Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
Cell ; 185(20): 3770-3788.e27, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36179669

RESUMO

Realizing the full utility of brain organoids to study human development requires understanding whether organoids precisely replicate endogenous cellular and molecular events, particularly since acquisition of cell identity in organoids can be impaired by abnormal metabolic states. We present a comprehensive single-cell transcriptomic, epigenetic, and spatial atlas of human cortical organoid development, comprising over 610,000 cells, from generation of neural progenitors through production of differentiated neuronal and glial subtypes. We show that processes of cellular diversification correlate closely to endogenous ones, irrespective of metabolic state, empowering the use of this atlas to study human fate specification. We define longitudinal molecular trajectories of cortical cell types during organoid development, identify genes with predicted human-specific roles in lineage establishment, and uncover early transcriptional diversity of human callosal neurons. The findings validate this comprehensive atlas of human corticogenesis in vitro as a resource to prime investigation into the mechanisms of human cortical development.


Assuntos
Córtex Cerebral , Organoides , Diferenciação Celular , Córtex Cerebral/metabolismo , Humanos , Neurogênese , Neurônios , Organoides/metabolismo
2.
Cell ; 174(6): 1477-1491.e19, 2018 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-30146158

RESUMO

Aging is a major risk factor for both genetic and sporadic neurodegenerative disorders. However, it is unclear how aging interacts with genetic predispositions to promote neurodegeneration. Here, we investigate how partial loss of function of TBK1, a major genetic cause for amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) comorbidity, leads to age-dependent neurodegeneration. We show that TBK1 is an endogenous inhibitor of RIPK1 and the embryonic lethality of Tbk1-/- mice is dependent on RIPK1 kinase activity. In aging human brains, another endogenous RIPK1 inhibitor, TAK1, exhibits a marked decrease in expression. We show that in Tbk1+/- mice, the reduced myeloid TAK1 expression promotes all the key hallmarks of ALS/FTD, including neuroinflammation, TDP-43 aggregation, axonal degeneration, neuronal loss, and behavior deficits, which are blocked upon inhibition of RIPK1. Thus, aging facilitates RIPK1 activation by reducing TAK1 expression, which cooperates with genetic risk factors to promote the onset of ALS/FTD.


Assuntos
Apoptose , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Adulto , Idoso , Envelhecimento , Animais , Apoptose/efeitos dos fármacos , Axônios/metabolismo , Comportamento Animal , Encéfalo/citologia , Encéfalo/metabolismo , Células Cultivadas , Humanos , Quinase I-kappa B/metabolismo , Camundongos , Camundongos Knockout , Microglia/citologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Medula Espinal/metabolismo , Estaurosporina/farmacologia , Fator de Necrose Tumoral alfa/farmacologia
3.
Cell ; 166(5): 1308-1323.e30, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565351

RESUMO

Patterns of gene expression can be used to characterize and classify neuronal types. It is challenging, however, to generate taxonomies that fulfill the essential criteria of being comprehensive, harmonizing with conventional classification schemes, and lacking superfluous subdivisions of genuine types. To address these challenges, we used massively parallel single-cell RNA profiling and optimized computational methods on a heterogeneous class of neurons, mouse retinal bipolar cells (BCs). From a population of ∼25,000 BCs, we derived a molecular classification that identified 15 types, including all types observed previously and two novel types, one of which has a non-canonical morphology and position. We validated the classification scheme and identified dozens of novel markers using methods that match molecular expression to cell morphology. This work provides a systematic methodology for achieving comprehensive molecular classification of neurons, identifies novel neuronal types, and uncovers transcriptional differences that distinguish types within a class.


Assuntos
Células Bipolares da Retina/classificação , Transcriptoma , Células Amácrinas/citologia , Animais , Análise por Conglomerados , Feminino , Marcadores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos , Camundongos Transgênicos , Células Bipolares da Retina/citologia , Células Bipolares da Retina/metabolismo , Análise de Sequência de RNA , Análise de Célula Única/métodos , Transcrição Gênica
4.
Nature ; 631(8019): 142-149, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38926573

RESUMO

Interindividual genetic variation affects the susceptibility to and progression of many diseases1,2. However, efforts to study how individual human brains differ in normal development and disease phenotypes are limited by the paucity of faithful cellular human models, and the difficulty of scaling current systems to represent multiple people. Here we present human brain Chimeroids, a highly reproducible, multidonor human brain cortical organoid model generated by the co-development of cells from a panel of individual donors in a single organoid. By reaggregating cells from multiple single-donor organoids at the neural stem cell or neural progenitor cell stage, we generate Chimeroids in which each donor produces all cell lineages of the cerebral cortex, even when using pluripotent stem cell lines with notable growth biases. We used Chimeroids to investigate interindividual variation in the susceptibility to neurotoxic triggers that exhibit high clinical phenotypic variability: ethanol and the antiepileptic drug valproic acid. Individual donors varied in both the penetrance of the effect on target cell types, and the molecular phenotype within each affected cell type. Our results suggest that human genetic background may be an important mediator of neurotoxin susceptibility and introduce Chimeroids as a scalable system for high-throughput investigation of interindividual variation in processes of brain development and disease.


Assuntos
Células-Tronco Neurais , Organoides , Humanos , Organoides/efeitos dos fármacos , Organoides/citologia , Células-Tronco Neurais/efeitos dos fármacos , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Masculino , Linhagem da Célula/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/citologia , Neurotoxinas/toxicidade , Fenótipo , Feminino , Suscetibilidade a Doenças , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/efeitos dos fármacos , Células-Tronco Pluripotentes/metabolismo , Doadores de Tecidos , Linhagem Celular
5.
Nature ; 603(7901): 455-463, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264797

RESUMO

Mutations in non-coding regulatory DNA sequences can alter gene expression, organismal phenotype and fitness1-3. Constructing complete fitness landscapes, in which DNA sequences are mapped to fitness, is a long-standing goal in biology, but has remained elusive because it is challenging to generalize reliably to vast sequence spaces4-6. Here we build sequence-to-expression models that capture fitness landscapes and use them to decipher principles of regulatory evolution. Using millions of randomly sampled promoter DNA sequences and their measured expression levels in the yeast Saccharomyces cerevisiae, we learn deep neural network models that generalize with excellent prediction performance, and enable sequence design for expression engineering. Using our models, we study expression divergence under genetic drift and strong-selection weak-mutation regimes to find that regulatory evolution is rapid and subject to diminishing returns epistasis; that conflicting expression objectives in different environments constrain expression adaptation; and that stabilizing selection on gene expression leads to the moderation of regulatory complexity. We present an approach for using such models to detect signatures of selection on expression from natural variation in regulatory sequences and use it to discover an instance of convergent regulatory evolution. We assess mutational robustness, finding that regulatory mutation effect sizes follow a power law, characterize regulatory evolvability, visualize promoter fitness landscapes, discover evolvability archetypes and illustrate the mutational robustness of natural regulatory sequence populations. Our work provides a general framework for designing regulatory sequences and addressing fundamental questions in regulatory evolution.


Assuntos
Deriva Genética , Modelos Genéticos , Evolução Biológica , DNA , Evolução Molecular , Regulação da Expressão Gênica , Mutação/genética , Fenótipo , Saccharomyces cerevisiae/genética
6.
Nature ; 602(7896): 268-273, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35110736

RESUMO

Genetic risk for autism spectrum disorder (ASD) is associated with hundreds of genes spanning a wide range of biological functions1-6. The alterations in the human brain resulting from mutations in these genes remain unclear. Furthermore, their phenotypic manifestation varies across individuals7,8. Here we used organoid models of the human cerebral cortex to identify cell-type-specific developmental abnormalities that result from haploinsufficiency in three ASD risk genes-SUV420H1 (also known as KMT5B), ARID1B and CHD8-in multiple cell lines from different donors, using single-cell RNA-sequencing (scRNA-seq) analysis of more than 745,000 cells and proteomic analysis of individual organoids, to identify phenotypic convergence. Each of the three mutations confers asynchronous development of two main cortical neuronal lineages-γ-aminobutyric-acid-releasing (GABAergic) neurons and deep-layer excitatory projection neurons-but acts through largely distinct molecular pathways. Although these phenotypes are consistent across cell lines, their expressivity is influenced by the individual genomic context, in a manner that is dependent on both the risk gene and the developmental defect. Calcium imaging in intact organoids shows that these early-stage developmental changes are followed by abnormal circuit activity. This research uncovers cell-type-specific neurodevelopmental abnormalities that are shared across ASD risk genes and are finely modulated by human genomic context, finding convergence in the neurobiological basis of how different risk genes contribute to ASD pathology.


Assuntos
Transtorno do Espectro Autista , Predisposição Genética para Doença , Neurônios , Transtorno do Espectro Autista/genética , Transtorno do Espectro Autista/metabolismo , Transtorno do Espectro Autista/patologia , Córtex Cerebral/citologia , Proteínas de Ligação a DNA/genética , Neurônios GABAérgicos/metabolismo , Neurônios GABAérgicos/patologia , Histona-Lisina N-Metiltransferase/genética , Humanos , Neurônios/classificação , Neurônios/metabolismo , Neurônios/patologia , Organoides/citologia , Proteômica , RNA-Seq , Análise de Célula Única , Fatores de Transcrição/genética
7.
Nature ; 583(7818): 819-824, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699411

RESUMO

The thalamic reticular nucleus (TRN), the major source of thalamic inhibition, regulates thalamocortical interactions that are critical for sensory processing, attention and cognition1-5. TRN dysfunction has been linked to sensory abnormality, attention deficit and sleep disturbance across multiple neurodevelopmental disorders6-9. However, little is known about the organizational principles that underlie its divergent functions. Here we performed an integrative study linking single-cell molecular and electrophysiological features of the mouse TRN to connectivity and systems-level function. We found that cellular heterogeneity in the TRN is characterized by a transcriptomic gradient of two negatively correlated gene-expression profiles, each containing hundreds of genes. Neurons in the extremes of this transcriptomic gradient express mutually exclusive markers, exhibit core or shell-like anatomical structure and have distinct electrophysiological properties. The two TRN subpopulations make differential connections with the functionally distinct first-order and higher-order thalamic nuclei to form molecularly defined TRN-thalamus subnetworks. Selective perturbation of the two subnetworks in vivo revealed their differential role in regulating sleep. In sum, our study provides a comprehensive atlas of TRN neurons at single-cell resolution and links molecularly defined subnetworks to the functional organization of thalamocortical circuits.


Assuntos
Redes Reguladoras de Genes , Núcleos Talâmicos/citologia , Núcleos Talâmicos/metabolismo , Animais , Análise por Conglomerados , Feminino , Perfilação da Expressão Gênica , Hibridização in Situ Fluorescente , Metaloendopeptidases/metabolismo , Camundongos , Vias Neurais , Neurônios/metabolismo , Osteopontina/metabolismo , Técnicas de Patch-Clamp , RNA-Seq , Análise de Célula Única , Sono/genética , Sono/fisiologia , Núcleos Talâmicos/fisiologia , Transcriptoma
8.
Hum Mol Genet ; 32(18): 2773-2786, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37384417

RESUMO

De novo heterozygous loss-of-function mutations in phosphatase and tensin homolog (PTEN) are strongly associated with autism spectrum disorders; however, it is unclear how heterozygous mutations in this gene affect different cell types during human brain development and how these effects vary across individuals. Here, we used human cortical organoids from different donors to identify cell-type specific developmental events that are affected by heterozygous mutations in PTEN. We profiled individual organoids by single-cell RNA-seq, proteomics and spatial transcriptomics and revealed abnormalities in developmental timing in human outer radial glia progenitors and deep-layer cortical projection neurons, which varied with the donor genetic background. Calcium imaging in intact organoids showed that both accelerated and delayed neuronal development phenotypes resulted in similar abnormal activity of local circuits, irrespective of genetic background. The work reveals donor-dependent, cell-type specific developmental phenotypes of PTEN heterozygosity that later converge on disrupted neuronal activity.


Assuntos
Transtorno do Espectro Autista , Neurônios , Humanos , Neurônios/metabolismo , Diferenciação Celular , Organoides/metabolismo , Transtorno do Espectro Autista/genética , Mutação , PTEN Fosfo-Hidrolase/genética
9.
Nature ; 570(7762): 523-527, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31168097

RESUMO

Experimental models of the human brain are needed for basic understanding of its development and disease1. Human brain organoids hold unprecedented promise for this purpose; however, they are plagued by high organoid-to-organoid variability2,3. This has raised doubts as to whether developmental processes of the human brain can occur outside the context of embryogenesis with a degree of reproducibility that is comparable to the endogenous tissue. Here we show that an organoid model of the dorsal forebrain can reliably generate a rich diversity of cell types appropriate for the human cerebral cortex. We performed single-cell RNA-sequencing analysis of 166,242 cells isolated from 21 individual organoids, finding that 95% of the organoids generate a virtually indistinguishable compendium of cell types, following similar developmental trajectories and with a degree of organoid-to-organoid variability comparable to that of individual endogenous brains. Furthermore, organoids derived from different stem cell lines show consistent reproducibility in the cell types produced. The data demonstrate that reproducible development of the complex cellular diversity of the central nervous system does not require the context of the embryo, and that establishment of terminal cell identity is a highly constrained process that can emerge from diverse stem cell origins and growth environments.


Assuntos
Córtex Cerebral/citologia , Organoides/citologia , Técnicas de Cultura de Tecidos , Linhagem Celular , Córtex Cerebral/metabolismo , Feminino , Feto/citologia , Feto/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Masculino , Organoides/metabolismo , Prosencéfalo/citologia , Prosencéfalo/metabolismo , RNA-Seq , Reprodutibilidade dos Testes , Análise de Célula Única , Fatores de Tempo , Técnicas de Cultura de Tecidos/normas , Transcriptoma/genética
10.
Nat Methods ; 15(12): 1126, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30459407

RESUMO

The original version of this paper contained an incorrect primer sequence. In the Methods subsection "Rampage libraries," the text for modification 3 stated that the reverse primer used for library indexing was 5'-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGT-3'. The correct sequence of the oligonucleotide used is 5'-CAAGCAGAAGACGGCATACGAGATXXXXXXXXGTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-3'. This error has been corrected in the PDF and HTML versions of the paper.

11.
Nat Methods ; 15(7): 505-511, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29867192

RESUMO

Specialized RNA-seq methods are required to identify the 5' ends of transcripts, which are critical for studies of gene regulation, but these methods have not been systematically benchmarked. We directly compared six such methods, including the performance of five methods on a single human cellular RNA sample and a new spike-in RNA assay that helps circumvent challenges resulting from uncertainties in annotation and RNA processing. We found that the 'cap analysis of gene expression' (CAGE) method performed best for mRNA and that most of its unannotated peaks were supported by evidence from other genomic methods. We applied CAGE to eight brain-related samples and determined sample-specific transcription start site (TSS) usage, as well as a transcriptome-wide shift in TSS usage between fetal and adult brain.


Assuntos
RNA/química , Análise de Sequência de RNA/métodos , Sequência de Bases , Encéfalo , Células-Tronco Embrionárias , Biblioteca Gênica , Humanos , RNA/genética , RNA/metabolismo
12.
Proc Natl Acad Sci U S A ; 114(41): E8788-E8797, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28904096

RESUMO

Dysfunction of microglia is known to play an important role in Alzheimer's disease (AD). Here, we investigated the role of RIPK1 in microglia mediating the pathogenesis of AD. RIPK1 is highly expressed by microglial cells in human AD brains. Using the amyloid precursor protein (APP)/presenilin 1 (PS1) transgenic mouse model, we found that inhibition of RIPK1, using both pharmacological and genetic means, reduced amyloid burden, the levels of inflammatory cytokines, and memory deficits. Furthermore, inhibition of RIPK1 promoted microglial degradation of Aß in vitro. We characterized the transcriptional profiles of adult microglia from APP/PS1 mice and identified a role for RIPK1 in regulating the microglial expression of CH25H and Cst7, a marker for disease-associated microglia (DAM), which encodes an endosomal/lysosomal cathepsin inhibitor named Cystatin F. We present evidence that RIPK1-mediated induction of Cst7 leads to an impairment in the lysosomal pathway. These data suggest that RIPK1 may mediate a critical checkpoint in the transition to the DAM state. Together, our study highlights a non-cell death mechanism by which the activation of RIPK1 mediates the induction of a DAM phenotype, including an inflammatory response and a reduction in phagocytic activity, and connects RIPK1-mediated transcription in microglia to the etiology of AD. Our results support that RIPK1 is an important therapeutic target for the treatment of AD.


Assuntos
Doença de Alzheimer/patologia , Biomarcadores/metabolismo , Microglia/patologia , Presenilina-1/fisiologia , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Animais , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/metabolismo , Fenótipo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética
13.
Nature ; 498(7453): 236-40, 2013 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-23685454

RESUMO

Recent molecular studies have shown that, even when derived from a seemingly homogenous population, individual cells can exhibit substantial differences in gene expression, protein levels and phenotypic output, with important functional consequences. Existing studies of cellular heterogeneity, however, have typically measured only a few pre-selected RNAs or proteins simultaneously, because genomic profiling methods could not be applied to single cells until very recently. Here we use single-cell RNA sequencing to investigate heterogeneity in the response of mouse bone-marrow-derived dendritic cells (BMDCs) to lipopolysaccharide. We find extensive, and previously unobserved, bimodal variation in messenger RNA abundance and splicing patterns, which we validate by RNA-fluorescence in situ hybridization for select transcripts. In particular, hundreds of key immune genes are bimodally expressed across cells, surprisingly even for genes that are very highly expressed at the population average. Moreover, splicing patterns demonstrate previously unobserved levels of heterogeneity between cells. Some of the observed bimodality can be attributed to closely related, yet distinct, known maturity states of BMDCs; other portions reflect differences in the usage of key regulatory circuits. For example, we identify a module of 137 highly variable, yet co-regulated, antiviral response genes. Using cells from knockout mice, we show that variability in this module may be propagated through an interferon feedback circuit, involving the transcriptional regulators Stat2 and Irf7. Our study demonstrates the power and promise of single-cell genomics in uncovering functional diversity between cells and in deciphering cell states and circuits.


Assuntos
Células Dendríticas/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/imunologia , Splicing de RNA/imunologia , Análise de Célula Única , Transcriptoma/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/imunologia , Células Dendríticas/citologia , Células Dendríticas/imunologia , Hibridização in Situ Fluorescente , Fator Regulador 7 de Interferon , Interferons/imunologia , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Knockout , Isoformas de Proteínas/genética , RNA Mensageiro/análise , RNA Mensageiro/genética , Reprodutibilidade dos Testes , Fator de Transcrição STAT2 , Análise de Sequência de RNA , Vírus/imunologia
14.
Nat Methods ; 10(7): 623-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23685885

RESUMO

RNA-seq is an effective method for studying the transcriptome, but it can be difficult to apply to scarce or degraded RNA from fixed clinical samples, rare cell populations or cadavers. Recent studies have proposed several methods for RNA-seq of low-quality and/or low-quantity samples, but the relative merits of these methods have not been systematically analyzed. Here we compare five such methods using metrics relevant to transcriptome annotation, transcript discovery and gene expression. Using a single human RNA sample, we constructed and sequenced ten libraries with these methods and compared them against two control libraries. We found that the RNase H method performed best for chemically fragmented, low-quality RNA, and we confirmed this through analysis of actual degraded samples. RNase H can even effectively replace oligo(dT)-based methods for standard RNA-seq. SMART and NuGEN had distinct strengths for measuring low-quantity RNA. Our analysis allows biologists to select the most suitable methods and provides a benchmark for future method development.


Assuntos
Algoritmos , Artefatos , Perfilação da Expressão Gênica/métodos , RNA/genética , Tamanho da Amostra , Análise de Sequência de RNA/métodos , Software , Transcriptoma/genética
15.
Genome Res ; 20(4): 413-27, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20179022

RESUMO

Global studies of transcript structure and abundance in cancer cells enable the systematic discovery of aberrations that contribute to carcinogenesis, including gene fusions, alternative splice isoforms, and somatic mutations. We developed a systematic approach to characterize the spectrum of cancer-associated mRNA alterations through integration of transcriptomic and structural genomic data, and we applied this approach to generate new insights into melanoma biology. Using paired-end massively parallel sequencing of cDNA (RNA-seq) together with analyses of high-resolution chromosomal copy number data, we identified 11 novel melanoma gene fusions produced by underlying genomic rearrangements, as well as 12 novel readthrough transcripts. We mapped these chimeric transcripts to base-pair resolution and traced them to their genomic origins using matched chromosomal copy number information. We also used these data to discover and validate base-pair mutations that accumulated in these melanomas, revealing a surprisingly high rate of somatic mutation and lending support to the notion that point mutations constitute the major driver of melanoma progression. Taken together, these results may indicate new avenues for target discovery in melanoma, while also providing a template for large-scale transcriptome studies across many tumor types.


Assuntos
Perfilação da Expressão Gênica , Melanoma/genética , Neoplasias Cutâneas/genética , Sequência de Bases , Análise Mutacional de DNA , Amplificação de Genes , Dosagem de Genes , Regulação Neoplásica da Expressão Gênica , Fusão Gênica , Genômica/métodos , Humanos , Células K562 , Análise por Pareamento , Melanoma/metabolismo , Melanoma/patologia , Polimorfismo Genético , Isoformas de Proteínas/genética , Análise de Sequência de DNA , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Integração de Sistemas , Células Tumorais Cultivadas
16.
Nat Methods ; 7(9): 709-15, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20711195

RESUMO

Strand-specific, massively parallel cDNA sequencing (RNA-seq) is a powerful tool for transcript discovery, genome annotation and expression profiling. There are multiple published methods for strand-specific RNA-seq, but no consensus exists as to how to choose between them. Here we developed a comprehensive computational pipeline to compare library quality metrics from any RNA-seq method. Using the well-annotated Saccharomyces cerevisiae transcriptome as a benchmark, we compared seven library-construction protocols, including both published and our own methods. We found marked differences in strand specificity, library complexity, evenness and continuity of coverage, agreement with known annotations and accuracy for expression profiling. Weighing each method's performance and ease, we identified the dUTP second-strand marking and the Illumina RNA ligation methods as the leading protocols, with the former benefitting from the current availability of paired-end sequencing. Our analysis provides a comprehensive benchmark, and our computational pipeline is applicable for assessment of future protocols in other organisms.


Assuntos
DNA Complementar/genética , Análise de Sequência de RNA/métodos , Biologia Computacional , Perfilação da Expressão Gênica/métodos , Biblioteca Gênica , Especificidade por Substrato
17.
Genome Biol ; 24(1): 140, 2023 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-37337297

RESUMO

BACKGROUND: In droplet-based single-cell and single-nucleus RNA-seq experiments, not all reads associated with one cell barcode originate from the encapsulated cell. Such background noise is attributed to spillage from cell-free ambient RNA or barcode swapping events. RESULTS: Here, we characterize this background noise exemplified by three scRNA-seq and two snRNA-seq replicates of mouse kidneys. For each experiment, cells from two mouse subspecies are pooled, allowing to identify cross-genotype contaminating molecules and thus profile background noise. Background noise is highly variable across replicates and cells, making up on average 3-35% of the total counts (UMIs) per cell and we find that noise levels are directly proportional to the specificity and detectability of marker genes. In search of the source of background noise, we find multiple lines of evidence that the majority of background molecules originates from ambient RNA. Finally, we use our genotype-based estimates to evaluate the performance of three methods (CellBender, DecontX, SoupX) that are designed to quantify and remove background noise. We find that CellBender provides the most precise estimates of background noise levels and also yields the highest improvement for marker gene detection. By contrast, clustering and classification of cells are fairly robust towards background noise and only small improvements can be achieved by background removal that may come at the cost of distortions in fine structure. CONCLUSIONS: Our findings help to better understand the extent, sources and impact of background noise in single-cell experiments and provide guidance on how to deal with it.


Assuntos
RNA , Análise de Célula Única , Animais , Camundongos , Análise de Sequência de RNA/métodos , RNA-Seq/métodos , RNA/genética , Genótipo , Análise de Célula Única/métodos , Perfilação da Expressão Gênica/métodos , Análise por Conglomerados
18.
Nat Biotechnol ; 41(2): 204-211, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36109685

RESUMO

Here we introduce a mostly natural sequencing-by-synthesis (mnSBS) method for single-cell RNA sequencing (scRNA-seq), adapted to the Ultima genomics platform, and systematically benchmark it against current scRNA-seq technology. mnSBS uses mostly natural, unmodified nucleotides and only a low fraction of fluorescently labeled nucleotides, which allows for high polymerase processivity and lower costs. We demonstrate successful application in four scRNA-seq case studies of different technical and biological types, including 5' and 3' scRNA-seq, human peripheral blood mononuclear cells from a single individual and in multiplex, as well as Perturb-Seq. Benchmarking shows that results from mnSBS-based scRNA-seq are very similar to those using Illumina sequencing, with minor differences in results related to the position of reads relative to annotated gene boundaries, owing to single-end reads of Ultima being closer to gene ends than reads from Illumina. The method is thus compatible with state-of-the-art scRNA-seq libraries independent of the sequencing technology. We expect mnSBS to be of particular utility for cost-effective large-scale scRNA-seq projects.


Assuntos
Perfilação da Expressão Gênica , Leucócitos Mononucleares , Humanos , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Análise da Expressão Gênica de Célula Única , Análise de Célula Única/métodos , Nucleotídeos
19.
Nat Aging ; 3(3): 327-345, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-37118429

RESUMO

Aging is a complex process involving transcriptomic changes associated with deterioration across multiple tissues and organs, including the brain. Recent studies using heterochronic parabiosis have shown that various aspects of aging-associated decline are modifiable or even reversible. To better understand how this occurs, we performed single-cell transcriptomic profiling of young and old mouse brains after parabiosis. For each cell type, we cataloged alterations in gene expression, molecular pathways, transcriptional networks, ligand-receptor interactions and senescence status. Our analyses identified gene signatures, demonstrating that heterochronic parabiosis regulates several hallmarks of aging in a cell-type-specific manner. Brain endothelial cells were found to be especially malleable to this intervention, exhibiting dynamic transcriptional changes that affect vascular structure and function. These findings suggest new strategies for slowing deterioration and driving regeneration in the aging brain through approaches that do not rely on disease-specific mechanisms or actions of individual circulating factors.


Assuntos
Células Endoteliais , Transcriptoma , Animais , Camundongos , Transcriptoma/genética , Envelhecimento/genética , Parabiose , Encéfalo
20.
Proc Natl Acad Sci U S A ; 106(9): 3264-9, 2009 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-19208812

RESUMO

Defining the transcriptome, the repertoire of transcribed regions encoded in the genome, is a challenging experimental task. Current approaches, relying on sequencing of ESTs or cDNA libraries, are expensive and labor-intensive. Here, we present a general approach for ab initio discovery of the complete transcriptome of the budding yeast, based only on the unannotated genome sequence and millions of short reads from a single massively parallel sequencing run. Using novel algorithms, we automatically construct a highly accurate transcript catalog. Our approach automatically and fully defines 86% of the genes expressed under the given conditions, and discovers 160 previously undescribed transcription units of 250 bp or longer. It correctly demarcates the 5' and 3' UTR boundaries of 86 and 77% of expressed genes, respectively. The method further identifies 83% of known splice junctions in expressed genes, and discovers 25 previously uncharacterized introns, including 2 cases of condition-dependent intron retention. Our framework is applicable to poorly understood organisms, and can lead to greater understanding of the transcribed elements in an explored genome.


Assuntos
Saccharomyces cerevisiae/genética , Sequência de Bases , Simulação por Computador , Perfilação da Expressão Gênica , Splicing de RNA/genética , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA