYP51 inhibitors against T. cruzi by applying systematic review strategies, risk of bias assessment, and meta-analysis from in vivo studies. PubMed and Embase databases were searched for original articles, obtaining fifty-six relevant papers meeting inclusion criteria. Characteristics of animal models, parasite strain, treatment schemes, and cure rates were extracted. Primary outcomes such as maximum parasitaemia values, survival, and parasitological cure were recorded for meta-analysis, when possible. The risk of bias was uncertain in most studies. Animals treated with itraconazole, RAV, or POS survived significantly longer than the infected non-treated groups (RR = 4.85 [3.62, 6.49], P < 0.00001), and they showed no differences with animals treated with positive control drugs (RR = 1.01 [0.98, 1.04], P = 0.54). Furthermore, the overall analysis showed that RAV or POS was not likely to achieve parasitological cure when compared with BZ or NFX treatment (OD = 0.49 [0.31, 0.77], P = 0.002). This systematic review contributes to understanding why the azoles had failed in clinical trials and, more importantly, how to improve the animal models of T. cruzi infection by filling the gaps between basic, translational, and clinical research.


Assuntos
Inibidores de 14-alfa Desmetilase , Doença de Chagas , Modelos Animais de Doenças , Trypanosoma cruzi , Animais , Humanos , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Doença de Chagas/tratamento farmacológico , Doença de Chagas/parasitologia , Esterol 14-Desmetilase/metabolismo , Tiazóis , Resultado do Tratamento , Triazóis/uso terapêutico , Triazóis/farmacologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Trypanosoma cruzi/efeitos dos fármacos
3.
Drug Dev Res ; 84(6): 1204-1230, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37165799

RESUMO

An efficient one-pot reaction utilizing readily available chemical reagents was used to prepare novel 2-amino-1,5-diaryl-1H-pyrrole-3-carbonitrile derivatives and the structures of these compounds were validated by spectroscopic data and elemental analyses. All the synthetic compounds were evaluated for their antimicrobial activities (MZI assay). The tested compounds proved high activities on Staphylococcus aureus (Gram-positive bacteria) and Candida albicans (Pathogenic fungi). However, they did not show any activity on Escherichia coli (Gram-negative bacteria). The most effective compounds in MZI assay 7c, 9a, 9b, 11a, and 11b were selected to determine their MIC on S. aureus and C. albicans. Furthermore, DNA gyrase and 14-α demethylase inhibitory assays were performed to study the inhibitory activities of 7c, 9a, 9b, 11a, and 11b. The results illustrated that compound 9b was the most DNA gyrase inhibitor (IC50 of 0.0236 ± 0.45 µM, which was 1.3- fold higher than gentamicin reference IC50 values of 0.0323 ± 0.81 µM). In addition, compound 9b demonstrated the highest 14-α demethylase inhibitory effect with IC50 of 0.0013 ± 0.02 µM, compared to ketoconazole (IC50 of 0.0008 ± 0.03 µM) and fluconazole (IC50 of 0.00073 ± 0.01 µM), as antifungal reference drugs. Lastly, docking studies were performed to rationalize the dual inhibitory activities of the highly active compounds on both DNA gyrase and 14-α demethylase enzymes.


Assuntos
Inibidores de 14-alfa Desmetilase , DNA Girase , Simulação de Acoplamento Molecular , Inibidores de 14-alfa Desmetilase/farmacologia , DNA Girase/metabolismo , DNA Girase/farmacologia , Staphylococcus aureus , Antibacterianos/química , Pirróis/farmacologia , Pirróis/química , Antifúngicos/farmacologia , Antifúngicos/química , Escherichia coli , Testes de Sensibilidade Microbiana , Estrutura Molecular , Relação Estrutura-Atividade
4.
Bioorg Chem ; 121: 105671, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35168120

RESUMO

In our efforts to identify novel chemical scaffolds for the development of antimalarial agents, a series of quinoline - imidazole hybrid compounds were synthesized and their blood-stage antimalarial activity was evaluated in both drug-sensitive and -multi drug-resistant (MDR) P. falciparum strains. The new analogs possess sub-micromolar activities against Plasmodium falciparum. Among all synthesized derivatives, 11(xxxii) exhibited significant antimalarial efficacy in-vitro against both CQ-sensitive (IC50-0.14 µM) and MDR strain (IC50- 0.41 µM) with minimal cytotoxicity and high selectivity. Structure-activity relationships revealed that Br and OMe substitutions on quinoline ring improved the antimalarial activity and selectivity index. The role of stereochemistry in the inhibitory activity was assessed by enantiomeric separation of a racemic mixture of 11(xxxii). The enantiomer (-)-11(xxxii) had potent antimalarial activity over the other isomer, with IC50 of 0.10 µM.


Assuntos
Antimaláricos , Antiprotozoários , Hidroxiquinolinas , Nitroimidazóis , Quinolinas , Inibidores de 14-alfa Desmetilase/farmacologia , Antimaláricos/química , Antiprotozoários/farmacologia , Inibidores do Citocromo P-450 CYP3A , Imidazóis , Plasmodium falciparum , Quinolinas/química , Relação Estrutura-Atividade
5.
J Comput Aided Mol Des ; 35(4): 493-503, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32638183

RESUMO

In order to assess safety and efficacy of small molecule drugs as well as agrochemicals, it is key to understanding the nature of protein-ligand interaction on an atomistic level. Prothioconazole (PTZ), although commonly considered to be an azole-like inhibitor of sterol 14-α demethylase (CYP51), differs from classical azoles with respect to how it binds its target. The available evidence is only indirect, as crystallographic elucidation of CYP51 complexed with PTZ have not yet been successful. We derive a binding mode hypothesis for PTZ binding its target, compare to DPZ, a triazole-type metabolite of PTZ, and set our findings into context of its biochemistry and spectroscopy. Quantum Theory of Atoms in Molecules (QTAIM) analysis of computed DFT electron densities is used to qualitatively understand the topology of binding, revealing significant differences of how R- and S-enantiomers are binding and, in particular, how the thiozolinthione head of PTZ binds to heme compared to DPZ's triazole head. The difference of binding enthalpy is calculated at coupled cluster (DLPNO-CCSD(T)) level of theory, and we find that DPZ binds stronger to CYP51 than PTZ by more than ΔH ~ 11 kcal/mol.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Proteínas Fúngicas/metabolismo , Fungicidas Industriais/farmacologia , Esterol 14-Desmetilase/metabolismo , Triazóis/farmacologia , Inibidores de 14-alfa Desmetilase/química , Proteínas Fúngicas/antagonistas & inibidores , Fungos/efeitos dos fármacos , Fungos/enzimologia , Fungicidas Industriais/química , Humanos , Simulação de Acoplamento Molecular , Teoria Quântica , Triazóis/química
6.
Molecules ; 26(7)2021 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-33916423

RESUMO

A total of fourteen pyrazoline derivatives were synthesized through cyclo-condensation reactions by chalcone derivatives with different types of semicarbazide. These compounds were characterized by IR, 1D-NMR (1H, 13C and Distortionless Enhancement by Polarization Transfer - DEPT-135) and 2D-NMR (COSY, HSQC and HMBC) as well as mass spectroscopy analysis (HRMS). The synthesized compounds were tested for their antituberculosis activity against Mycobacterium tuberculosis H37Ra in vitro. Based on this activity, compound 4a showed the most potent inhibitory activity, with a minimum inhibitory concentration (MIC) value of 17 µM. In addition, six other synthesized compounds, 5a and 5c-5g, exhibited moderate activity, with MIC ranges between 60 µM to 140 µM. Compound 4a showed good bactericidal activity with a minimum bactericidal concentration (MBC) value of 34 µM against Mycobacterium tuberculosis H37Ra. Molecular docking studies for compound 4a on alpha-sterol demethylase was done to understand and explore ligand-receptor interactions, and to hypothesize potential refinements for the compound.


Assuntos
Inibidores de 14-alfa Desmetilase/síntese química , Antituberculosos/síntese química , Proteínas de Bactérias/antagonistas & inibidores , Pirazóis/síntese química , Semicarbazidas/síntese química , Esterol 14-Desmetilase/química , Inibidores de 14-alfa Desmetilase/farmacologia , Antituberculosos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Fluconazol/química , Fluconazol/farmacologia , Isoniazida/química , Isoniazida/farmacologia , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/crescimento & desenvolvimento , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Pirazóis/farmacologia , Semicarbazidas/farmacologia , Esterol 14-Desmetilase/metabolismo , Homologia Estrutural de Proteína , Termodinâmica
7.
Fish Physiol Biochem ; 47(2): 265-279, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33405060

RESUMO

Biological organisms are constantly challenged by xenobiotics and have evolved mechanisms to reduce, neutralize, or repair toxic outcomes. The various chemical defenses all utilize energy, but their specific costs and impacts on energy budgets are currently unknown. In this study, the energetic costs associated with the induction and substrate transport of the efflux transporter P-glycoprotein (P-gp [ABCB1, MDR1]) were examined in rainbow trout. An intraperitoneal injection of the P-gp inducer clotrimazole (0, 0.1, 1.0, and 10 mg/kg) increased P-gp activity (as measured by a competitive rhodamine 123 transport assay in hepatocytes) in a dose-dependent manner reaching a maximum induction of 2.8-fold. Maximum P-gp induction occurred at 50 h post-administration with the highest dose; significant induction of P-gp activity remained elevated over constitutive values until the last sampling time point (168 h). In vitro measurements of hepatocyte respiration indicated that basal P-gp activity transporting R123 as a substrate did not significantly increase respiration rates (range 18.0 to 23.2 ng O2/min/106 cells); however, following the induction of P-gp by clotrimazole and exposure to the P-gp substrate R123, respiration rates increased significantly (3.52-fold) over baseline values. Using whole animal respirometry, it was shown that respiration rates in fish exposed to R123 only or induced with clotrimazole were not different from controls (range 1.2 to 2.1 mg O2/kg/min); however, respiration rates were significantly increased in fish with induced P-gp levels and also exposed to R123. This work indicates that basal and induced levels of P-gp activity do not incur significant energetic costs to fish; however, upon induction of P-gp and concomitant substrate exposures, energetic costs can increase and could pose challenges to organisms facing limited energy resources.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Clotrimazol/farmacologia , Metabolismo Energético/fisiologia , Oncorhynchus mykiss/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Animais , Sobrevivência Celular/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/fisiologia , Consumo de Oxigênio
8.
Mol Pharmacol ; 98(6): 770-780, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33008918

RESUMO

Cytochromes P450 (P450, CYP) metabolize a wide variety of endogenous and exogenous lipophilic molecules, including most drugs. Sterol 14α-demethylase (CYP51) is a target for antifungal drugs known as conazoles. Using X-ray crystallography, we have discovered a domain-swap homodimerization mode in CYP51 from a human pathogen, Acanthamoeba castellanii CYP51 (AcCYP51). Recombinant AcCYP51 with a truncated transmembrane helix was purified as a heterogeneous mixture corresponding to the dimer and monomer units. Spectral analyses of these two populations have shown that the CO-bound ferrous form of the dimeric protein absorbed at 448 nm (catalytically competent form), whereas the monomeric form absorbed at 420 nm (catalytically incompetent form). AcCYP51 dimerized head-to-head via N-termini swapping, resulting in formation of a nonplanar protein-protein interface exceeding 2000 Å2 with a total solvation energy gain of -35.4 kcal/mol. In the dimer, the protomers faced each other through the F and G α-helices, thus blocking the substrate access channel. In the presence of the drugs clotrimazole and isavuconazole, the AcCYP51 drug complexes crystallized as monomers. Although clotrimazole-bound AcCYP51 adopted a typical CYP monomer structure, isavuconazole-bound AcCYP51 failed to refold 74 N-terminal residues. The failure of AcCYP51 to fully refold upon inhibitor binding in vivo would cause an irreversible loss of a structurally aberrant enzyme through proteolytic degradation. This assumption explains the superior potency of isavuconazole against A. castellanii The dimerization mode observed in this work is compatible with membrane association and may be relevant to other members of the CYP family of biologic, medical, and pharmacological importance. SIGNIFICANCE STATEMENT: We investigated the mechanism of action of antifungal drugs in the human pathogen Acanthamoeba castellanii. We discovered that the enzyme target [Acanthamoeba castellanii sterol 14α-demethylase (AcCYP51)] formed a dimer via an N-termini swap, whereas drug-bound AcCYP51 was monomeric. In the AcCYP51-isavuconazole complex, the protein target failed to refold 74 N-terminal residues, suggesting a fundamentally different mechanism of AcCYP51 inactivation than only blocking the active site. Proteolytic degradation of a structurally aberrant enzyme would explain the superior potency of isavuconazole against A. castellanii.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Acanthamoeba castellanii/efeitos dos fármacos , Amebíase/tratamento farmacológico , Proteínas de Protozoários/antagonistas & inibidores , Esterol 14-Desmetilase/metabolismo , Inibidores de 14-alfa Desmetilase/uso terapêutico , Acanthamoeba castellanii/metabolismo , Amebíase/parasitologia , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Nitrilas/farmacologia , Nitrilas/uso terapêutico , Ligação Proteica , Domínios Proteicos/fisiologia , Multimerização Proteica/efeitos dos fármacos , Multimerização Proteica/fisiologia , Proteólise/efeitos dos fármacos , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura , Piridinas/farmacologia , Piridinas/uso terapêutico , Proteínas Recombinantes , Esterol 14-Desmetilase/ultraestrutura , Triazóis/farmacologia , Triazóis/uso terapêutico
9.
Artigo em Inglês | MEDLINE | ID: mdl-32094126

RESUMO

Current treatments for Acanthamoeba keratitis rely on a combination of chlorhexidine gluconate, propamidine isethionate, and polyhexamethylene biguanide. These disinfectants are nonspecific and inherently toxic, which limits their effectiveness. Furthermore, in 10% of cases, recurrent infection ensues due to the difficulty in killing both trophozoites and double-walled cysts. Therefore, development of efficient, safe, and target-specific drugs which are capable of preventing recurrent Acanthamoeba infection is a critical unmet need for averting blindness. Since both trophozoites and cysts contain specific sets of membrane sterols, we hypothesized that antifungal drugs targeting sterol 14-demethylase (CYP51), known as conazoles, would have deleterious effects on A. castellanii trophozoites and cysts. To test this hypothesis, we first performed a systematic screen of the FDA-approved conazoles against A. castellanii trophozoites using a bioluminescence-based viability assay adapted and optimized for Acanthamoeba The most potent drugs were then evaluated against cysts. Isavuconazole and posaconazole demonstrated low nanomolar potency against trophozoites of three clinical strains of A. castellanii Furthermore, isavuconazole killed trophozoites within 24 h and suppressed excystment of preformed Acanthamoeba cysts into trophozoites. The rapid action of isavuconazole was also evident from the morphological changes at nanomolar drug concentrations causing rounding of trophozoites within 24 h of exposure. Given that isavuconazole has an excellent safety profile, is well tolerated in humans, and blocks A. castellanii excystation, this opens an opportunity for the cost-effective repurposing of isavuconazole for the treatment of primary and recurring Acanthamoeba keratitis.


Assuntos
Acanthamoeba castellanii/efeitos dos fármacos , Amebicidas/farmacologia , Antifúngicos/farmacologia , Nitrilas/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Acanthamoeba castellanii/crescimento & desenvolvimento , Amebíase/tratamento farmacológico , Amebíase/parasitologia , Amebicidas/uso terapêutico , Animais , Antifúngicos/uso terapêutico , Reposicionamento de Medicamentos , Humanos , Testes de Sensibilidade Microbiana , Nitrilas/uso terapêutico , Piridinas/uso terapêutico , Triazóis/uso terapêutico , Trofozoítos/efeitos dos fármacos
10.
FASEB J ; 33(2): 1787-1800, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30207799

RESUMO

The regulation of cytochrome P450 activity is often achieved by structural transitions induced by substrate binding. We describe the conformational transition experienced upon binding by the P450 OleP, an epoxygenase involved in oleandomycin biosynthesis. OleP bound to the substrate analog 6DEB crystallized in 2 forms: one with an ensemble of open and closed conformations in the asymmetric unit and another with only the closed conformation. Characterization of OleP-6DEB binding kinetics, also using the P450 inhibitor clotrimazole, unveiled a complex binding mechanism that involves slow conformational rearrangement with the accumulation of a spectroscopically detectable intermediate where 6DEB is bound to open OleP. Data reported herein provide structural snapshots of key precatalytic steps in the OleP reaction and explain how structural rearrangements induced by substrate binding regulate activity.-Parisi, G., Montemiglio, L. C., Giuffrè, A., Macone, A., Scaglione, A., Cerutti, G., Exertier, C., Savino, C., Vallone, B. Substrate-induced conformational change in cytochrome P450 OleP.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Inibidores de 14-alfa Desmetilase/farmacologia , Clotrimazol/farmacologia , Cristalografia por Raios X , Cromatografia Gasosa-Espectrometria de Massas , Cinética , Conformação Proteica , Especificidade por Substrato
11.
Arch Microbiol ; 202(4): 711-726, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31786635

RESUMO

This study is a continuation and extension of our previous study in which we synthesized seven novel eugenol tosylate congeners (ETC-1 to ETC-7) from a natural compound eugenol and checked their antifungal activity against different isolates of Candida albicans. All these ETCs showed potent antifungal activity to varying degrees. In this study, the aim is to evaluate the effect of most active compounds (ETC-5, ETC-6 and ETC-7) on ergosterol biosynthesis pathway and cellular viability in C. albicans by applying combined approach of in silico and in vitro methodologies. In silico studies were done through all atom molecular mechanics approach and free binding energy estimations, and in vitro study was done by estimating total intracellular sterol content and effect on expression of ERG11 gene. Furthermore, effect on cell viability by these compounds was also tested. Our results demonstrated that these ETCs target ergosterol biosynthesis pathway in C. albicans by inhibiting the lanosterol 14-α demethylase enzyme and also downregulates expression of its related gene ERG11. Furthermore, these ETCs exhibit potent fungicidal effect in cell viability assay, thus overall results advocating the claim that these tosylates have potential to be taken to next level of antifungal drug development.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Candida albicans/efeitos dos fármacos , Ergosterol/antagonistas & inibidores , Antifúngicos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Eugenol/química , Humanos , Testes de Sensibilidade Microbiana , Esterol 14-Desmetilase/metabolismo
12.
Bioorg Chem ; 105: 104387, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33130344

RESUMO

7H-Benzo[7,8]chromeno[2,3-d]pyrimidin-9(8H)-amine (6a,b) have been synthesized via hydrazinolysis of the imidates (5a,b). Polysubstituted chromenotriazolopyrimidine (7a-j), (12a,b) and Schiff base (8a,b) derivatives have also been prepared. The new heterocyclic derivatives were affirmed by spectral data. The target compounds have been screened for antibacterial and antifungal activity. Compounds 6a,b and 7a-c, g,h displayed the most favorable antimicrobial activities in resemblance to the reference antimicrobial agents by IZ range over 24 mm. In addition, MIC, MBC and MFC were also tested and screen for most active compound 6a by 6.25 µg/mL showing bactericidal effect. SAR study revealed that the antimicrobial vitality of the target compounds was safely influenced by the lipophilicity substituents and the calculated log P value. The potent compounds were subjected into in vitro enzyme screening (14α-Demethylase and DNA Gyrase) against both interesting targets and showed good inhibitory profile. Molecular modeling analyses were introduced and discussed focusing on the docking of active compounds into two essential targets, and their ADMET properties were studied.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antibacterianos/farmacologia , Antifúngicos/farmacologia , Benzopiranos/farmacologia , Inibidores da Topoisomerase II/farmacologia , Inibidores de 14-alfa Desmetilase/síntese química , Inibidores de 14-alfa Desmetilase/química , Antibacterianos/síntese química , Antibacterianos/química , Antifúngicos/síntese química , Antifúngicos/química , Aspergillus/efeitos dos fármacos , Benzopiranos/síntese química , Benzopiranos/química , Candida albicans/efeitos dos fármacos , DNA Girase/metabolismo , Relação Dose-Resposta a Droga , Bactérias Gram-Positivas/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Molecular , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade , Inibidores da Topoisomerase II/síntese química , Inibidores da Topoisomerase II/química
13.
Molecules ; 25(6)2020 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-32245177

RESUMO

Pyrazolo[1,5-a]pyrimidines 5a-c, 9a-c and 13a-i were synthesized for evaluation of their in vitro antimicrobial properties against some microorganisms and their immunomodulatory activity. The biological activities of pyrazolo[1,5-a]pyrimidines showed that the pyrazolo[1,5-a]pyrimidines (5c, 9a, 9c, 13a, 13c, 13d, 13e and 13h) displayed promising antimicrobial and immunomodulatory activities. Studying the in silico predicted physicochemical, pharmacokinetic, ADMET and drug-likeness properties for the pyrazolo[1,5-a]pyrimidines 5a-c, 9a-c and 13a-i confirmed that most of the compounds (i) were within the range set by Lipinski's rule of five, (ii) show higher gastrointestinal absorption and inhibition of some CYP isoforms, and (iii) have a carcinogenicity test that was predicted as negative and hERG test that presented medium risk. Moreover, the molecular docking study demonstrated that the compounds 5c, 9a, 9c, 13a, 13c, 13d, 13e and 13h are potent inhibitors of 14-alpha demethylase, transpeptidase and alkaline phosphatase enzymes. This study could be valuable in the discovery of a new series of drugs.


Assuntos
Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Fungos/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Inibidores de 14-alfa Desmetilase/farmacologia , Fosfatase Alcalina/antagonistas & inibidores , Aspergillus/efeitos dos fármacos , Células CACO-2 , Candida albicans/efeitos dos fármacos , Testes de Carcinogenicidade/efeitos adversos , Simulação por Computador , Desenho de Fármacos , Enterococcus faecalis/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Fusarium/efeitos dos fármacos , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Peptidil Transferases/antagonistas & inibidores , Pseudomonas aeruginosa/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacocinética , Pirazóis/toxicidade , Pirimidinas/química , Pirimidinas/farmacocinética , Pirimidinas/toxicidade , Salmonella typhi/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Relação Estrutura-Atividade
14.
Fungal Genet Biol ; 131: 103243, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31228646

RESUMO

Candida auris is an emerging species of yeast characterized by colonization of skin, persistence in the healthcare environment, and antifungal resistance. C. auris was first described in 2009 from a single isolate but has since been reported in more than 25 countries worldwide. Resistance to fluconazole and amphotericin B is common, and resistance to the echinocandins is emerging in some countries. Antifungal resistance has been shown to be acquired rather than intrinsic and the primary mechanisms of resistance to the echinocandins and azoles have been determined. There are a number of new antifungal agents in phase 2 and phase 3 clinical trials and many have activity against C. auris. This review will discuss what is currently known about antifungal resistance in C. auris, limitations to antifungal susceptibility testing, the mechanisms of resistance, and the new antifungals that are on the horizon.


Assuntos
Candida/efeitos dos fármacos , Candidíase/tratamento farmacológico , Farmacorresistência Fúngica Múltipla/fisiologia , Inibidores de 14-alfa Desmetilase/farmacologia , Inibidores de 14-alfa Desmetilase/uso terapêutico , Aminopiridinas/farmacologia , Aminopiridinas/uso terapêutico , Anfotericina B/farmacologia , Anfotericina B/uso terapêutico , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Azóis/farmacologia , Azóis/uso terapêutico , Candidíase/microbiologia , Equinocandinas/farmacologia , Equinocandinas/uso terapêutico , Fluconazol/farmacologia , Fluconazol/uso terapêutico , Humanos , Isoxazóis/farmacologia , Isoxazóis/uso terapêutico , Testes de Sensibilidade Microbiana , Piridinas/farmacologia , Piridinas/uso terapêutico , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico
15.
Artigo em Inglês | MEDLINE | ID: mdl-29987152

RESUMO

Cryptococcal meningitis is a significant cause of morbidity and mortality in immunocompromised patients. VT-1129 is a novel fungus-specific Cyp51 inhibitor with potent in vitro activity against Cryptococcus species. Our objective was to evaluate the in vivo efficacy of VT-1129 against cryptococcal meningitis. Mice were inoculated intracranially with Cryptococcus neoformans Oral treatment with VT-1129, fluconazole, or placebo began 1 day later and continued for either 7 or 14 days, and brains and plasma were collected on day 8 or 15, 1 day after therapy ended, and the fungal burden was assessed. In the survival study, treatment continued until day 10 or day 28, after which mice were monitored off therapy until day 30 or day 60, respectively, to assess survival. The fungal burden was also assessed in the survival arm. VT-1129 plasma and brain concentrations were also measured. VT-1129 reached a significant maximal survival benefit (100%) at a dose of 20 mg/kg of body weight once daily. VT-1129 at doses of ≥0.3 mg/kg/day and each dose of fluconazole significantly reduced the brain tissue fungal burden compared to that in the control after both 7 and 14 days of dosing. The fungal burden was also undetectable in most mice treated with a dose of ≥3 mg/kg/day, even ≥20 days after dosing had stopped, in the survival arm. In contrast, rebounds in fungal burden were observed with fluconazole. These results are consistent with the VT-1129 concentrations, which remained elevated long after dosing had stopped. These data demonstrate the potential utility of VT-1129 to have a marked impact in the treatment of cryptococcal meningitis.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Meningite Criptocócica/tratamento farmacológico , Piridinas/farmacologia , Esterol 14-Desmetilase/metabolismo , Tetrazóis/farmacologia , Animais , Antifúngicos/farmacologia , Criptococose/tratamento farmacológico , Fluconazol/farmacologia , Camundongos , Testes de Sensibilidade Microbiana/métodos , Modelos Teóricos
16.
J Antimicrob Chemother ; 73(2): 404-408, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29190379

RESUMO

Background: Invasive fungal infections, including those caused by yeasts, moulds and endemic organisms, can be significant causes of morbidity and mortality in immunocompromised hosts, those with multiple comorbidities and occasionally immunocompetent hosts. Current antifungal agents are often limited by drug toxicities, drug interactions or the development of resistance. VT-1598 is a novel tetrazole that has greater specificity for fungal Cyp51 than currently available triazoles and thus the potential for clinically significant drug interactions is reduced. We measured the in vitro activity of VT-1598 against clinical isolates of Candida and Cryptococcus species, endemic fungi, including Coccidioides, Blastomyces and Histoplasma, Aspergillus species and Rhizopus arrhizus. Methods: Antifungal susceptibility testing was performed by broth microdilution or macrodilution methods per CLSI standards. Clinical isolates of each species were used and clinically available antifungal agents were tested against each isolate. Results: VT-1598 demonstrated in vitro activity against yeasts and moulds that was similar to or greater than that of clinically available antifungal agents, including amphotericin B, fluconazole, caspofungin, voriconazole and posaconazole. The in vitro activity of VT-1598 was also maintained against resistant isolates, including fluconazole-resistant Candida isolates. In vitro activity was also observed against endemic fungi, including Blastomyces, Histoplasma and both Coccidioides immitis and Coccidioides posadasii. Conclusions: VT-1598 demonstrated in vitro activity against yeasts, moulds and endemic fungi, which was maintained against isolates that had reduced susceptibility to other antifungals. Further studies are warranted to evaluate the in vivo efficacy of VT-1598 against various fungal pathogens.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos/farmacologia , Fungos/efeitos dos fármacos , Tetrazóis/farmacologia , Fungos/isolamento & purificação , Humanos , Testes de Sensibilidade Microbiana , Micoses/microbiologia
17.
J Antimicrob Chemother ; 73(10): 2815-2822, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-29947783

RESUMO

Objectives: Annual global deaths from cryptococcal meningitis (CM) are estimated at 180 000 and mortality is as high as 30%, even with optimal therapy. VT-1598 is a novel fungal CYP51 inhibitor with potent intrinsic antifungal activity against Cryptococcus. We report here VT-1598's in vivo antifungal activity in a murine model of CM. Methods: Single-dose plasma and brain pharmacokinetics in mice and MIC for Cryptococcus neoformans H99 were determined prior to efficacy studies. Short-course monotherapy and combination doses were explored with the endpoint of brain fungal burden. A survival study was also conducted using monotherapy treatment with fungal burden measured after a 6 day drug washout. Results: Oral doses of VT-1598 had good plasma and brain exposure and resulted in significant (P < 0.0001) and dose-dependent reductions in brain fungal burden, reaching a 6 log10 reduction. Unlike either positive drug control (fluconazole or liposomal amphotericin B), both mid and high doses of VT-1598 reduced fungal burden to below levels measured at the start of treatment. When VT-1598 was dosed in the survival study, no VT-1598-treated animal succumbed to the infection. Whereas fluconazole showed a 2.5 log10 increase in fungal burden after the 6 day washout, the VT-1598 mid- and high-dose animals showed almost no regrowth (<0.5 log10). In a separate fungal burden study using suboptimal doses of VT-1598 and liposomal amphotericin B to probe for combination effects, each combination had a positive effect relative to corresponding monotherapies. Conclusions: These pre-clinical in vivo data strongly support clinical investigation of VT-1598 as a novel therapy for this lethal infection.


Assuntos
Inibidores de 14-alfa Desmetilase/administração & dosagem , Anfotericina B/administração & dosagem , Antifúngicos/administração & dosagem , Meningite Criptocócica/tratamento farmacológico , Inibidores de 14-alfa Desmetilase/farmacologia , Administração Oral , Anfotericina B/farmacologia , Animais , Antifúngicos/farmacologia , Contagem de Colônia Microbiana , Cryptococcus neoformans/efeitos dos fármacos , Cryptococcus neoformans/crescimento & desenvolvimento , Modelos Animais de Doenças , Quimioterapia Combinada/métodos , Camundongos , Testes de Sensibilidade Microbiana , Análise de Sobrevida , Resultado do Tratamento
18.
Bioorg Med Chem ; 26(8): 2009-2016, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29530348

RESUMO

Novel imidazole-based ketene dithioacetals show impressive in planta activity against the economically important plant pathogens Alternaria solani, Botryotinia fuckeliana, Erysiphe necator and Zymoseptoria tritici. Especially derivatives of the topical antifungal lanoconazole, which bear an alkynyloxy or a heteroaryl group in the para-position of the phenyl ring, exhibit excellent control of the mentioned phytopathogens. These compounds inhibit 14α -demethylase in the sterol biosynthesis pathway of the fungi. Synthesis routes starting from either benzaldehydes or acetophenones as well as structure-activity relationships are discussed in detail.


Assuntos
Acetais/química , Antifúngicos/síntese química , Ascomicetos/efeitos dos fármacos , Etilenos/química , Imidazóis/química , Cetonas/química , Inibidores de 14-alfa Desmetilase/química , Inibidores de 14-alfa Desmetilase/metabolismo , Inibidores de 14-alfa Desmetilase/farmacologia , Acetais/metabolismo , Acetais/farmacologia , Alternaria/efeitos dos fármacos , Antifúngicos/metabolismo , Antifúngicos/farmacologia , Ascomicetos/metabolismo , Sítios de Ligação , Família 51 do Citocromo P450/química , Família 51 do Citocromo P450/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Esterol 14-Desmetilase/química , Esterol 14-Desmetilase/metabolismo , Relação Estrutura-Atividade
19.
Phytopathology ; 108(11): 1263-1275, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-29792573

RESUMO

Anthracnose disease, caused by Colletotrichum truncatum, affects marketable yield during preharvest production and postharvest storage of fruits and vegetables worldwide. Demethylation inhibitor (DMI) fungicides are among the very few chemical classes of single-site mode of action fungicides that are effective in controlling anthracnose disease. However, some species are inherently resistant to DMIs and more information is needed to understand this phenomenon. Isolates of C. truncatum were collected from the United States and China from peach, soybean, citrus, and begonia and sensitivity to six DMIs (difenoconazole, propiconazole, metconazole, tebuconazole, flutriafol, and fenbuconazole) was determined. Compared with DMI sensitive isolates of C. fructicola, C. siamense, and C. fioriniae (EC50 value ranging from 0.03 to 16.2 µg/ml to six DMIs), C. truncatum and C. nymphaeae were resistant to flutriafol and fenbuconazole (with EC50 values of more 50 µg/ml). Moreover, C. truncatum was resistant to tebuconazole and metconazole (with resistance factors of 27.4 and 96.0) and displayed reduced sensitivity to difenoconazole and propiconazole (with resistance factors of 5.1 and 5.2). Analysis of the Colletotrichum spp. genome revealed two potential DMI targets, CYP51A and CYP51B, that putatively encode P450 sterol 14α-demethylases. Both genes were identified and sequenced from C. truncatum and other species and no correlation between CYP51 gene expression levels and fungicide sensitivity was found. Four amino acid variations L208Y, H238R, S302A, and I366L in CYP51A, and three variations H373 N, M376L, and S511T in CYP51B correlated with the DMI resistance phenotype. CYP51A structure model analysis suggested the four alterations may reduce azole affinity. Likewise, CYP51B structure analysis suggested the H373 N and M376L variants may change the conformation of the DMI binding pocket, thereby causing differential sensitivity to DMI fungicides in C. truncatum.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Colletotrichum/enzimologia , Farmacorresistência Fúngica , Variação Genética , Doenças das Plantas/microbiologia , Esterol 14-Desmetilase/genética , Sequência de Aminoácidos , Azóis/farmacologia , Begoniaceae/microbiologia , Citrus/microbiologia , Colletotrichum/efeitos dos fármacos , Colletotrichum/genética , Proteínas Fúngicas/genética , Fungicidas Industriais/farmacologia , Modelos Moleculares , Filogenia , Prunus persica/microbiologia , Alinhamento de Sequência , Glycine max/microbiologia
20.
Biochim Biophys Acta ; 1860(4): 636-47, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26723175

RESUMO

BACKGROUND: Further quest for new anti-fungal compounds with proven mechanisms of action arises due to resistance and dose limiting toxicity of existing agents. Among the human fungal pathogens C. albicans predominate by infecting several sites in the body and in particular oral cavity and root canals of human tooth. METHODS: In the present study, we screened a library of ß-lactam substituted polycyclic fused pyrrolidine/pyrrolizidine compounds against Candida sp. Detailed molecular studies were carried out with the active compound 3 on C. albicans. Morphological damage and antibiofilm activity of compound 3 on C. albicans was studied using scanning electron microscopy (SEM). Biochemical evidence for membrane damage was studied using flow cytometry. In silico docking studies were carried out to elucidate the mechanism of action of compound 3. Further, the antifungal activity of compound 3 was evaluated in an ex vivo dentinal tubule infection model. RESULTS: Screening data showed that several new compounds were active against Candida sp. Among them, Compound 3 was most potent and exerted time kill effect at 4h, post antifungal effect up to 6h. When used in combination with fluconazole or nystatin, compound 3 revealed an minimum inhibitory concentration (MIC) decrease by 4 fold for both drugs used. In-depth molecular studies with compound 3 on C. albicans showed that this compound inhibited yeast to hyphae (Y-H) conversion and this involved the cAMP pathway. Further, SEM images of C. albicans showed that compound 3 caused membrane damage and inhibited biofilm formation. Biochemical evidence for membrane damage was confirmed by increased propidium iodide (PI) uptake in flow cytometry. Further, in silico studies revealed that compound 3 docks with the active site of the key enzyme 14-α-demethylase and this might inhibit ergosterol synthesis. In support of this, ergosterol levels were found to be decreased by 32 fold in compound 3 treated samples as analyzed by high performance liquid chromatography (HPLC). Further, the antifungal activity of compound 3 was evaluated in an ex vivo dentinal tubule infection model, which mimics human tooth root canal infection. Confocal laser scanning microscopy studies showed 83% eradication of C. albicans and a 6 log reduction in colony forming unit (CFU) after 24h treatment in the infected tooth samples in this model. CONCLUSION: Compound 3 was found to be very effective in eradicating C. albicans by inhibiting cAMP pathway and ergosterol biosynthesis. GENERAL SIGNIFICANCE: The results of this study can pave the way for developing new antifungal agents with well deciphered mechanisms of action and can be a promising antifungal agent or medicament against root canal infection.


Assuntos
Inibidores de 14-alfa Desmetilase/farmacologia , Antifúngicos , Candida albicans/crescimento & desenvolvimento , Candidíase/tratamento farmacológico , AMP Cíclico/metabolismo , Cavidade Pulpar/microbiologia , Modelos Biológicos , Sistemas do Segundo Mensageiro , Esterol 14-Desmetilase/metabolismo , beta-Lactamas , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/ultraestrutura , Candidíase/metabolismo , Candidíase/patologia , Cavidade Pulpar/metabolismo , Cavidade Pulpar/ultraestrutura , Humanos , beta-Lactamas/química , beta-Lactamas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA