Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
1.
Hum Mol Genet ; 32(14): 2373-2385, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37195288

RESUMO

PURPOSE: To characterize a novel neurodevelopmental syndrome due to loss-of-function (LoF) variants in Ankyrin 2 (ANK2), and to explore the effects on neuronal network dynamics and homeostatic plasticity in human-induced pluripotent stem cell-derived neurons. METHODS: We collected clinical and molecular data of 12 individuals with heterozygous de novo LoF variants in ANK2. We generated a heterozygous LoF allele of ANK2 using CRISPR/Cas9 in human-induced pluripotent stem cells (hiPSCs). HiPSCs were differentiated into excitatory neurons, and we measured their spontaneous electrophysiological responses using micro-electrode arrays (MEAs). We also characterized their somatodendritic morphology and axon initial segment (AIS) structure and plasticity. RESULTS: We found a broad neurodevelopmental disorder (NDD), comprising intellectual disability, autism spectrum disorders and early onset epilepsy. Using MEAs, we found that hiPSC-derived neurons with heterozygous LoF of ANK2 show a hyperactive and desynchronized neuronal network. ANK2-deficient neurons also showed increased somatodendritic structures and altered AIS structure of which its plasticity is impaired upon activity-dependent modulation. CONCLUSIONS: Phenotypic characterization of patients with de novo ANK2 LoF variants defines a novel NDD with early onset epilepsy. Our functional in vitro data of ANK2-deficient human neurons show a specific neuronal phenotype in which reduced ANKB expression leads to hyperactive and desynchronized neuronal network activity, increased somatodendritic complexity and AIS structure and impaired activity-dependent plasticity of the AIS.


Assuntos
Segmento Inicial do Axônio , Epilepsia , Células-Tronco Pluripotentes Induzidas , Humanos , Segmento Inicial do Axônio/metabolismo , Anquirinas/genética , Anquirinas/metabolismo , Neurônios/metabolismo , Epilepsia/genética , Epilepsia/metabolismo
2.
Mol Psychiatry ; 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38030819

RESUMO

Mutations in the PQBP1 gene (polyglutamine-binding protein-1) are responsible for a syndromic X-linked form of neurodevelopmental disorder (XL-NDD) with intellectual disability (ID), named Renpenning syndrome. PQBP1 encodes a protein involved in transcriptional and post-transcriptional regulation of gene expression. To investigate the consequences of PQBP1 loss, we used RNA interference to knock-down (KD) PQBP1 in human neural stem cells (hNSC). We observed a decrease of cell proliferation, as well as the deregulation of the expression of 58 genes, comprising genes encoding proteins associated with neurodegenerative diseases, playing a role in mRNA regulation or involved in innate immunity. We also observed an enrichment of genes involved in other forms of NDD (CELF2, APC2, etc). In particular, we identified an increase of a non-canonical isoform of another XL-NDD gene, UPF3B, an actor of nonsense mRNA mediated decay (NMD). This isoform encodes a shorter protein (UPF3B_S) deprived from the domains binding NMD effectors, however no notable change in NMD was observed after PQBP1-KD in fibroblasts containing a premature termination codon. We showed that short non-canonical and long canonical UPF3B isoforms have different interactomes, suggesting they could play distinct roles. The link between PQBP1 loss and increase of UPF3B_S expression was confirmed in mRNA obtained from patients with pathogenic variants in PQBP1, particularly pronounced for truncating variants and missense variants located in the C-terminal domain. We therefore used it as a molecular marker of Renpenning syndrome, to test the pathogenicity of variants of uncertain clinical significance identified in PQPB1 in individuals with NDD, using patient blood mRNA and HeLa cells expressing wild-type or mutant PQBP1 cDNA. We showed that these different approaches were efficient to prove a functional effect of variants in the C-terminal domain of the protein. In conclusion, our study provided information on the pathological mechanisms involved in Renpenning syndrome, but also allowed the identification of a biomarker of PQBP1 deficiency useful to test variant effect.

3.
Am J Med Genet A ; 194(4): e63476, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37974505

RESUMO

Cat Eye Syndrome (CES) is a rare genetic disease caused by the presence of a small supernumerary marker chromosome derived from chromosome 22, which results in a partial tetrasomy of 22p-22q11.21. CES is classically defined by association of iris coloboma, anal atresia, and preauricular tags or pits, with high clinical and genetic heterogeneity. We conducted an international retrospective study of patients carrying genomic gain in the 22q11.21 chromosomal region upstream from LCR22-A identified using FISH, MLPA, and/or array-CGH. We report a cohort of 43 CES cases. We highlight that the clinical triad represents no more than 50% of cases. However, only 16% of CES patients presented with the three signs of the triad and 9% not present any of these three signs. We also highlight the importance of other impairments: cardiac anomalies are one of the major signs of CES (51% of cases), and high frequency of intellectual disability (47%). Ocular motility defects (45%), abdominal malformations (44%), ophthalmologic malformations (35%), and genitourinary tract defects (32%) are other frequent clinical features. We observed that sSMC is the most frequent chromosomal anomaly (91%) and we highlight the high prevalence of mosaic cases (40%) and the unexpectedly high prevalence of parental transmission of sSMC (23%). Most often, the transmitting parent has mild or absent features and carries the mosaic marker at a very low rate (<10%). These data allow us to better delineate the clinical phenotype associated with CES, which must be taken into account in the cytogenetic testing for this syndrome. These findings draw attention to the need for genetic counseling and the risk of recurrence.


Assuntos
Aneuploidia , Transtornos Cromossômicos , Cromossomos Humanos Par 22 , Anormalidades do Olho , Cardiopatias Congênitas , Humanos , Estudos Retrospectivos , Hibridização in Situ Fluorescente , Cromossomos Humanos Par 22/genética , Cardiopatias Congênitas/genética
4.
Brain ; 146(6): 2285-2297, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36477332

RESUMO

The blood-brain barrier ensures CNS homeostasis and protection from injury. Claudin-5 (CLDN5), an important component of tight junctions, is critical for the integrity of the blood-brain barrier. We have identified de novo heterozygous missense variants in CLDN5 in 15 unrelated patients who presented with a shared constellation of features including developmental delay, seizures (primarily infantile onset focal epilepsy), microcephaly and a recognizable pattern of pontine atrophy and brain calcifications. All variants clustered in one subregion/domain of the CLDN5 gene and the recurrent variants demonstrate genotype-phenotype correlations. We modelled both patient variants and loss of function alleles in the zebrafish to show that the variants analogous to those in patients probably result in a novel aberrant function in CLDN5. In total, human patient and zebrafish data provide parallel evidence that pathogenic sequence variants in CLDN5 cause a novel neurodevelopmental disorder involving disruption of the blood-brain barrier and impaired neuronal function.


Assuntos
Microcefalia , Animais , Humanos , Microcefalia/genética , Claudina-5/genética , Claudina-5/metabolismo , Peixe-Zebra/metabolismo , Barreira Hematoencefálica/metabolismo , Convulsões/genética , Síndrome
5.
Am J Hum Genet ; 106(6): 830-845, 2020 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-32442410

RESUMO

SOX6 belongs to a family of 20 SRY-related HMG-box-containing (SOX) genes that encode transcription factors controlling cell fate and differentiation in many developmental and adult processes. For SOX6, these processes include, but are not limited to, neurogenesis and skeletogenesis. Variants in half of the SOX genes have been shown to cause severe developmental and adult syndromes, referred to as SOXopathies. We here provide evidence that SOX6 variants also cause a SOXopathy. Using clinical and genetic data, we identify 19 individuals harboring various types of SOX6 alterations and exhibiting developmental delay and/or intellectual disability; the individuals are from 17 unrelated families. Additional, inconstant features include attention-deficit/hyperactivity disorder (ADHD), autism, mild facial dysmorphism, craniosynostosis, and multiple osteochondromas. All variants are heterozygous. Fourteen are de novo, one is inherited from a mosaic father, and four offspring from two families have a paternally inherited variant. Intragenic microdeletions, balanced structural rearrangements, frameshifts, and nonsense variants are predicted to inactivate the SOX6 variant allele. Four missense variants occur in residues and protein regions highly conserved evolutionarily. These variants are not detected in the gnomAD control cohort, and the amino acid substitutions are predicted to be damaging. Two of these variants are located in the HMG domain and abolish SOX6 transcriptional activity in vitro. No clear genotype-phenotype correlations are found. Taken together, these findings concur that SOX6 haploinsufficiency leads to a neurodevelopmental SOXopathy that often includes ADHD and abnormal skeletal and other features.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Craniossinostoses/genética , Transtornos do Neurodesenvolvimento/genética , Osteocondroma/genética , Fatores de Transcrição SOXD/genética , Transporte Ativo do Núcleo Celular , Adolescente , Sequência de Aminoácidos , Sequência de Bases , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Criança , Pré-Escolar , Simulação por Computador , Feminino , Variação Estrutural do Genoma/genética , Humanos , Lactente , Masculino , Mutação de Sentido Incorreto , Transtornos do Neurodesenvolvimento/diagnóstico , RNA-Seq , Fatores de Transcrição SOXD/química , Fatores de Transcrição SOXD/metabolismo , Síndrome , Transcrição Gênica , Transcriptoma , Translocação Genética/genética
6.
Am J Hum Genet ; 107(5): 963-976, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33157009

RESUMO

NCKAP1/NAP1 regulates neuronal cytoskeletal dynamics and is essential for neuronal differentiation in the developing brain. Deleterious variants in NCKAP1 have been identified in individuals with autism spectrum disorder (ASD) and intellectual disability; however, its clinical significance remains unclear. To determine its significance, we assemble genotype and phenotype data for 21 affected individuals from 20 unrelated families with predicted deleterious variants in NCKAP1. This includes 16 individuals with de novo (n = 8), transmitted (n = 6), or inheritance unknown (n = 2) truncating variants, two individuals with structural variants, and three with potentially disruptive de novo missense variants. We report a de novo and ultra-rare deleterious variant burden of NCKAP1 in individuals with neurodevelopmental disorders which needs further replication. ASD or autistic features, language and motor delay, and variable expression of intellectual or learning disability are common clinical features. Among inherited cases, there is evidence of deleterious variants segregating with neuropsychiatric disorders. Based on available human brain transcriptomic data, we show that NCKAP1 is broadly and highly expressed in both prenatal and postnatal periods and demostrate enriched expression in excitatory neurons and radial glias but depleted expression in inhibitory neurons. Mouse in utero electroporation experiments reveal that Nckap1 loss of function promotes neuronal migration during early cortical development. Combined, these data support a role for disruptive NCKAP1 variants in neurodevelopmental delay/autism, possibly by interfering with neuronal migration early in cortical development.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Transtorno do Espectro Autista/genética , Deficiência Intelectual/genética , Deficiências da Aprendizagem/genética , Mutação , Proteínas Adaptadoras de Transdução de Sinal/deficiência , Adolescente , Animais , Transtorno do Espectro Autista/diagnóstico , Transtorno do Espectro Autista/patologia , Córtex Cerebral/metabolismo , Córtex Cerebral/patologia , Criança , Feminino , Expressão Gênica , Genótipo , Células HEK293 , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/patologia , Deficiências da Aprendizagem/diagnóstico , Deficiências da Aprendizagem/patologia , Masculino , Camundongos , Camundongos Knockout , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Linhagem , Fenótipo , Gravidez , Isoformas de Proteínas/antagonistas & inibidores , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transcriptoma , Adulto Jovem
7.
Ann Neurol ; 92(6): 958-973, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36073542

RESUMO

OBJECTIVE: Rare inherited missense variants in SLC32A1, the gene that encodes the vesicular gamma-aminobutyric acid (GABA) transporter, have recently been shown to cause genetic epilepsy with febrile seizures plus. We aimed to clarify if de novo missense variants in SLC32A1 can also cause epilepsy with impaired neurodevelopment. METHODS: Using exome sequencing, we identified four individuals with a developmental and epileptic encephalopathy and de novo missense variants in SLC32A1. To assess causality, we performed functional evaluation of the identified variants in a murine neuronal cell culture model. RESULTS: The main phenotype comprises moderate-to-severe intellectual disability, infantile-onset epilepsy within the first 18 months of life, and a choreiform, dystonic, or dyskinetic movement disorder. In silico modeling and functional analyses reveal that three of these variants, which are located in helices that line the putative GABA transport pathway, result in reduced quantal size, consistent with impaired filling of synaptic vesicles with GABA. The fourth variant, located in the vesicular gamma-aminobutyric acid N-terminus, does not affect quantal size, but increases presynaptic release probability, leading to more severe synaptic depression during high-frequency stimulation. Thus, variants in vesicular gamma-aminobutyric acid can impair GABAergic neurotransmission through at least two mechanisms, by affecting synaptic vesicle filling and by altering synaptic short-term plasticity. INTERPRETATION: This work establishes de novo missense variants in SLC32A1 as a novel cause of a developmental and epileptic encephalopathy. SUMMARY FOR SOCIAL MEDIA IF PUBLISHED: @platzer_k @lemke_johannes @RamiJamra @Nirgalito @GeneDx The SLC family 32 Member 1 (SLC32A1) is the only protein identified to date, that loads gamma-aminobutyric acid (GABA) and glycine into synaptic vesicles, and is therefore also known as the vesicular GABA transporter (VGAT) or vesicular inhibitory amino acid transporter (VIAAT). Rare inherited missense variants in SLC32A1, the gene that encodes VGAT/vesicular inhibitory amino acid transporter, have recently been shown to cause genetic epilepsy with febrile seizures plus. We aimed to clarify if de novo missense variants in SLC32A1 can also cause epilepsy with impaired neurodevelopment. We report on four individuals with de novo missense variants in SLC32A1 and a developmental and epileptic encephalopathy with infantile onset epilepsy. We establish causality of the variants via in silico modeling and their functional evaluation in a murine neuronal cell culture model. SLC32A1 variants represent a novel genetic etiology in neurodevelopmental disorders with epilepsy and a new GABA-related disease mechanism. ANN NEUROL 2022;92:958-973.


Assuntos
Epilepsia Generalizada , Epilepsia , Convulsões Febris , Animais , Camundongos , Epilepsia Generalizada/genética , Epilepsia/genética , Transmissão Sináptica/genética , Ácido gama-Aminobutírico/metabolismo , Sistemas de Transporte de Aminoácidos/metabolismo
8.
Am J Med Genet A ; 191(5): 1282-1292, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36826837

RESUMO

Exome sequencing is a powerful tool in prenatal and postnatal genetics and can help identify novel candidate genes critical to human development. We describe seven unpublished probands with rare likely pathogenic variants or variants of uncertain significance that segregate with recessive disease in TBC1D32, including four fetal probands in three unrelated pedigrees and three pediatric probands in unrelated pedigrees. We also report clinical comparisons with seven previously published patients. Index probands were identified through an ongoing prenatal exome sequencing study and through an online data sharing platform (Gene Matcher™). A literature review was also completed. TBC1D32 is involved in the development and function of cilia and is expressed in the developing hypothalamus and pituitary gland. We provide additional data to expand the phenotype correlated with TBC1D32 variants, including a severe prenatal phenotype associated with life-limiting congenital anomalies.


Assuntos
Ciliopatias , Gravidez , Feminino , Humanos , Criança , Fenótipo , Ciliopatias/diagnóstico , Ciliopatias/genética , Linhagem , Proteínas Adaptadoras de Transdução de Sinal
9.
Hum Genet ; 141(1): 65-80, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34748075

RESUMO

Pathogenic variants of the myelin transcription factor-1 like (MYT1L) gene include heterozygous missense, truncating variants and 2p25.3 microdeletions and cause a syndromic neurodevelopmental disorder (OMIM#616,521). Despite enrichment in de novo mutations in several developmental disorders and autism studies, the data on clinical characteristics and genotype-phenotype correlations are scarce, with only 22 patients with single nucleotide pathogenic variants reported. We aimed to further characterize this disorder at both the clinical and molecular levels by gathering a large series of patients with MYT1L-associated neurodevelopmental disorder. We collected genetic information on 40 unreported patients with likely pathogenic/pathogenic MYT1L variants and performed a comprehensive review of published data (total = 62 patients). We confirm that the main phenotypic features of the MYT1L-related disorder are developmental delay with language delay (95%), intellectual disability (ID, 70%), overweight or obesity (58%), behavioral disorders (98%) and epilepsy (23%). We highlight novel clinical characteristics, such as learning disabilities without ID (30%) and feeding difficulties during infancy (18%). We further describe the varied dysmorphic features (67%) and present the changes in weight over time of 27 patients. We show that patients harboring highly clustered missense variants in the 2-3-ZNF domains are not clinically distinguishable from patients with truncating variants. We provide an updated overview of clinical and genetic data of the MYT1L-associated neurodevelopmental disorder, hence improving diagnosis and clinical management of these patients.


Assuntos
Variação Genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Fatores de Transcrição/genética , Adolescente , Adulto , Criança , Pré-Escolar , Epilepsia/genética , Transtornos da Alimentação e da Ingestão de Alimentos/genética , Feminino , Estudos de Associação Genética , Heterozigoto , Humanos , Lactente , Transtornos do Desenvolvimento da Linguagem/genética , Masculino , Obesidade/genética , Fenótipo , Adulto Jovem
10.
Hum Genet ; 140(7): 1109-1120, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33944996

RESUMO

Located in the critical 1p36 microdeletion region, the chromodomain helicase DNA-binding protein 5 (CHD5) gene encodes a subunit of the nucleosome remodeling and deacetylation (NuRD) complex required for neuronal development. Pathogenic variants in six of nine chromodomain (CHD) genes cause autosomal dominant neurodevelopmental disorders, while CHD5-related disorders are still unknown. Thanks to GeneMatcher and international collaborations, we assembled a cohort of 16 unrelated individuals harboring heterozygous CHD5 variants, all identified by exome sequencing. Twelve patients had de novo CHD5 variants, including ten missense and two splice site variants. Three familial cases had nonsense or missense variants segregating with speech delay, learning disabilities, and/or craniosynostosis. One patient carried a frameshift variant of unknown inheritance due to unavailability of the father. The most common clinical features included language deficits (81%), behavioral symptoms (69%), intellectual disability (64%), epilepsy (62%), and motor delay (56%). Epilepsy types were variable, with West syndrome observed in three patients, generalized tonic-clonic seizures in two, and other subtypes observed in one individual each. Our findings suggest that, in line with other CHD-related disorders, heterozygous CHD5 variants are associated with a variable neurodevelopmental syndrome that includes intellectual disability with speech delay, epilepsy, and behavioral problems as main features.


Assuntos
DNA Helicases/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Domínio Catalítico , Criança , Pré-Escolar , Estudos de Coortes , Epilepsia/genética , Feminino , Genes Dominantes , Humanos , Deficiência Intelectual/fisiopatologia , Masculino , Transtornos do Neurodesenvolvimento/fisiopatologia , Linhagem , Adulto Jovem
11.
Genet Med ; 23(10): 1922-1932, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34163037

RESUMO

PURPOSE: CACNA1C encodes the alpha-1-subunit of a voltage-dependent L-type calcium channel expressed in human heart and brain. Heterozygous variants in CACNA1C have previously been reported in association with Timothy syndrome and long QT syndrome. Several case reports have suggested that CACNA1C variation may also be associated with a primarily neurological phenotype. METHODS: We describe 25 individuals from 22 families with heterozygous variants in CACNA1C, who present with predominantly neurological manifestations. RESULTS: Fourteen individuals have de novo, nontruncating variants and present variably with developmental delays, intellectual disability, autism, hypotonia, ataxia, and epilepsy. Functional studies of a subgroup of missense variants via patch clamp experiments demonstrated differential effects on channel function in vitro, including loss of function (p.Leu1408Val), neutral effect (p.Leu614Arg), and gain of function (p.Leu657Phe, p.Leu614Pro). The remaining 11 individuals from eight families have truncating variants in CACNA1C. The majority of these individuals have expressive language deficits, and half have autism. CONCLUSION: We expand the phenotype associated with CACNA1C variants to include neurodevelopmental abnormalities and epilepsy, in the absence of classic features of Timothy syndrome or long QT syndrome.


Assuntos
Transtorno Autístico , Canais de Cálcio Tipo L , Síndrome do QT Longo , Sindactilia , Transtorno Autístico/genética , Canais de Cálcio Tipo L/genética , Humanos , Fenótipo
12.
Am J Hum Genet ; 100(5): 773-788, 2017 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-28475860

RESUMO

Epigenetic dysregulation has emerged as a recurring mechanism in the etiology of neurodevelopmental disorders. Two such disorders, CHARGE and Kabuki syndromes, result from loss of function mutations in chromodomain helicase DNA-binding protein 7 (CHD7LOF) and lysine (K) methyltransferase 2D (KMT2DLOF), respectively. Although these two syndromes are clinically distinct, there is significant phenotypic overlap. We therefore expected that epigenetically driven developmental pathways regulated by CHD7 and KMT2D would overlap and that DNA methylation (DNAm) alterations downstream of the mutations in these genes would identify common target genes, elucidating a mechanistic link between these two conditions, as well as specific target genes for each disorder. Genome-wide DNAm profiles in individuals with CHARGE and Kabuki syndromes with CHD7LOF or KMT2DLOF identified distinct sets of DNAm differences in each of the disorders, which were used to generate two unique, highly specific and sensitive DNAm signatures. These DNAm signatures were able to differentiate pathogenic mutations in these two genes from controls and from each other. Analysis of the DNAm targets in each gene-specific signature identified both common gene targets, including homeobox A5 (HOXA5), which could account for some of the clinical overlap in CHARGE and Kabuki syndromes, as well as distinct gene targets. Our findings demonstrate how characterization of the epigenome can contribute to our understanding of disease pathophysiology for epigenetic disorders, paving the way for explorations of novel therapeutics.


Assuntos
Anormalidades Múltiplas/genética , Síndrome CHARGE/genética , Metilação de DNA , Epigênese Genética , Face/anormalidades , Doenças Hematológicas/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/diagnóstico , Síndrome CHARGE/diagnóstico , Linhagem Celular , DNA Helicases/genética , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Genoma Humano , Doenças Hematológicas/diagnóstico , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/metabolismo , Mutação , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Doenças Vestibulares/diagnóstico
13.
Am J Med Genet A ; 182(9): 2133-2138, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32633079

RESUMO

Deletions in the 12q21 region are rare and non-recurrent CNVs. To date, only 11 patients with deletions in this region have been reported in the literature. These patients most often presented with syndromic intellectual deficiency, ventriculomegaly or hydrocephalus, ectodermal abnormalities, growth retardation and renal and cardiac malformations, suggesting a recognizable microdeletion syndrome. We report three new patients with overlapping deletions of the 12q21 region, including the smallest deletion reported to date and the first case characterized by array CGH during pregnancy. We describe specific clinical findings and shared facial features as developmental delay, ectodermal abnormalities, ventriculomegaly or hydrocephalus, axial hypotonia or spastic diplegia, growth retardation, heart defect, hydronephrosis, ureteral reflux or horseshoe kidney, large thorax or pectus excavatum, syndactyly of 2-3 toes, pterygium coli or excess nuchal skin, large anterior fontanel, low set ears, prominent forehead, short-upturned nose with nostril hypoplasia, microretrognathia and hypertelorism. These new patients and a comprehensive review of the literature allow us to define a minimum critical region spanning 1.6 Mb in 12q21. By screening the critical region using prediction tools, we identified two candidate genes: SYT1and PPP1R12A.


Assuntos
Anormalidades Múltiplas/genética , Deficiência Intelectual/genética , Fosfatase de Miosina-de-Cadeia-Leve/genética , Sinaptotagmina I/genética , Anormalidades Múltiplas/patologia , Adulto , Pré-Escolar , Deleção Cromossômica , Cromossomos Humanos Par 12/genética , Hibridização Genômica Comparativa , Deficiências do Desenvolvimento/complicações , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Fácies , Feminino , Cardiopatias Congênitas/complicações , Cardiopatias Congênitas/genética , Cardiopatias Congênitas/patologia , Humanos , Hidrocefalia/complicações , Hidrocefalia/genética , Hidrocefalia/patologia , Deficiência Intelectual/complicações , Deficiência Intelectual/patologia , Gravidez
14.
Ann Neurol ; 84(5): 788-795, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30269351

RESUMO

NBEA is a candidate gene for autism, and de novo variants have been reported in neurodevelopmental disease (NDD) cohorts. However, NBEA has not been rigorously evaluated as a disease gene, and associated phenotypes have not been delineated. We identified 24 de novo NBEA variants in patients with NDD, establishing NBEA as an NDD gene. Most patients had epilepsy with onset in the first few years of life, often characterized by generalized seizure types, including myoclonic and atonic seizures. Our data show a broader phenotypic spectrum than previously described, including a myoclonic-astatic epilepsy-like phenotype in a subset of patients. Ann Neurol 2018;84:796-803.


Assuntos
Proteínas de Transporte/genética , Proteínas do Tecido Nervoso/genética , Transtornos do Neurodesenvolvimento/genética , Adolescente , Criança , Pré-Escolar , Epilepsia Generalizada/genética , Feminino , Genótipo , Humanos , Masculino , Mutação , Fenótipo
15.
Prenat Diagn ; 39(11): 986-992, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31273809

RESUMO

OBJECTIVE: Uniparental disomy (UPD) testing is currently recommended during pregnancy in fetuses carrying a balanced Robertsonian translocation (ROB) involving chromosome 14 or 15, both chromosomes containing imprinted genes. The overall risk that such a fetus presents a UPD has been previously estimated to be around ~0.6-0.8%. However, because UPD are rare events and this estimate has been calculated from a number of studies of limited size, we have reevaluated the risk of UPD in fetuses for whom one of the parents was known to carry a nonhomologous ROB (NHROB). METHOD: We focused our multicentric study on NHROB involving chromosome 14 and/or 15. A total of 1747 UPD testing were performed in fetuses during pregnancy for the presence of UPD(14) and/or UPD(15). RESULT: All fetuses were negative except one with a UPD(14) associated with a maternally inherited rob(13;14). CONCLUSION: Considering these data, the risk of UPD following prenatal diagnosis of an inherited ROB involving chromosome 14 and/or 15 could be estimated to be around 0.06%, far less than the previous estimation. Importantly, the risk of miscarriage following an invasive prenatal sampling is higher than the risk of UPD. Therefore, we do not recommend prenatal testing for UPD for these pregnancies and parents should be reassured.


Assuntos
Cromossomos Humanos Par 14 , Cromossomos Humanos Par 15 , Diagnóstico Pré-Natal , Translocação Genética , Dissomia Uniparental , Adulto , Feminino , Humanos , Masculino , Gravidez , Estudos Retrospectivos , Medição de Risco
16.
Am J Med Genet C Semin Med Genet ; 175(4): 417-430, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29178447

RESUMO

CHARGE syndrome (CS) is a genetic disorder whose first description included Coloboma, Heart disease, Atresia of choanae, Retarded growth and development, Genital hypoplasia, and Ear anomalies and deafness, most often caused by a genetic mutation in the CHD7 gene. Two features were then added: semicircular canal anomalies and arhinencephaly/olfactory bulb agenesis, with classification of typical, partial, or atypical forms on the basis of major and minor clinical criteria. The detection rate of a pathogenic variant in the CHD7 gene varies from 67% to 90%. To try to have an overview of this heterogenous clinical condition and specify a genotype-phenotype relation, we conducted a national study of phenotype and genotype in 119 patients with CS. Selected clinical diagnostic criteria were from Verloes (2005), updated by Blake & Prasad (). Besides obtaining a detailed clinical description, when possible, patients underwent a full ophthalmologic examination, audiometry, temporal bone CT scan, gonadotropin analysis, and olfactory-bulb MRI. All patients underwent CHD7 sequencing and MLPA analysis. We found a pathogenic CHD7 variant in 83% of typical CS cases and 58% of atypical cases. Pathogenic variants in the CHD7 gene were classified by the expected impact on the protein. In all, 90% of patients had a typical form of CS and 10% an atypical form. The most frequent features were deafness/semicircular canal hypoplasia (94%), pituitary defect/hypogonadism (89%), external ear anomalies (87%), square-shaped face (81%), and arhinencephaly/anosmia (80%). Coloboma (73%), heart defects (65%), and choanal atresia (43%) were less frequent.


Assuntos
Síndrome CHARGE/diagnóstico , Síndrome CHARGE/genética , Estudos de Associação Genética , Genótipo , Fenótipo , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/genética , Adolescente , Adulto , Alelos , Substituição de Aminoácidos , Sistema Nervoso Central/anormalidades , Criança , Pré-Escolar , Estudos de Coortes , Nervos Cranianos/anormalidades , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Feminino , França , Testes Genéticos , Humanos , Lactente , Masculino , Técnicas de Diagnóstico Molecular , Adulto Jovem
18.
Prenat Diagn ; 36(6): 561-7, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27061523

RESUMO

BACKGROUND: CHARGE syndrome is a multiple congenital anomaly syndrome caused by mutations in CHD7. Diagnostic criteria have been proposed to improve diagnosis in fetuses at clinicopathological survey, but no criteria exist for fetal diagnosis during pregnancy. METHOD: We collected prenatal findings of 12 children with CHARGE syndrome diagnosed in the first 3 months and a CHD7 mutation. We retrieved data on prenatal ultrasound (US) follow-up, fetal supplementary investigations, and results of postnatal evaluation. RESULT: Seven pregnancies were complicated by the identification of isolated or multiple congenital anomalies. CHARGE syndrome was suspected in three fetuses but could not be confirmed despite additional examinations. Retrospectively, several postnatal findings could have been seen if they had been specifically searched. Intrauterine growth restriction, previously proposed as an exclusion criterion, complicated two pregnancies and is thus compatible with the diagnosis. CONCLUSION: Diagnosis of CHARGE syndrome remains difficult during pregnancy. If the diagnosis of CHARGE syndrome is raised in utero, we suggest a careful US examination to identify typical external ears, choanal atresia, or microphthalmia. Fetal brain magnetic resonance imaging can be helpful, but a normal result does not exclude the diagnosis. When CHARGE syndrome is highly suspected, CHD7 molecular analysis must be proposed to confirm the diagnosis. © 2016 John Wiley & Sons, Ltd.


Assuntos
Síndrome CHARGE/diagnóstico por imagem , Ventrículos Cerebrais/anormalidades , Ventrículos Cerebrais/diagnóstico por imagem , Fenda Labial/diagnóstico por imagem , Anormalidades Craniofaciais/diagnóstico por imagem , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Orelha Externa/anormalidades , Orelha Externa/diagnóstico por imagem , Feminino , Retardo do Crescimento Fetal/diagnóstico por imagem , Defeitos dos Septos Cardíacos/diagnóstico por imagem , Humanos , Lactente , Recém-Nascido , Rim , Masculino , Fenótipo , Poli-Hidrâmnios/diagnóstico por imagem , Gravidez , Estudos Retrospectivos , Timo/anormalidades , Timo/diagnóstico por imagem , Ultrassonografia Pré-Natal , Ureter/anormalidades , Ureter/diagnóstico por imagem , Anormalidades Urogenitais/diagnóstico por imagem
19.
Am J Med Genet A ; 167A(8): 1851-8, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25900885

RESUMO

Disorders of Sex Development (DSD) are a heterogeneous group of disorders affecting gonad and/or genito-urinary tract development and usually the endocrine-reproductive system. A genetic diagnosis is made in only around 20% of these cases. The genetic causes of 46,XX-SRY negative testicular DSD as well as ovotesticular DSD are poorly defined. Duplications involving a region located ∼600 kb upstream of SOX9, a key gene in testis development, were reported in several cases of 46,XX DSD. Recent studies have narrowed this region down to a 78 kb interval that is duplicated or deleted respectively in 46,XX or 46,XY DSD. We identified three phenotypically normal patients presenting with azoospermia and 46,XX testicular DSD. Two brothers carried a 83.8 kb duplication located ∼600 kb upstream of SOX9 that overlapped with the previously reported rearrangements. This duplication refines the minimal region associated with 46,XX-SRY negative DSD to a 40.7-41.9 kb element located ∼600 kb upstream of SOX9. Predicted enhancer elements and evolutionary-conserved binding sites for proteins known to be involved in testis determination are located within this region.


Assuntos
Aberrações Cromossômicas , Transtornos do Desenvolvimento Sexual/genética , Sequências Reguladoras de Ácido Nucleico , Fatores de Transcrição SOX9/genética , Humanos , Masculino
20.
Ophthalmic Genet ; 45(1): 84-94, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37158316

RESUMO

BACKGROUND: Ectrodactyly is a rare congenital limb malformation characterized by a deep median cleft of the hand and/or foot due to the absence of central rays. It could be isolated or depicts a part of diverse syndromic forms. Heterozygous pathogenic variants in the TP63 gene are responsible for at least four rare syndromic human disorders associated with ectrodactyly. Among them, ADULT (Acro-Dermato-Ungual-Lacrimal-Tooth) syndrome is characterized by ectodermal dysplasia, excessive freckling, nail dysplasia, and lacrimal duct obstruction, in addition to ectrodactyly and/or syndactyly. Ophthalmic findings are very common in TP63-related disorders, consisting mainly of lacrimal duct hypoplasia. Absent meibomian glands have also been well documented in EEC3 (Ectrodactyly Ectodermal dysplasia Cleft lip/palate) syndrome but not in ADULT syndrome. METHODS: We report a case of syndromic ectrodactyly consistent with ADULT syndrome, with an additional ophthalmic manifestation of agenesis of meibomian glands. The proband, as well as her elder sister, presented with congenital cone dystrophy.The molecular investigation was performed in the proband using Whole Exome Sequencing. Family segregation of the identified variants was confirmed by Sanger sequencing. RESULTS: Two clinically relevant variants were found in the proband: the novel de novo heterozygous missense c.931A > G (p.Ser311Gly) in the TP63 gene classified as pathogenic, and the homozygous nonsense pathogenic c.1810C > T (p.Arg604Ter) in the CNGB3 gene. The same homozygous CNGB3 variation was also found in the sister, explaining the cone dystrophy in both cases. CONCLUSIONS: Whole Exome Sequencing allowed dual molecular diagnoses: de novo TP63-related syndromic ectrodactyly and familial CNGB3-related congenital cone dystrophy.


Assuntos
Anodontia , Mama , Fenda Labial , Fissura Palatina , Distrofia de Cones , Displasia Ectodérmica , Obstrução dos Ductos Lacrimais , Deformidades Congênitas dos Membros , Unhas Malformadas , Transtornos da Pigmentação , Adulto , Feminino , Humanos , Mama/anormalidades , Fenda Labial/diagnóstico , Fenda Labial/genética , Fissura Palatina/genética , Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Displasia Ectodérmica/diagnóstico , Displasia Ectodérmica/genética , Sequenciamento do Exoma , Glândulas Tarsais , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA