Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Bioorg Chem ; 150: 107533, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38878750

RESUMO

Hyperpigmentation disorders may result from inappropriate melanin deposition and/or excessive melanin synthesis. They are classified mainly as aesthetic problems, but they can significantly affect human health by decreasing self-esteem. There are available only limited treatment options for hyperpigmentation disorder, among others, cosmetic products applied topically. Depigmenting ingredients were found to be ineffective and characterized by various side effects. As a result, many efforts are made to discover novel, potent, and safe melanogenesis inhibitors for possible use in topical cosmetic depigmenting formulations. Cinnamic acid derivatives constitute a widely tested group for that purpose. This article reports research in the group of N-alkyl cinnamamide derivatives (un)substituted in phenyl ring. Among tested series, (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide (compound 21) showed the most promising inhibitory properties in mushroom tyrosinase assay (IC50 = 36.98 ± 1.07 µM for monophenolase activity, IC50 = 146.71 ± 16.82 µM for diphenolase activity) and melanin production inhibition in B16F10 mouse melanoma cell line at concentration 6.25 µM resulting probably from decreasing of Tyr, Mitf, Tyrp-1, and Tyrp-2 genes expression. This compound also showed melanin production inhibitory properties in pigmented reconstructed human epidermis when used in 1 % and 2 % solutions in 50 % PEG400. In vitro evaluation of its safety profile showed no cytotoxicity to human keratinocytes HaCaT, human skin fibroblasts BJ, and human primary epidermal melanocytes HEMa, no mutagenicity in the Ames test, no genotoxicity in micronucleus test, no phototoxicity, as well as no skin irritation potential tested in PEG400 solution. This compound was also shown to penetrate across the epidermis to reach the possible site of action. The performed research led to classify (E)-3-(4-chlorophenyl)-N-(5-hydroxypentyl)acrylamide as a novel potential depigmenting cosmetic ingredient.

2.
Bioorg Med Chem ; 88-89: 117333, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37236021

RESUMO

Butyrylcholinesterase (BuChE) and amyloid ß (Aß) aggregation remain important biological target and mechanism in the search for effective treatment of Alzheimer's disease. Simultaneous inhibition thereof by the application of multifunctional agents may lead to improvement in terms of symptoms and causes of the disease. Here, we present the rational design, synthesis, biological evaluation and molecular modelling studies of novel series of fluorene-based BuChE and Aß inhibitors with drug-like characteristics and advantageous Central Nervous System Multiparameter Optimization scores. Among 17 synthesized and tested compounds, we identified 22 as the most potent eqBuChE inhibitor with IC50 of 38 nM and 37.4% of Aß aggregation inhibition at 10 µM. Based on molecular modelling studies, including molecular dynamics, we determined the binding mode of the compounds within BuChE and explained the differences in the activity of the two enantiomers of compound 22. A novel series of fluorenyl compounds meeting the drug-likeness criteria seems to be a promising starting point for further development as anti-Alzheimer agents.


Assuntos
Doença de Alzheimer , Butirilcolinesterase , Humanos , Butirilcolinesterase/metabolismo , Peptídeos beta-Amiloides/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Inibidores da Colinesterase/farmacologia , Inibidores da Colinesterase/uso terapêutico , Relação Estrutura-Atividade , Simulação de Dinâmica Molecular , Acetilcolinesterase/metabolismo , Desenho de Fármacos , Estrutura Molecular , Simulação de Acoplamento Molecular
3.
Xenobiotica ; 53(6-7): 507-514, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37753851

RESUMO

1. ABCB1 (P-glycoprotein, MDR1) is one of the most important transporter involved in cancer multi-drug resistance. It also plays a significant role in cancer resistance against anthracyclines, an anticancer group of drugs, including doxorubicin and daunorubicin. Several intracellular enzymes metabolise anthracyclines to carbonyl-reduced, hydroxy metabolites, which have impaired cytotoxic properties. However, metabolite efflux by ABCB1 transporter is not well characterised, while it may be the mechanism responsible for the metabolites' lack of activity.2. In this study recombinant ABCB1 ATPase transporter assay; anthracyclines accumulation assay in resistant cells overexpressing ABCB1; and molecular modelling were used to investigate anthracyclines: doxorubicin and daunorubicin and their carbonyl-reduced metabolites (doxorubicinol, daunorubicinol) susceptibility for ABCB1-dependent efflux.3. Based on the kinetics parameters of ATPase activity of ABCB1, it was found that daunorubicinol exerted an exceptionally high potential for being effluxed by the ABCB1 transporter. ABCB1 significantly affected the accumulation pattern of studied chemicals in resistant cancer cells. Doxorubicin and daunorubicinol accumulation were influenced by the activity of ABCB1 modulator - valspodar.4. Results indicate that ABCB1 activity affects not only anthracyclines but also their metabolites. Therefore crosstalk between the process of anthracyclines metabolism and metabolite efflux may be the mechanism of impairing anticancer properties of anthracyclines metabolites.


Assuntos
Antraciclinas , Neoplasias , Humanos , Adenosina Trifosfatases/metabolismo , Antraciclinas/farmacologia , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Linhagem Celular Tumoral , Daunorrubicina/farmacologia , Doxorrubicina/farmacologia
4.
Molecules ; 28(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175180

RESUMO

Anthracycline antibiotics (ANT) are among the most widely used anticancer drugs. Unfortunately, their use is limited due to the development of drug resistance and cardiotoxicity. ANT metabolism, performed mainly by two enzymes-aldo-keto reductase 1C3 (AKR1C3) and carbonyl reductase 1 (CBR1)-is one of the proposed mechanisms generated by the described effects. In this study, we evaluated the CBR1 inhibitory properties of ASP9521, a compound already known as potent AKR1C3 inhibitor. First, we assessed the possibility of ASP9521 binding to the CBR1 catalytic site using molecular docking and molecular dynamics. The research revealed a potential binding mode of ASP9521. Moderate inhibitory activity against CBR1 was observed in studies with recombinant enzymes. Finally, we examined whether ASP9521 can improve the cytotoxic activity of daunorubicin against human lung carcinoma cell line A549 and assessed the cardioprotective properties of ASP9521 in a rat cardiomyocytes model (H9c2) against doxorubicin- and daunorubicin-induced toxicity. The addition of ASP9521 ameliorated the cytotoxic activity of daunorubicin and protected rat cardiomyocytes from the cytotoxic effect of both applied drugs. Considering the favorable bioavailability and safety profile of ASP9521, the obtained results encourage further research. Inhibition of both AKR1C3 and CBR1 may be a promising method of overcoming ANT resistance and cardiotoxicity.


Assuntos
Antineoplásicos , Carbonil Redutase (NADPH) , Humanos , Ratos , Animais , Simulação de Acoplamento Molecular , Cardiotoxicidade , Antraciclinas/farmacologia , Antraciclinas/metabolismo , Antibióticos Antineoplásicos/farmacologia , Daunorrubicina/farmacologia , Antineoplásicos/farmacologia , Antibacterianos
5.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012707

RESUMO

Neurodegeneration leading to Alzheimer's disease results from a complex interplay of a variety of processes including misfolding and aggregation of amyloid beta and tau proteins, neuroinflammation or oxidative stress. Therefore, to address more than one of these, drug discovery programmes focus on the development of multifunctional ligands, preferably with disease-modifying and symptoms-reducing potential. Following this idea, herein we present the design and synthesis of multifunctional ligands and biological evaluation of their 5-HT6 receptor affinity (radioligand binding assay), cholinesterase inhibitory activity (spectroscopic Ellman's assay), antioxidant activity (ABTS assay) and metal-chelating properties, as well as a preliminary ADMET properties evaluation. Based on the results we selected compound 14 as a well-balanced and potent 5-HT6 receptor ligand (Ki = 22 nM) and human BuChE inhibitor (IC50 = 16 nM) with antioxidant potential expressed as a reduction of ABTS radicals by 35% (150 µM). The study also revealed additional metal-chelating properties of compounds 15 and 18. The presented compounds modulating Alzheimer's disease-related processes might be further developed as multifunctional ligands against the disease.


Assuntos
Doença de Alzheimer , Inibidores da Colinesterase , Acetilcolinesterase/metabolismo , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Antioxidantes/química , Antioxidantes/farmacologia , Butirilcolinesterase/metabolismo , Quelantes/química , Quelantes/farmacologia , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Humanos , Ligantes , Receptores de Serotonina/metabolismo , Serotonina , Relação Estrutura-Atividade
6.
Molecules ; 27(10)2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35630553

RESUMO

TRPA1 is a transmembrane cation channel, one of the most promising targets in the context of respiratory diseases. Its general structure has already been experimentally resolved, but the binding site of TRPA1 antagonists such as HC-030031, a model methylxanthine derivative, remains unknown. The present study aimed to determine the potential binding site of xanthine antagonists and to describe their binding mode, using a molecular modeling approach. This study represents the first attempt to bring together site-directed mutagenesis reports and the latest cryo-EM structure of an antagonist bound to TRPA1. Our research suggests that the core moiety of HC-030031 binds to a pocket formed by the TRP-like domain and the pre-S1, S4, S5 helices of one subunit. The structure, determined by cryo-EM, shows interactions of a core hypoxanthine moiety in the same area of the binding site, sharing the interaction of xanthine/hypoxanthine with Trp-711. Moreover, the predicted binding mode of HC-030031 assumes interaction with Asn-855, a residue demonstrated to be important for HC-030031 recognition in site-directed mutagenesis studies. Our model proved to be advantageous in a retrospective virtual screening benchmark; therefore, it will be useful in research on new TRPA1 antagonists among xanthine derivatives and their bioisosteres.


Assuntos
Canais de Cálcio , Xantinas , Sítios de Ligação , Canais de Cálcio/metabolismo , Hipoxantinas , Estudos Retrospectivos , Canal de Cátion TRPA1/genética , Canal de Cátion TRPA1/metabolismo
7.
Molecules ; 25(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854402

RESUMO

In this study, a series of compounds derived from 4-methoxy-1H-isoindole-1,3(2H)-dione, potential ligands of phosphodiesterase 10A and serotonin receptors, were investigated as potential antipsychotics. A library of 4-methoxy-1H-isoindole-1,3(2H)-dione derivatives with various amine moieties was synthesized and examined for their phosphodiesterase 10A (PDE10A)-inhibiting properties and their 5-HT1A and 5-HT7 receptor affinities. Based on in vitro studies, the most potent compound, 18 (2-[4-(1H-benzimidazol-2-yl)butyl]-4-methoxy-1H-isoindole-1,3(2H)-dione), was selected and its safety in vitro was evaluated. In order to explain the binding mode of compound 18 in the active site of the PDE10A enzyme and describe the molecular interactions responsible for its inhibition, computer-aided docking studies were performed. The potential antipsychotic properties of compound 18 in a behavioral model of schizophrenia were also investigated.


Assuntos
Antipsicóticos , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/química , Receptor 5-HT1A de Serotonina/química , Receptores de Serotonina/química , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Células Hep G2 , Humanos , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Relação Estrutura-Atividade
8.
Bioorg Med Chem ; 27(18): 4163-4173, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31383628

RESUMO

On the basis of the structures of serotonin modulators or drugs (NAN-190, buspirone, aripiprazole) and phosphodiesterase 4 (PDE4) inhibitors (rolipram, RO-20-1724), a series of novel multitarget 5-arylidenehydantoin derivatives with arylpiperazine fragment was synthesized. Among these compounds, 5-(3,4-dimethoxybenzylidene-3-(4-(4-(2,3-dichlorophenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (13) and 5-(3-cyclopentyloxy-4-methoxybenzylidene-3-(4-(4-(2-methoxyphenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (18) were found to be the most promising showing very high affinity toward 5-HT1A and 5-HT7 receptors (Ki = 0.2-1.0 nM) but a negligible inhibitory effect on PDE4. The high affinity of the compounds for 5-HT1A and 5-HT7 receptors was further investigated by computer-aided studies. Moreover, compounds 13 and 18 showed no significant cytotoxicity in the MTT assay, but high clearance in the in vitro assay. In addition, these compounds behaved like 5-HT1A and 5-HT7 receptor antagonists and exhibited antidepressant-like activity, similar to the reference drug citalopram, in an animal model of depression.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Receptores de Serotonina/metabolismo , Animais , Antidepressivos/farmacologia , Modelos Animais de Doenças , Humanos , Relação Estrutura-Atividade
9.
Arch Pharm (Weinheim) ; 352(7): e1900041, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31162703

RESUMO

Serotonin 5-HT6 receptors, butyrylcholinesterase (BuChE) and oxidative stress are related to the pathophysiology of Alzheimer's disease. Inhibition of BuChE provides symptomatic treatment of the disease and the same effect was demonstrated for 5-HT 6 antagonists in clinical trials. Oxidative stress is regarded as a major and primary factor contributing to the development of Alzheimer's disease; therefore, antioxidant agents may provide a disease-modifying effect. Combining BuChE inhibition, 5-HT 6 antagonism, and antioxidant properties may result in multitarget-directed ligands providing cognition-enhancing properties with neuroprotective activity. On the basis of the screening of the library of 5-HT 6 antagonists against BuChE, we selected two compounds and designed their structural modifications that could lead to improved BuChE inhibitory activity. We synthesized two series of compounds and tested their affinity and functional activity at 5-HT 6 receptors, BuChE inhibitory activity and antioxidant properties. Compound 12 with K i and K b values against 5-HT 6 receptors of 41.8 and 74 nM, respectively, an IC 50 value of 5 µM against BuChE and antioxidant properties exceeding the activity of ascorbic acid is a promising lead structure for further development of anti-Alzheimer's agents.


Assuntos
Antioxidantes/farmacologia , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/farmacologia , Receptores de Serotonina/metabolismo , Antagonistas da Serotonina/farmacologia , Animais , Antioxidantes/síntese química , Antioxidantes/química , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Electrophorus , Cavalos , Humanos , Modelos Moleculares , Estrutura Molecular , Estresse Oxidativo/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/química , Triazinas/antagonistas & inibidores
10.
Bioorg Med Chem Lett ; 28(11): 2039-2049, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730027

RESUMO

Aim of the study was evaluation of anxiolytic, antidepressant, anticonvulsant and analgesic activity in a series of a consistent group of compounds. A series of eleven new N-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives has been obtained. Their affinity towards 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, D2 and α1 receptors has been assessed, and then functional assays were performed. The compounds were evaluated in mice, i.p. for their antidepressant-like (forced swim test), locomotor, anxiolytic-like (four-plate test) activities as well as - at higher doses - for anticonvulsant potential (MES) and neurotoxicity (rotarod). Two compounds (3, 6) were also evaluated for their analgesic activity in neuropathic pain models (streptozocin test, oxaliplatin test) and they were found active against allodynia in diabetic neuropathic pain at 30 mg/kg. Among the compounds, anxiolytic-like, anticonvulsant or analgesic activity was observed but antidepressant-like activity was not. One of the two most interesting compounds is 1-{2-[2-(2,4,6-trimethylphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazine dihydrochloride (9), exhibiting anxiolytic and anticonvulsant activity in mice, i.p. 30 min after administration (at 2.5 mg/kg and ED50 = 26.33 mg/kg, respectively), which can be justified by the receptor profile: 5-HT1A Ki = 5 nM (antagonist), 5-HT7 Ki = 70 nM, α1 Ki = 15 nM, D2 Ki = 189 nM (antagonist). Another interesting compound is 1-[3-(2,4,6-trimethylphenoxy)propyl]-4-(4-methoxyphenyl)piperazine dihydrochloride (3), exhibiting anxiolytic, anticonvulsant and antiallodynic activity in mice, i.p., 30 min after administration (at 10 mg/kg, ED50 = 23.50 mg/kg, at 30 mg/kg, respectively), which can be related with 5-HT1A weak antagonism (Ki = 146 nM), or other possible mechanism of action, not evaluated within presented study. Additionally, for the most active compound in the four-plate test (7), molecular modeling was performed (docking to receptors 5-HT1A, 5-HT2A, 5-HT7, D2 and α1A).


Assuntos
Anticonvulsivantes/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Piperazina/farmacologia , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/química , Sistema Nervoso Central/metabolismo , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Camundongos , Modelos Moleculares , Estrutura Molecular , Piperazina/administração & dosagem , Piperazina/química , Agonistas do Receptor de Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/química , Relação Estrutura-Atividade
11.
Metab Brain Dis ; 33(3): 733-740, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29297106

RESUMO

Obesity, from early childhood onwards, is a common societal problem. The overconsumption of sweet, salty and high-fat products are the main factors that cause excessive weight gain. It is therefore necessary to search for new drugs that affect satiety centers and reduce the sense of hunger and caloric intake. It has been suggested that the blockade of 5-HT6 receptors may reduce food intake, and since idalopirdine is a clinically tested, selective 5HT6 receptor antagonist, it was chosen to be examined in animal models of obesity. The activity of idalopirdine was measured in the rat model of excessive eating. Animals were on a high caloric diet that consisted of milk chocolate with nuts, cheese, salted peanuts and condensed milk. During a four-week experiment, the rats had constant access to standard feed and water ad libitum. Idalopirdine was administered intraperitoneally at a dose 5 mg/kg b.w./day. To establish whether idalopirdine would effectively suppress the rebound hyperphagia that accompanies refeeding, it was administered after a 20 h food deprivation period. Pica behavior was evaluated after the administration of idalopirdine to confirm that the suppression of food intake was not caused by visceral illness. The effect of the four-week treatment with idalopirdine on the amount of peritoneal adipose tissue, and on lipid and carbohydrate profiles in rats was also examined. The statistical significance was calculated using the one-way ANOVA post-hoc Tukey Multiple Comparison Test or the two-way ANOVA post-hoc Bonferroni Multiple Comparison Test. Idalopirdine significantly reduced caloric intake and prevented the development of obesity in tested animals. Rats, that received idalopirdine, had a smaller amount of adipose tissue in the peritoneum as well as lower glucose, triglyceride and cholesterol levels in comparison to the control group. Moreover, an anorectic action was not caused by abnormalities of the gastrointestinal tract, such as nausea. The obtained results indicate that idalopirdine reduces caloric intake and could be considered for further tests as a potential treatment of obesity.


Assuntos
Benzilaminas/farmacologia , Peso Corporal/efeitos dos fármacos , Ingestão de Alimentos/efeitos dos fármacos , Indóis/farmacologia , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/farmacologia , Animais , Dieta , Ingestão de Energia/efeitos dos fármacos , Masculino , Obesidade/tratamento farmacológico , Ratos Wistar , Aumento de Peso/efeitos dos fármacos
12.
J Enzyme Inhib Med Chem ; 33(1): 536-545, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29482394

RESUMO

Despite the substantial clinical success of aspirin and clopidogrel in secondary prevention of ischemic stroke, up to 40% of patients remain resistant to the available antiplatelet treatment. Therefore, there is an urgent clinical need to develop novel antiplatelet agents with a novel mechanism of action. Recent studies revealed that potent alpha 2B-adrenergic receptor (alpha 2B-ARs) antagonists could constitute alternative antiplatelet therapy. We have synthesized a series of N-arylpiperazine derivatives of 4,4-dimethylisoquinoline-1,3(2H,4H)-dione as potential alpha 2B receptor antagonists. The most potent compound 3, effectively inhibited the platelet-aggregation induced both by collagen and ADP/adrenaline with IC50 of 26.9 µM and 20.5 µM respectively. Our study confirmed that the alpha 2B-AR antagonists remain an interesting target for the development of novel antiplatelet agents with an alternative mechanism of action.


Assuntos
Isoquinolinas/farmacologia , Piperazinas/farmacologia , Inibidores da Agregação Plaquetária/farmacologia , Receptores Adrenérgicos alfa 2/metabolismo , Relação Dose-Resposta a Droga , Humanos , Isoquinolinas/síntese química , Isoquinolinas/química , Modelos Moleculares , Estrutura Molecular , Piperazina , Piperazinas/síntese química , Piperazinas/química , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/síntese química , Inibidores da Agregação Plaquetária/química , Testes de Função Plaquetária , Relação Estrutura-Atividade
13.
Invest New Drugs ; 35(3): 375-385, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28283780

RESUMO

Anthracycline antibiotics (ANT), such as doxorubicin or daunorubicin, are a class of anticancer drugs that are widely used in oncology. Although highly effective in cancer therapy, their usefulness is greatly limited by their cardiotoxicity. Possible mechanisms of ANT cardiotoxicity include their conversion to secondary alcohol metabolites (i.e. doxorubicinol, daunorubicinol) catalyzed by carbonyl reductases (CBR) and aldo-keto reductases (AKR). These metabolites are suspected to be more cardiotoxic than their parent compounds. Moreover, overexpression of ANT-reducing enzymes (CBR and AKR) are found in many ANT-resistant cancers. The secondary metabolites show decreased cytotoxic properties and are more susceptible to ABC-mediated efflux than their parent compounds; thus, metabolite formation is considered one of the mechanisms of cancer resistance. Inhibitors of CBR and AKR were found to reduce the cardiotoxicity of ANT and the resistance of cancer cells, and therefore are being investigated as prospective cardioprotective and chemosensitizing drug candidates. In this review, the significance of a two-electron reduction of ANT, including daunorubicin, epirubicin, idarubicin, valrubicin, amrubicin, aclarubicin, and especially doxorubicin, is described with respect to toxicity and efficacy of therapy. Additionally, CBR and AKR inhibitors, including monoHER, curcumin, (-)-epigallocatechin gallate, resveratrol, berberine or pixantrone, and their modulating effect on the activity of ANT is characterized and discussed as potential mechanism of action for novel therapeutics in cancer treatment.


Assuntos
Aldo-Ceto Redutases/antagonistas & inibidores , Antraciclinas/efeitos adversos , Antibióticos Antineoplásicos/efeitos adversos , Carbonil Redutase (NADPH)/antagonistas & inibidores , Cardiotônicos/farmacologia , Cardiotoxicidade/prevenção & controle , Animais , Antraciclinas/farmacocinética , Antibióticos Antineoplásicos/farmacocinética , Cardiotoxicidade/etiologia , Resistencia a Medicamentos Antineoplásicos , Humanos
14.
J Enzyme Inhib Med Chem ; 31(sup3): 10-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27353547

RESUMO

A series of 2-fluoro and 3-trifluoromethylphenylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (4-21) were synthesized and evaluated for their serotonin (5-HT1A/5-HT7) receptor affinity and phosphodiesterase (PDE4B and PDE10A) inhibitor activity. The study enabled the identification of potent 5-HT1A, 5-HT7 and mixed 5-HT1A/5-HT7 receptor ligands with weak inhibitory potencies for PDE4B and PDE10A. The tests have been completed with the determination of lipophilicity and metabolic stability using micellar electrokinetic chromatography (MEKC) system and human liver microsomes (HLM) model. In preliminary pharmacological in vivo studies, selected compound 8-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyl)-1,3,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (9) behaved as a potential antidepressant in forced swim test (FST) in mice. Moreover, potency of antianxiety effects evoked by 9 (2.5 mg/kg) is greater than that of the reference anxiolytic drug, diazepam. Molecular modeling revealed that fluorinated arylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione have major significance for the provision of lead compounds for antidepressant and/or anxiolytic application.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Imidazóis/farmacologia , Atividade Motora/efeitos dos fármacos , Purinonas/farmacologia , Animais , Ansiolíticos/síntese química , Ansiolíticos/química , Antidepressivos/síntese química , Antidepressivos/química , Cromatografia Capilar Eletrocinética Micelar , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Diester Fosfórico Hidrolases/metabolismo , Purinonas/síntese química , Purinonas/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Relação Estrutura-Atividade , Natação
15.
J Enzyme Inhib Med Chem ; 31(6): 1048-62, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26406608

RESUMO

A series of new 7-arylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 8-amino substituent in 8 position was synthesized and their 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, and D2 receptor affinities were determined. The binding study allowed identifying some potent 5-HT1A/5-HT2A/5-HT7/D2 ligands. The most interesting because of their multireceptor profile were 8-piperidine (30-35) and 8-dipropylamine (45-47) analogs with four and five carbon aliphatic linkers. The selected compounds 24, 31, 34, 39, 41, 43, 45, and 46 in the functional in vitro evaluation for all targeted receptors showed significant partial D2 agonist, partial 5-HT1A agonist, and 5-HT2A antagonist properties. The advantageous in vitro affinity of compound 34 for 5-HT1A and D2 receptors has been explained by means of molecular modeling, taking into consideration its partial agonist activity towards the latter one. In behavioral studies, compounds 32 and 34 revealed antipsychotic-like properties, significantly decreasing d-amphetamine-induced hyperactivity in mice.


Assuntos
Antipsicóticos/farmacologia , Piperazinas/química , Purinas/química , Receptores de Serotonina/efeitos dos fármacos , Cromatografia Líquida , Espectroscopia de Prótons por Ressonância Magnética
16.
Arch Pharm (Weinheim) ; 349(12): 889-903, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27869315

RESUMO

In the search for potential psychotropic agents, a new series of 3,7-dimethyl- and 1,3-dimethyl-8-alkoxypurine-2,6-dione derivatives of arylpiperazines, perhydroisoquinolines, or tetrahydroisoquinolines with flexible alkylene spacers (5-16 and 21-32) were synthesized and evaluated for 5-HT1A /5-HT7 receptor affinities as well as PDE4B1 and PDE10A inhibitory properties. The 1-(4-(4-(2-hydroxyphenyl)piperazin-1-yl)butyl)-3,7-dimethyl-8-propoxypurine-2,6-dione (16) and 7-(2-hydroxyphenyl)piperazinylalkyl-1,3-dimethyl-8-ethoxypurine-2,6-diones (31 and 32) as potent dual 5-HT1A /5-HT7 receptor ligands with antagonistic activity produced an antidepressant-like effect in the forced swim test in mice. This effect was similar to that produced by citalopram. All the tested compounds were stronger phosphodiesterase isoenzyme inhibitors than theophylline and theobromine. The most potent compounds, 15 and 16, were characterized by 51 and 52% inhibition, respectively, of PDE4B1 activity at a concentration of 10-5 M. Concerning the above findings, it may be assumed that the inhibition of PDE4B1 may impact on the signal strength and specificity resulting from antagonism toward the 5-HT1 and 5-HT7 receptors, especially in the case of compounds 15 and 16. This dual receptor and enzyme binding mode was analyzed and explained via molecular modeling studies.


Assuntos
Antidepressivos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/síntese química , Piperazinas/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Animais , Antidepressivos/síntese química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Resposta de Imobilidade Tônica/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Masculino , Camundongos , Modelos Moleculares , Inibidores de Fosfodiesterase/síntese química , Diester Fosfórico Hidrolases/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Agonistas do Receptor de Serotonina/síntese química , Relação Estrutura-Atividade , Teobromina/farmacologia , Teofilina/farmacologia
17.
Arch Pharm (Weinheim) ; 349(3): 211-23, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26853441

RESUMO

ß-Adrenergic receptor antagonists are important therapeutics for the treatment of cardiovascular disorders. In the group of ß-blockers, much attention is being paid to the third-generation drugs that possess important ancillary properties besides inhibiting ß-adrenoceptors. Vasodilating activity of these drugs is produced through different mechanisms, such as nitric oxide (NO) release, ß2 -agonistic action, α1 -blockade, antioxidant action, and Ca(2+) entry blockade. Here, a study on evaluation of the cardiovascular activity of five new compounds is presented. Compound 3a is a methyl and four of the tested compounds (3b-e) are dimethoxy derivatives of 1-(1H-indol-4-yloxy)-3-(2-(2-methoxyphenoxy)ethylamino)propan-2-ol. The obtained results confirmed that the methyl and dimethoxy derivatives of 1-(1H-indol-4-yloxy)-3-(2-(2-methoxyphenoxy)ethylamino)propan-2-ol and their enantiomers possess α1 - and ß1 -adrenolytic activities and that the antiarrhythmic and hypotensive effects of the tested compounds are related to their adrenolytic properties.


Assuntos
Antiarrítmicos/química , Anti-Hipertensivos/química , Etilaminas/química , Indóis/química , Propanóis/química , Vasodilatadores/química , Animais , Antiarrítmicos/síntese química , Antiarrítmicos/farmacologia , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Etilaminas/síntese química , Etilaminas/farmacologia , Indóis/síntese química , Indóis/farmacologia , Modelos Moleculares , Propanóis/síntese química , Propanóis/farmacologia , Ensaio Radioligante , Ratos , Receptores Adrenérgicos alfa 1/química , Receptores Adrenérgicos alfa 1/metabolismo , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/metabolismo , Estereoisomerismo , Relação Estrutura-Atividade , Vasodilatadores/síntese química , Vasodilatadores/farmacologia
18.
Acta Pol Pharm ; 73(6): 1545-1554, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29634109

RESUMO

A series of new arylpiperazinylpropyl derivatives of 8/6-phenyl-1,3-diazaspiro[4.5]decan-2,4-dione and spiro[imidazolidine-4,1'-indene/naphthalene]-2,5-dione was synthesized and their affinity was evaluated toward serotonin 5-HTIA, 5-HT2A, 5-HT7 receptors, dopaminergic D2, D3 receptors, adrenergic ox, receptors, and serotonin transporter (SERT). The highest affinity for serotonin 5-HT1A/2A/7 receptors was found for compounds containing a tetralin or indane moiety in the imide part. Among these, two compounds (19, 20) were selected for further pharmacological in vivo studies. A binding mode of representative molecule 19, which behaved as a 5-HT1A agonist and weak 5-HT7 antagonist in the site of 5-HT 1A/7, was also analyzed in computational stud- ies. Moreover, two highly selective (9 and HI) 5-HT2A receptor antagonists were obtained.


Assuntos
Hidantoínas/farmacologia , Modelos Moleculares , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Hidantoínas/síntese química , Hidantoínas/química , Antagonistas da Serotonina/síntese química , Antagonistas da Serotonina/química , Agonistas do Receptor de Serotonina/síntese química , Agonistas do Receptor de Serotonina/química , Relação Estrutura-Atividade
19.
Bioorg Med Chem ; 23(1): 212-21, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25435254

RESUMO

Continuing our earlier study in a group of purine-2,6-dione derivatives of long chain arylpiperazines (LCAPs), a series of 8-unsubstituted 7-phenylpiperazin-4-yl-alkyl (4-14) and 7-tetrahydroisoquinolinyl-alkyl (15-17) analogues were synthesized and their serotonin 5-HT1A, 5-HT2A, 5-HT6, 5-HT7 and dopamine D2 receptor affinities were determined. The study allowed us to identify some potent 5-HT1A receptor ligands with additional moderate affinity for 5-HT2A, 5-HT7 and dopamine D2 receptors. Compounds 9, 12, 13 and 14, with the highest 5HT1A receptor affinity, were selected for further functional in vivo studies and behavioural evaluation of antidepressant- and antianxiety-like activity. Compounds 9, 12 and 13 showed features of agonists of pre- and/or post-synaptic 5-HT1A receptors, whereas 14 was classified as an antagonist of postsynaptic sites. Moreover, derivatives 9 and 14 acted as antagonists of 5-HT2A receptors. In behavioural studies, compounds 9 and 13 showed antidepressant-like activity in the mouse forced swim test, and their effects were similar or stronger than those of imipramine. Compounds 9, 12 and 14 displayed potential anxiolytic-like properties in the mouse four-plate test, similar or even greater than those of the reference anxiolytic drug, diazepam.


Assuntos
Ansiolíticos/química , Antidepressivos/química , Purinas/química , Purinas/farmacologia , Receptor 5-HT1A de Serotonina/química , Animais , Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Camundongos , Relação Estrutura-Atividade
20.
Bioorg Med Chem ; 23(13): 3436-47, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25936259

RESUMO

A series of novel spirohydantoin derivatives with arylpiperazinylbutyl moiety were synthesized and evaluated for serotonin 5-HT1A, 5-HT2A, 5-HT7 and dopamine D2 receptors. Based on these data, four compounds were selected for further binding affinity assays on dopamine D1, D3, D4, and 5-HT2C, 5-HT6 as well as adrenergic α1 and α2C receptors, which are involved in various CNS diseases such as schizophrenia, anxiety and/or depression. The compound 14, 1-{4-[4-(2-metoxyphe-nyl)piperazin-1-yl]butyl}-3',4'-dihydro-2H,2'H,5H-spiro[imidazolidine-4,1'-naphthalene]-2,5-dione, with the most promising functional profile, mixed 5-HT2A/D2 antagonist and 5-HT1A partial agonist, was selected. In the mouse d-amphetamine-induced locomotor hyperactivity model, compound 14 produced antipsychotic-like activity, which is devoid of cataleptogenic effects and in the forced swim test in mice, it showed a significant antidepressant-like effect unlike the reference drug aripiprazole.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Antipsicóticos/farmacologia , Hidantoínas/farmacologia , Imidazolidinas/farmacologia , Piperazinas/farmacologia , Animais , Ansiolíticos/síntese química , Antidepressivos/síntese química , Antipsicóticos/síntese química , Ansiedade/tratamento farmacológico , Ansiedade/fisiopatologia , Aripiprazol/farmacologia , Depressão/tratamento farmacológico , Depressão/fisiopatologia , Dextroanfetamina , Hidantoínas/síntese química , Hipercinese/induzido quimicamente , Hipercinese/tratamento farmacológico , Hipercinese/fisiopatologia , Imidazolidinas/síntese química , Masculino , Camundongos , Piperazinas/síntese química , Receptor 5-HT1A de Serotonina/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/química , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Dopamina D2/química , Receptores de Dopamina D2/metabolismo , Receptores de Serotonina/química , Receptores de Serotonina/metabolismo , Relação Estrutura-Atividade , Natação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA