Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Chem Commun (Camb) ; 60(57): 7307-7310, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38758095

RESUMO

An easy, in situ growth approach led to the formation of several composites of metal-organic framewoks and Nb4C3Tx MXenes mixed intimately at the submicron scale. The high affinity of MXene surface for dopamine, enhanced by a nanostructuration induced by MOFs, resulted in superior sensing performances. The system exhibited good linearity over the 1-100 nM range, with an excellent limit of detection of 0.2 nM.


Assuntos
Dopamina , Estruturas Metalorgânicas , Dopamina/análise , Dopamina/química , Estruturas Metalorgânicas/química , Limite de Detecção , Nióbio/química
2.
J Biomed Mater Res B Appl Biomater ; 112(6): e35415, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38773744

RESUMO

This study reports the synthesis and characterization of hydroxyapatite (HA)-based bio-composites reinforced with varying amounts (by weight, 1-15 wt.%) of bio-medium entropy alloy (BioMEA) for load-bearing implant applications. BioMEA powders consisting of Ti, Nb, Zr, and Mo were mechanically alloyed for 100 h and subsequently added to HA using powder metallurgy techniques. To show the effect of BioMEA, the microstructure, density, and mechanical tests have been conducted and the synthesized BioMEA was characterized by scanning electron microscope (SEM), x-ray diffractometer (XRD), and Fourier-transform infrared spectroscopy (FTIR) analysis. In addition, in vitro degradation behavior and bioactivity analyses of bio-composites have been conducted. XRD analysis revealed the formation of BioMEA after 20 h of mechanical alloying. The highest density value of 2.47 g/cm3 was found in 15 wt.% BioMEA-reinforced bio-composite. The addition of BioMEA reinforcement led to a significant increase in hardness and tensile strength values, with the highest values observed at 15 wt.% reinforcement. Compression tests demonstrated a significant increase in compressive strength and deformation capability of the bio-composites with the highest values observed at 15 wt.% BioMEA addition. The highest toughness of 7.68 kJ/m2 was measured in 10 wt.% MEA-reinforced bio-composites. The produced bio-composite materials have an elastic modulus between 3.5-5.5 GPa, which may provide a solution to the stress shielding problems caused by the high elastic modulus of metallic implant materials. The most severe degradation occurred in 15 wt.% MEA-reinforced bio-composites, and the effect of degradation caused a decrease in Ca and an increase in Ti-Ni-Zr-Mo in all bio-composites. These findings suggest that HA/BioMEA bio-composites have the potential to be developed as advanced biomaterials with moderate mechanical and biological properties for load-bearing implant applications.


Assuntos
Estresse Mecânico , Titânio/química , Nióbio/química , Zircônio/química , Molibdênio/química , Entropia , Ligas/química , Materiais Biocompatíveis/química , Difração de Raios X
3.
J Mech Behav Biomed Mater ; 157: 106633, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38943903

RESUMO

Developing new low modulus structures is important for reducing the risk of aseptic loosening during loading of implant materials. However, an alloy that may also confer some advantage at preventing septic loosening could dramatically improve the outcomes for patients. Nevertheless, the predictive power of current models remains limited to common alloying additions. As such, this study considers the mechanical properties of a range of Ti-Nb-Au superelastic alloys to elucidate the composition range for which low modulus structures can be achieved. These modulus values are compared to other critical design parameters such as strain recovery and strength. It was found that Au additions are effective at suppressing the formation of the ω phase and allow alloys with lower moduli to be achieved. It was also shown that low ß phase stability is critical for achieving the lowest modulus, and that this susceptibility to transform to a martensite may enable higher strengths to be achieved. However, this low ß phase stability also limits the strain recovery that may be achieved meaning these two properties are not necessarily independently tuneable. These data provide important context for the design of new systems containing unusual alloying additions such as Au.


Assuntos
Ligas , Ouro , Teste de Materiais , Nióbio , Titânio , Ligas/química , Titânio/química , Nióbio/química , Ouro/química , Materiais Biocompatíveis/química , Fenômenos Mecânicos , Estresse Mecânico , Módulo de Elasticidade
4.
PLoS One ; 19(8): e0300270, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39106270

RESUMO

Total hip arthroplasty (THA) is one of the most successful orthopaedic interventions globally, with over 450,000 procedures annually in the U.S. alone. However, issues like aseptic loosening, dislocation, infection and stress shielding persist, necessitating complex, costly revision surgeries. This highlights the need for continued biomaterials innovation to enhance primary implant integrity and longevity. Implant materials play a pivotal role in determining long-term outcomes, with titanium alloys being the prominent choice. However, emerging evidence indicates scope for optimized materials. The nickel-free ß titanium alloy Ti-27Nb shows promise with excellent biocompatibility and mechanical properties. Using finite element analysis (FEA), this study investigated the biomechanical performance and safety factors of a hip bone implant made of nickel-free titanium alloy (Ti-27Nb) under actual loading during routine day life activities for different body weights. The FEA modelled physiological loads during walking, jogging, stair ascent/descent, knee bend, standing up, sitting down and cycling for 75 kg and 100 kg body weights. Comparative analyses were conducted between untreated versus 816-hour simulated body fluid (SBF) treated implant conditions to determine in vivo degradation effects. The FEA predicted elevated von Mises stresses in the implant neck for all activities, especially stair climbing, due to its smaller cross-section. Stresses increased substantially with a higher 100 kg body weight compared to 75 kg, implying risks for heavier patients. Safety factors were reduced by up to 58% between body weights, although remaining above the desired minimum value of 1. Negligible variations were observed between untreated and SBF-treated responses, attributed to Ti-27Nb's excellent biocorrosion resistance. This comprehensive FEA provided clinically relevant insights into the biomechanical behaviour and integrity of the Ti-27Nb hip implant under complex loading scenarios. The results can guide shape and material optimization to improve robustness against repetitive stresses over long-term use. Identifying damage accumulation and failure risks is crucial for hip implants encountering real-world variable conditions. The negligible SBF effects validate Ti-27Nb's resistance to physiological degradation. Overall, the study significantly advances understanding of Ti-27Nb's suitability for reliable, durable hip arthroplasties with low revision rates.


Assuntos
Ligas , Análise de Elementos Finitos , Prótese de Quadril , Estresse Mecânico , Titânio , Prótese de Quadril/efeitos adversos , Humanos , Ligas/química , Artroplastia de Quadril/efeitos adversos , Suporte de Carga , Nióbio/química , Fenômenos Biomecânicos , Teste de Materiais , Desenho de Prótese
5.
Acta Biomater ; 184: 444-460, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38897338

RESUMO

Metallic biomaterials, such as stainless steels, cobalt-chromium-molybdenum (Co-Cr-Mo) alloys, and titanium (Ti) alloys, have long been used as load-bearing implant materials due to their metallic mechanical strength, corrosion resistance, and biocompatibility. However, their magnetic susceptibility and elastic modulus of more than 100 GPa significantly restrict their therapeutic applicability. In this study, spinodal Zr60Nb40, Zr50Nb50, and Zr40Nb60 (at.%) alloys were selected from the miscibility gap based on the Zr-Nb binary phase diagram and prepared by casting, cold rolling, and aging. Their microstructure, mechanical properties, corrosion resistance, magnetic susceptibility, and biocompatibility were systematically evaluated. Spinodal decomposition to alternating nanoscale Zr-rich ß1 and Nb-rich ß2 phases occurred in the cold-rolled Zr-Nb alloys during aging treatment at 650 °C. In addition, a minor amount of α phase was precipitated in Zr60Nb40 due to the thermodynamic instability of the Zr-rich ß1 phase. Spinodal decomposition significantly improved the mechanical strength of the alloys due to nanosized dual-cubic reinforcement. The Zr-Nb alloys showed an electrochemical corrosion rate of 94-262 nm per year in Hanks' solution because of formation of dense passive films composed of ZrO2 and Nb2O5 during the polarization process. The magnetic susceptibilities of the Zr-Nb alloys were significantly lower than those of commercial Co-Cr-Mo and Ti alloys. The cell viability of the Zr-Nb alloys was more than 98 % toward MC3T3-E1 cells. Overall, the spinodal Zr-Nb alloys have enormous potential as bone-implant materials due to their outstanding overall mechanical properties, extraordinary corrosion resistance, low magnetic susceptibility, and sufficient bicompatibility. STATEMENT OF SIGNIFICANCE: This work reports on spinodal Zr-Nb alloys with heterostructure. Spinodal decomposition significantly improved their mechanical strength due to the nanosized dual-cubic reinforcement. The Zr-Nb alloys showed large corrosion resistance in Hanks' solution because of formation of dense passivation films composed of ZrO2 and Nb2O5 during the polarization process. The magnetic susceptibilities of the Zr-Nb alloys were significantly lower than those of commercial Co-Cr-Mo and Ti alloys. The cell viability of the Zr-Nb alloys was more than 98 % toward MC3T3-E1 cells. The results demonstrate that spinodal Zr-Nb alloys have enormous potential as bone-implant materials due to their outstanding overall mechanical properties, high corrosion resistance, low magnetic susceptibility, and sufficient biocompatibility.


Assuntos
Ligas , Nióbio , Zircônio , Ligas/química , Zircônio/química , Nióbio/química , Camundongos , Animais , Teste de Materiais , Estresse Mecânico , Ortopedia , Módulo de Elasticidade , Corrosão , Materiais Biocompatíveis/química
6.
Int J Biol Macromol ; 269(Pt 1): 132055, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704073

RESUMO

Pretreatment is the key step to convert lignocelluloses to sustainable biofuels, biochemicals or biomaterials. In this study, a green pretreatment method based on choline chloride-lactic acid deep eutectic solvent (ChCl-LA) and niobium-based single-atom catalyst (Nb/CN) was developed for the fractionation of corn straw and further enzymatic hydrolysis of cellulose. With this strategy, significant lignin removal of 96.5 % could be achieved when corn straw was pretreated by ChCl-LA (1:2) DES over Nb/CN under 120 °C for 6 h. Enzymatic hydrolysis of the cellulose-enriched fraction (CEF) presented high glucose yield of 92.7 % and xylose yield of 67.5 %. In-depth investigations verified that the high yields of fractions and monosaccharides was attributed to the preliminary fractionation by DES and the deep fractionation by Nb/CN. Significantly, compared to other reported soluble catalysts, the synthesized single-atom catalyst displayed excellent reusability by simple filtration and enzymatic hydrolysis. The recyclability experiments showed that the combination of ChCl-LA DES and Nb/CN could be repeated at least three times for corn straw fractionation, moreover, the combination displayed remarkable feedstock adaptability.


Assuntos
Colina , Solventes Eutéticos Profundos , Ácido Láctico , Lignina , Nióbio , Lignina/química , Nióbio/química , Catálise , Colina/química , Hidrólise , Solventes Eutéticos Profundos/química , Ácido Láctico/química , Zea mays/química , Fracionamento Químico/métodos
7.
Adv Mater ; 36(33): e2403678, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38887824

RESUMO

Artificial spiking neurons capable of interpreting ionic information into electrical spikes are critical to mimic biological signaling systems. Mott memristors are attractive for constructing artificial spiking neurons due to their simple structure, low energy consumption, and rich neural dynamics. However, challenges remain in achieving ion-mediated spiking and biohybrid-interfacing in Mott neurons. Here, a biomimetic spiking chemical neuron (SCN) utilizing an NbOx Mott memristor and oxide field-effect transistor-type chemical sensor is introduced. The SCN exhibits both excitation and inhibition spiking behaviors toward ionic concentrations akin to biological neural systems. It demonstrates spiking responses across physiological and pathological Na+ concentrations (1-200 × 10-3 m). The Na+-mediated SCN enables both frequency encoding and time-to-first-spike coding schemes, illustrating the rich neural dynamics of Mott neuron. In addition, the SCN interfaced with L929 cells facilitates real-time modulation of ion-mediated spiking under both normal and salty cellular microenvironments.


Assuntos
Potenciais de Ação , Neurônios , Sódio , Neurônios/fisiologia , Sódio/metabolismo , Sódio/química , Potenciais de Ação/fisiologia , Animais , Camundongos , Óxidos/química , Transistores Eletrônicos , Linhagem Celular , Íons/química , Nióbio/química
8.
Int J Biol Macromol ; 266(Pt 1): 131158, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552682

RESUMO

Spray-dried niobium oxide coated with chitosan-activated carbon (NIC) was synthesized and used to remove doxorubicin hydrochloride and crystal violet from aqueous solutions under different parameters such as solution pH (2, 4, 6, and 8), contact time (1 to 9 h), initial concentration (20 to 200 mg L-1), and competing ions (0.1 M of CaCl2 and NaCl). The addition of 5 % chitosan-activated carbon to the matrix of niobium oxide slightly increased the specific surface area from 26 to 30 m2 g-1, with the introduction of a carboxylic functional group. This led to an increase in the amount of adsorbed doxorubicin hydrochloride (DOH) from 30 to 44 mg g-1 and that of crystal violet (CV) from 15 to 32 mg g-1 from the initial respective 100 mg L-1 at pH 8. The data from the concentration study fitted into Liu isotherm having adsorption capacity of 128 and 57 mg g-1 for DOH and CV respectively, while pseudo first and second order are more suitable for adsorption kinetics. The additional functional groups on the IR spectrum of NIC after the adsorption of DOH and CV confirmed the interaction between NIC and the adsorbates' molecules. The mechanism of adsorption was supported by DFT calculations.


Assuntos
Quitosana , Doxorrubicina , Violeta Genciana , Nióbio , Quitosana/química , Doxorrubicina/química , Adsorção , Nióbio/química , Violeta Genciana/química , Concentração de Íons de Hidrogênio , Carvão Vegetal/química , Cinética , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Teoria da Densidade Funcional , Óxidos/química , Água/química , Soluções , Purificação da Água/métodos
9.
Acta Biomater ; 181: 469-482, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38723926

RESUMO

Medium-entropy alloys (MEAs) typically exhibit outstanding mechanical properties, but their high Young's modulus results in restricted clinical applications. Mismatched Young's modulus between implant materials and human bones can lead to "stress shielding" effects, leading to implant failure. In contrast, ß-Ti alloys demonstrate a lower Young's modulus compared to MEAs, albeit with lower strength. In the present study, based on the bimodal grain size distribution (BGSD) strategy, a series of high-performance TiZrNbTa/Ti composites are obtained by combining TiZrNbTa MEA powders with nano-scale grain sizes and commercially pure Ti (CP-Ti) powders with micro-scale grain sizes. Concurrently, Zr, Nb, and Ta that are ß-Ti stabilizer elements diffuse into Ti, inducing an isomorphous transformation in Ti from the high Young's modulus α-Ti phase to the low Young's modulus ß-Ti phase at room temperature, optimizing the mechanical biocompatibility. The TiZrNbTa/ß-Ti composite demonstrates a yield strength of 1490 ± 83 MPa, ductility of 20.7 % ± 2.9 %, and Young's modulus of 87.6 ± 1.6 GPa. Notably, the yield strength of the TiZrNbTa/ß-Ti composite surpasses that of sintered CP-Ti by 2.6-fold, and its ductility outperforms TiZrNbTa MEA by 2.3-fold. The Young's modulus of the TiZrNbTa/ß-Ti composite is reduced by 28 % and 36 % compared to sintered CP-Ti and TiZrNbTa MEA, respectively. Additionally, it demonstrates superior biocompatibility compared to CP-Ti plate, sintered CP-Ti, and TiZrNbTa MEA. With a good combination of mechanical properties and biocompatibility, the TiZrNbTa/ß-Ti composite exhibits significant potential for clinical applications as metallic biomaterials. STATEMENT OF SIGNIFICANCE: This work combines TiZrNbTa MEA with nano-grains and commercially pure Ti with micro-grains to fabricate a TiZrNbTa/ß-Ti composite with bimodal grain-size, which achieves a yield strength of 1490 ± 83 MPa and a ductility of 20.7 % ± 2.9 %. Adhering to the ISO 10993-5 standard, the TiZrNbTa/ß-Ti composite qualifies as a non-cytotoxic material, achieving a Class 0 cytotoxicity rating and demonstrating outstanding biocompatibility akin to commercially pure Ti. Drawing on element diffusion, Zr, Nb, and Ta serve not only as solvent atoms to achieve solid-solution strengthening but also as stabilizers for the transformation of the ß-Ti crystal structure. This work offers a novel avenue for designing advanced biomedical Ti alloys with elevated strength and plasticity alongside a reduced Young's modulus.


Assuntos
Ligas , Materiais Biocompatíveis , Teste de Materiais , Titânio , Titânio/química , Titânio/farmacologia , Ligas/química , Ligas/farmacologia , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Módulo de Elasticidade , Humanos , Nióbio/química , Nióbio/farmacologia , Zircônio/química , Zircônio/farmacologia , Transição de Fase , Camundongos
10.
J Mater Chem B ; 12(24): 5982-5993, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38809161

RESUMO

This work aimed to manufacture Ti-28.5Nb and Ti-40.0Nb (wt%) alloys in situ via selective laser melting (SLM) from Ti and Nb elemental powders. X-ray diffraction analysis revealed complete ß-phase (cubic) in Ti-40.0Nb and a mixture of (α'' orthorhombic + ß cubic) phases in Ti-28.5Nb were formed, whereas few of the Nb particles remained only partially fused during manufacturing. The fraction of partially melted Nb particles was determined as ∼2 and ∼18% in Ti-28.5Nb and Ti-40Nb, respectively. Mechanical characterization revealed higher hardness and more strength in Ti-28.5Nb than in Ti-40.0Nb due to the presence of the α'' phase in the former. Tribocorrosion tests reveal a significantly better wear-corrosion resistance for Ti-40.0Nb, as determined from a lower total volume loss in Ti-40.0Nb (∼2 × 10-4 mm-3) than in Ti-28.5Nb (∼13 × 10-2 mm-3). The lower volume loss and better corrosion resistance behavior are attributed to the ß phase, which was dominant in Ti-40.0Nb. Cell studies reveal no toxicity for up to 7 days. Both the alloys were better at supporting cell proliferation than wrought Ti6Al4V. This study presents a route to preparing Ti-Nb alloys in situ by SLM that are promising candidates for biomedical applications.


Assuntos
Ligas , Lasers , Nióbio , Titânio , Ligas/química , Nióbio/química , Titânio/química , Teste de Materiais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química , Humanos , Animais , Propriedades de Superfície , Proliferação de Células/efeitos dos fármacos , Camundongos
11.
ACS Appl Mater Interfaces ; 16(22): 28896-28904, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38770712

RESUMO

Herein, we present a novel ultrasensitive graphene field-effect transistor (GFET) biosensor based on lithium niobate (LiNbO3) ferroelectric substrate for the application of breast cancer marker detection. The electrical properties of graphene are varied under the electrostatic field, which is generated through the spontaneous polarization of the ferroelectric substrate. It is demonstrated that the properties of interface between graphene and solution are also altered due to the interaction between the electrostatic field and ions. Compared with the graphene field-effect biosensor based on the conventional Si/SiO2 gate structure, our biosensor achieves a higher sensitivity to 64.7 mV/decade and shows a limit of detection down to 1.7 fM (equivalent to 12 fg·mL-1) on the detection of microRNA21 (a breast cancer marker). This innovative design combining GFETs with ferroelectric substrates holds great promise for developing an ultrahigh-sensitivity biosensing platform based on graphene that enables rapid and early disease diagnosis.


Assuntos
Biomarcadores Tumorais , Técnicas Biossensoriais , Neoplasias da Mama , Grafite , MicroRNAs , Nióbio , Óxidos , Grafite/química , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Humanos , Nióbio/química , Neoplasias da Mama/diagnóstico , Óxidos/química , MicroRNAs/análise , Biomarcadores Tumorais/análise , Feminino , Limite de Detecção , Transistores Eletrônicos
12.
PLoS One ; 19(8): e0305315, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39159167

RESUMO

The morphological dynamics of microbial cell proliferation on an antimicrobial surface at an early growth stage was studied with Escherichia coli on the surface of a gel supplied with AgNbO3 antimicrobial particles. We demonstrated an inhibitory surface concentration, analogous to minimum inhibitory concentration, beyond which the growth of colonies and formation of biofilm are inhibited. In contrast, at lower concentrations of particles, after a lag time the cells circumvent the antimicrobial activity of the particles and grow with a rate similar to the case in the absence of particles. The lag time depends on the surface concentration of the particles and amounts to 2 h at a concentration of ½ minimum inhibitory concentration. The applicability of these findings, in terms of estimating inhibitory surface concentration, was tested in the case of antimicrobial polymethyl methacrylate (PMMA) bone cement.


Assuntos
Escherichia coli , Testes de Sensibilidade Microbiana , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Biofilmes/efeitos dos fármacos , Biofilmes/crescimento & desenvolvimento , Polimetil Metacrilato/química , Anti-Infecciosos/farmacologia , Propriedades de Superfície , Antibacterianos/farmacologia , Nióbio/farmacologia , Nióbio/química , Cimentos Ósseos/farmacologia
13.
J Mech Behav Biomed Mater ; 157: 106605, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38852242

RESUMO

Peri-implantitis and insufficient osseointegration are the principal challenges faced by dental implants at present. In order to fabricate dual-function dental implant materials possessing both antibacterial and osteogenic capabilities, this study incorporates the antimicrobial element Cu into the Ti40Nb alloy, developing a novel Ti40Nb-xCu alloy with antibacterial properties. Among them, Ti40Nb3Cu has the best overall performance. Compared to Ti40Nb, the tensile strength increased by 27.97%, reaching 613 MPa. Although the elongation rate has decreased from 23% to 13.5%, the antibacterial rates against S. aureus and P. gingivalis both exceed 85%. Furthermore, the surface of Ti40Nb-xCu alloy was then treated with micro-arc oxidation to enhance its bioactivity, thereby accelerating osseointegration. The results indicated that the MAO treatment retains the antibacterial properties of the Ti40Nb3Cu alloy while significantly promoting bone formation through its introduced porous coating, thus heralding it as a propitious candidate material for dental implant applications.


Assuntos
Ligas , Antibacterianos , Implantes Dentários , Teste de Materiais , Oxirredução , Staphylococcus aureus , Propriedades de Superfície , Titânio , Antibacterianos/farmacologia , Antibacterianos/química , Ligas/química , Ligas/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Titânio/química , Titânio/farmacologia , Porphyromonas gingivalis/efeitos dos fármacos , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Animais , Cobre/química , Cobre/farmacologia , Camundongos , Nióbio/química
14.
Biomater Adv ; 161: 213882, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38710121

RESUMO

Metallic lattice scaffolds are designed to mimic the architecture and mechanical properties of bone tissue and their surface compatibility is of primary importance. This study presents a novel surface modification protocol for metallic lattice scaffolds printed from a superelastic Ti-Zr-Nb alloy. This protocol consists of dynamic chemical etching (DCE) followed by silver nanoparticles (AgNP) decoration. DCE, using an 1HF + 3HNO3 + 12H2O23% based solution, was used to remove partially-fused particles from the surfaces of different as-built lattice structures (rhombic dodecahedron, sheet gyroid, and Voronoi polyhedra). Subsequently, an antibacterial coating was synthesized on the surface of the scaffolds by a controlled (20 min at a fixed volume flowrate of 500 mL/min) pumping of the functionalization solutions (NaBH4 (2 mg/mL) and AgNO3 (1 mg/mL)) through the porous structures. Following these treatments, the scaffolds' surfaces were found to be densely populated with Ag nanoparticles and their agglomerates, and manifested an excellent antibacterial effect (Ag ion release rate of 4-8 ppm) suppressing the growth of both E. coli and B. subtilis bacteria up to 99 %. The scaffold extracts showed no cytotoxicity and did not affect cell proliferation, indicating their safety for subsequent use as implants. A cytocompatibility assessment using MG-63 spheroids demonstrated good attachment, spreading, and active migration of cells on the scaffold surface (over 96 % of living cells), confirming their biotolerance. These findings suggest the promise of this surface modification approach for developing superelastic Ti-Zr-Nb scaffolds with superior antibacterial properties and biocompatibility, making them highly suitable for bone implant applications.


Assuntos
Antibacterianos , Nanopartículas Metálicas , Prata , Propriedades de Superfície , Alicerces Teciduais , Titânio , Zircônio , Prata/química , Prata/farmacologia , Nanopartículas Metálicas/química , Titânio/química , Titânio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Alicerces Teciduais/química , Zircônio/química , Zircônio/farmacologia , Humanos , Nióbio/química , Nióbio/farmacologia , Lasers , Escherichia coli/efeitos dos fármacos , Ligas/química , Ligas/farmacologia , Bacillus subtilis/efeitos dos fármacos , Pós , Teste de Materiais , Proliferação de Células/efeitos dos fármacos
15.
ACS Appl Mater Interfaces ; 16(23): 29805-29822, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38830200

RESUMO

Periprosthetic osteolysis induced by the ultrahigh-molecular-weight polyethylene (UHMWPE) wear particles is a major complication associated with the sustained service of artificial joint prostheses and often necessitates revision surgery. Therefore, a smart implant with direct prevention and repair abilities is urgently developed to avoid painful revision surgery. Herein, we fabricate a phosphatidylserine- and polyethylenimine-engineered niobium carbide (Nb2C) MXenzyme-coated micro/nanostructured titanium implant (PPN@MNTi) that inhibits UHMWPE particle-induced periprosthetic osteolysis. The specific mechanism by which PPN@MNTi operates involves the bioresponsive release of nanosheets from the MNTi substrate within an osteolysis microenvironment, initiated by the cleavage of a thioketal-dopamine molecule sensitive to reactive oxygen species (ROS). Subsequently, functionalized Nb2C MXenzyme could target macrophages and escape from lysosomes, effectively scavenging intracellular ROS through its antioxidant nanozyme-mimicking activities. This further achieves the suppression of osteoclastogenesis by inhibiting NF-κB/MAPK and autophagy signaling pathways. Simultaneously, based on the synergistic effect of MXenzyme-integrated coatings and micro/nanostructured topography, the designed implant promotes the osteogenic differentiation of bone mesenchymal stem cells to regulate bone homeostasis, further achieving advanced osseointegration and alleviable periprosthetic osteolysis in vivo. This study provides a precise prevention and repair strategy of periprosthetic osteolysis, offering a paradigm for the development of smart orthopedic implants.


Assuntos
Nióbio , Osteogênese , Osteólise , Osteogênese/efeitos dos fármacos , Osteólise/patologia , Osteólise/prevenção & controle , Osteólise/metabolismo , Nióbio/química , Camundongos , Animais , Polietilenos/química , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Titânio/química , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo
16.
Braz. oral res. (Online) ; 31: e76, 2017. graf
Artigo em Inglês | LILACS | ID: biblio-952131

RESUMO

Abstract To evaluate the influence of rewetting solutions on bond strength to root dentin of conventional gutta-percha (GP) or niobium phosphate glass-based gutta-percha (GNb) associated with a bioceramic sealer. The root canals of 80 human mandibular premolars were prepared using nickel-titanium instruments and irrigation with sodium hypochlorite and EDTA. The teeth were randomly divided into four groups according to the gutta-percha used: GNb or GP associated with EndoSequence BC Sealer (BC) and the solution for rewetting dentin before filling (distilled water; phosphate buffer saline solution - PBS; simulated body fluid - SBF; or no solution). The root canals were filled with a single cone using warm vertical condensation. Micropush-out bond strengths associated with the filling materials in slices from middle root thirds was determined 30 days after root filling. The failure mode was analyzed with stereoscopic lens. The data were statistically analyzed by two-way ANOVA and Holm-Sidak test (p < 0.05). There was significant difference in the types of gutta-percha (p < 0.001) and in the different rewetting solutions (p = 0.003). The interaction between gutta-percha and rewetting solutions was not significant (p = 0.53). The SBF solution provided an increase in bond strength for both gutta-percha solutions. The GNb+BC (3.42 MPa) association increased bond strength when compared with GP+BC (2.0 MPa). The use of SBF as a dentin rewetting solution increased bond strength in the groups studied. Association of GNb with bioceramic sealer was beneficial, increasing the bond strength to dentin when compared with the association with GP.


Assuntos
Humanos , Soluções/química , Cerâmica/química , Colagem Dentária/métodos , Dentina/efeitos dos fármacos , Guta-Percha/química , Valores de Referência , Propriedades de Superfície/efeitos dos fármacos , Materiais Biocompatíveis/química , Teste de Materiais , Reprodutibilidade dos Testes , Análise de Variância , Estatísticas não Paramétricas , Preparo de Canal Radicular/métodos , Falha de Restauração Dentária , Dentina/química , Nióbio/química
17.
Braz. dent. j ; 27(6): 705-711, Nov.-Dec. 2016. tab, graf
Artigo em Inglês | LILACS | ID: biblio-828071

RESUMO

Abstract To evaluate the effect of incorporating niobium phosphate bioactive glass (NbG) into commercial etch-and-rinse adhesive systems, with and without silane, on their degree of conversion (DC) (%) and microtensile bond strength (μTBS). The NbG micro-filler was added to two etch-and-rinse adhesive systems: One Step (OS) and Prime & Bond (PB) at 40% concentration. The following groups were formed: control without glass addition OS; addition of unsilanized NbG (OSNbG); addition of silanized NbG (OSNbGS); control without glass PB; addition of unsilanized NbG (PBNbG); addition of silanized NbG (PBNbGS). The DC was determined using total Fourier spectroscopy reflection (FTIR/ATR). For μTBS testing, 48 human third molars (n=8) were restored and sliced to obtain specimens (0.8 mm2) and they were tested at two different time intervals: immediately and after 6 months. The fracture mode was evaluated with a stereoscopic loupe (40×) and by scanning electron microscopy (SEM). The data were subjected to ANOVA and Tukey tests (a=0.05). NbG addition did not compromise the adhesive system DC values (p>0.05). Furthermore, the NbG added to the adhesive systems did not affect μTBS values (p>0.05). Fracture occurred predominantly at the dentin-adhesive interface. NbG bioactive glass did not affect the DC or microtensile bond strength results.


Resumo Avaliar o efeito da incorporação de vidro niobofosfato bioativo (NbG, 40% em peso) em dois sistemas adesivos simplificados convencionais (One Step [OS] e Prime & Bond {PB}) com e sem silano, no grau de conversão (%) e resistência de união (RU) após 6 meses. Os seguintes grupos foram testados: Controle OS: sem adição de partículas; OS e adição de NbG sem silano (OSNbG); OS e adição de partículas silanizadas NbG (OSNbGS); Controle PB: sem adição de partículas; PB e adição de partículas de NbG sem silano (PBNbG); PB e adição de partículas silanizadas NbG (PBNbGS). O grau de conversão (GC) foi determinado utilizando espectroscopia de Fourier (FTIR/ATR). Para RU, 48 terceiros molares humanos (n=8) foram restaurados e cortados para obter corpos-de-prova (0,8 mm2) e, em seguida, testados em dois momentos: imediato e após seis meses. O padrão de fratura foi avaliado com lupa estereoscópica (40×) e microscópio eletrônico de varredura (MEV). Os dados foram submetidos à análise de variância e Tukey (a=0,05). NbG não comprometeu valores de GC dos sistemas adesivos (p>0,05). Além disso, a adição de NbG aos sistemas adesivos não afetou os valores de RU (p>0,05). O padrão de fratura ocorreu predominantemente na interface dentina-adesivo. NbG não afetou os resultados de GC e RU.


Assuntos
Colagem Dentária , Nióbio/química , Fosfatos/química , Resistência à Tração , Cimentos Dentários , Análise do Estresse Dentário , Microscopia Eletrônica de Varredura , Espectroscopia de Infravermelho com Transformada de Fourier
18.
J. appl. oral sci ; 22(6): 554-559, Nov-Dec/2014. tab, graf
Artigo em Inglês | LILACS, BBO | ID: lil-732588

RESUMO

Objective Mineral Trioxide Aggregate (MTA) is composed of Portland Cement (PC) and bismuth oxide (BO). Replacing BO for niobium oxide (NbO) microparticles (Nbµ) or nanoparticles (Nbη) may improve radiopacity and bioactivity. The aim of this study was to evaluate the radiopacity and cytotoxicity of the materials: 1) PC; 2) White MTA; 3) PC+30% Nbµ; 4) PC+30% Nbη. Material and Methods For the radiopacity test, specimens of the different materials were radiographed along an aluminum step-wedge. For cell culture assays, Saos-2 osteoblastic-cells (ATCC HTB-85) were used. Cell viability was evaluated through MTT assay, and bioactivity was assessed by alkaline phosphatase activity assay. Results The results demonstrated higher radiopacity for MTA, followed by Nbµ and Nbη, which had similar values. Cell culture analysis showed that PC and PC+NbO associations promoted greater cell viability than MTA. Conclusions It was concluded that the combination of PC+NbO is a potential alternative for composition of MTA. .


Assuntos
Humanos , Compostos de Alumínio/toxicidade , Compostos de Cálcio/toxicidade , Cimentos Dentários/toxicidade , Nanopartículas/toxicidade , Nióbio/toxicidade , Óxidos/toxicidade , Silicatos/toxicidade , Compostos de Alumínio/química , Análise de Variância , Materiais Biocompatíveis/química , Materiais Biocompatíveis/toxicidade , Compostos de Cálcio/química , Sobrevivência Celular , Células Cultivadas , Cimentos Dentários/química , Combinação de Medicamentos , Formazans , Teste de Materiais , Nanopartículas/química , Nióbio/química , Osteoblastos/efeitos dos fármacos , Óxidos/química , Silicatos/química , Estatísticas não Paramétricas , Sais de Tetrazólio , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA