Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Small ; : e2400531, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742980

RESUMO

A new generation of an FFP2 (Filtering Face Piece of type 2) smart face mask is achieved by integrating broadband hybrid nanomaterials and a self-assembled optical metasurface. The multifunctional FFP2 face mask shows simultaneously white light-assisted on-demand disinfection properties and versatile biosensing capabilities. These properties are achieved by a powerful combination of white light thermoplasmonic responsive hybrid nanomaterials, which provide excellent photo-thermal disinfection properties, and optical metasurface-based colorimetric biosensors, with a very low limit of pathogens detection. The realized system is studied in optical, morphological, spectroscopic, and cell viability assay experiments and environmental monitoring of harmful pathogens, thus highlighting the extraordinary properties in reusability and pathogens detection of the innovative face mask.

2.
Environ Res ; 244: 117936, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109963

RESUMO

The presence of plastic fragments in aquatic environments, particularly at the micro- and nano-scale, has become a significant global concern. However, current detection methods are limited in their ability to reveal the presence of such particles in liquid samples. In this study, we propose the use of a fluorescence lifetime analysis system for the detection of micro- and nanoplastics in water. This approach relies on the inherent endogenous fluorescence of plastic materials and involves the collection of single photons emitted by plastic fragments upon exposure to a pulsed laser beam. Briefly, a pulsed laser beam (repetition frequency = 40 MHz) shines onto a sample solution, and the emitted light is filtered, collected, and used to trace the time distributions of the photons with high temporal resolution. Finally, the fluorescence lifetime was measured using fitting procedures and a phasor analysis. Phasor analysis is a fit-free method that allows the measurement of the fluorescence lifetime of a sample without any assumptions or prior knowledge of the sample decay pattern. The developed instrument was tested using fluorescence references and validated using unlabelled micro- and nano-scale particles. Our system successfully detected polystyrene particles in water, achieving a remarkable sensitivity with a detection limit of 0.01 mg/mL, without the need for sample pre-treatment or visual inspection. Although further studies are necessary to enhance the detection limit of the technique and distinguish between different plastic materials, this proof-of-concept study suggests the potential of the fluorescence lifetime-based approach as a rapid, robust, and cost-effective method for early warning detection and identification of plastic contaminants in aquatic environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Água , Fluorescência , Poluentes Químicos da Água/análise , Poliestirenos/análise , Plásticos/análise
3.
Mol Pharm ; 20(11): 5247-5253, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37782816

RESUMO

The integration of the lipid nanoparticle (LNP)-protein corona as a pioneering approach for the development of vaccines against the present and future SARS-CoV-2 variants of concern marks a significant shift in the field. This concept holds great promise, offering a universal platform that can be adaptable to combat future pandemics caused by unknown viruses. Understanding the complex interactions among the protein corona, LNPs, and receptors is crucial for harnessing its potential. This knowledge will allow optimal vaccine formulations and improve their effectiveness. Safety assessments are essential to ensure suitability for human use, compliance with regulatory standards, and rigorous quality control in manufacturing. This transformative workflow requires collaborative efforts, expanding our foundational knowledge and translating advancements from the laboratory to clinical reality. The LNP-protein corona approach represents a paradigmatic shift with far-reaching implications. Its principles and insights can be leveraged beyond specific applications against SARS-CoV-2, enabling a universal platform for addressing viral threats, cancer, and genetic diseases.


Assuntos
Coroa de Proteína , Vacinas , Humanos , Lipossomos , Pandemias/prevenção & controle
4.
J Nanobiotechnology ; 21(1): 267, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568181

RESUMO

Graphene-based nanomaterials have attracted significant attention in the field of nanomedicine due to their unique atomic arrangement which allows for manifold applications. However, their inherent high hydrophobicity poses challenges in biological systems, thereby limiting their usage in biomedical areas. To address this limitation, one approach involves introducing oxygen functional groups on graphene surfaces, resulting in the formation of graphene oxide (GO). This modification enables improved dispersion, enhanced stability, reduced toxicity, and tunable surface properties. In this review, we aim to explore the interactions between GO and the biological fluids in the context of theranostics, shedding light on the formation of the "protein corona" (PC) i.e., the protein-enriched layer that formed around nanosystems when exposed to blood. The presence of the PC alters the surface properties and biological identity of GO, thus influencing its behavior and performance in various applications. By investigating this phenomenon, we gain insights into the bio-nano interactions that occur and their biological implications for different intents such as nucleic acid and drug delivery, active cell targeting, and modulation of cell signalling pathways. Additionally, we discuss diagnostic applications utilizing biocoronated GO and personalized PC analysis, with a particular focus on the detection of cancer biomarkers. By exploring these cutting-edge advancements, this comprehensive review provides valuable insights into the rapidly evolving field of GO-based nanomedicine for theranostic applications.


Assuntos
Grafite , Coroa de Proteína , Medicina de Precisão , Nanomedicina/métodos
5.
Nanomedicine ; 53: 102697, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507061

RESUMO

PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , DNA , Polietilenoglicóis/química , RNA Interferente Pequeno
6.
Int J Mol Sci ; 24(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37298418

RESUMO

Natural Killer (NK) cells are innate cytotoxic lymphoid cells that play a crucial role in cancer immunosurveillance. NKG2D is an activating receptor that binds to MIC and ULBP molecules typically induced on damaged, transformed, or infected cells. The secretion of NKG2D ligands (NKG2DLs) through protease-mediated cleavage or in an extracellular vesicle (EV) is a mode to control their cell surface expression and a mechanism used by cancer cells to evade NKG2D-mediated immunosurveillance. EVs are emerging as important players in mediating cell-to-cell communication due to their ability to transfer biological material to acceptor cells. Herein, we investigated the spreading of NKG2DLs of both MIC and ULBP molecules through the EV-mediated cross-dressing on multiple myeloma (MM) cells. We focused our attention on two MICA allelic variants, namely MICA*008 and MICA*019, representing the prototype of short and long MICA alleles, respectively, and on ULBP-1, ULBP-2, and ULBP-3. Our findings demonstrate that both ULBP and MICA ligands can be acquired from tumor cells through EVs enhancing NK cell recognition and killing. Moreover, besides MICA, EVs expressing ULBP-1 but not ULBP-2 and 3 were detected in bone marrow aspirates derived from a cohort of MM patients. Our findings shed light on the role of EV-associated MICA allelic variants and ULBP molecules in the modulation of NKG2D-mediated NK cell immunosurveillance in the tumor microenvironment. Moreover, the EV-mediated transfer of NKG2DLs could suggest novel therapeutic approaches based on the usage of engineered nanoparticles aimed at increasing cancer cell immunogenicity.


Assuntos
Vesículas Extracelulares , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/metabolismo , Ligantes , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Antígenos de Histocompatibilidade Classe I/metabolismo , Células Matadoras Naturais , Vesículas Extracelulares/metabolismo , Morte Celular , Bandagens , Microambiente Tumoral
7.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047835

RESUMO

The success of senescence-based anticancer therapies relies on their anti-proliferative power and on their ability to trigger anti-tumor immune responses. Indeed, genotoxic drug-induced senescence increases the expression of NK cell-activating ligands on multiple myeloma (MM) cells, boosting NK cell recognition and effector functions. Senescent cells undergo morphological change and context-dependent functional diversification, acquiring the ability to secrete a vast pool of molecules termed the senescence-associated secretory phenotype (SASP), which affects neighboring cells. Recently, exosomes have been recognized as SASP factors, contributing to modulating a variety of cell functions. In particular, evidence suggests a key role for exosomal microRNAs in influencing many hallmarks of cancer. Herein, we demonstrate that doxorubicin treatment of MM cells leads to the enrichment of miR-433 into exosomes, which in turn induces bystander senescence. Our analysis reveals that the establishment of the senescent phenotype on neighboring MM cells is p53- and p21-independent and is related to CDK-6 down-regulation. Notably, miR-433-dependent senescence does not induce the up-regulation of activating ligands on MM cells. Altogether, our findings highlight the possibility of miR-433-enriched exosomes to reinforce doxorubicin-mediated cellular senescence.


Assuntos
Antibióticos Antineoplásicos , Efeito Espectador , Senescência Celular , Doxorrubicina , Exossomos , MicroRNAs , Mieloma Múltiplo , Inibidores da Topoisomerase II , Senescência Celular/efeitos dos fármacos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Antibióticos Antineoplásicos/farmacologia , Antibióticos Antineoplásicos/uso terapêutico , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/uso terapêutico , Humanos , Linhagem Celular Tumoral , Exossomos/efeitos dos fármacos , Exossomos/metabolismo , Dano ao DNA , MicroRNAs/genética , MicroRNAs/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo
8.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142503

RESUMO

In recent years nanotechnology has opened exciting opportunities in the struggle against cancer. In 2007 Dawson and coworkers demonstrated that nanomaterials exposed to biological fluids are coated with plasma proteins that form the so-called "protein corona". A few years later our joint research team made of physicists, chemists, biotechnologists, surgeons, oncologists, and bioinformaticians introduced the concept of "personalized protein corona" and demonstrated that it is unique for each human condition. This concept paved the way for the development of nano-enabled blood (NEB) tests for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). These studies gave an impetus to serious work in the field that came to maturity in the late 2010s. In this special issue, we provide the reader with a comprehensive overview of the most significant discoveries of our research team in the field of PDAC detection. We focus on the main achievements with an emphasis on the fundamental aspects of this arena and how they shaped the integration of different scientific backgrounds towards the development of advanced diagnostic technologies. We conclude the review by outlining future perspectives and opportunities to transform the NEB tests into a reliable clinical diagnostic technology for early diagnosis, follow-up, and management of PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Coroa de Proteína , Carcinoma Ductal Pancreático/patologia , Detecção Precoce de Câncer , Humanos , Nanotecnologia , Hormônios Pancreáticos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
9.
Mol Pharm ; 18(6): 2448-2453, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33983745

RESUMO

Nanomedicine has demonstrated a substantial role in vaccine development against severe acute respiratory syndrome coronavirus (SARS-CoV-2 and COVID-19). Although nanomedicine-based vaccines have now been validated in millions of individuals worldwide in phase 4 and tracking of sex-disaggregated data on COVID-19 is ongoing, immune responses that underlie COVID-19 disease outcomes have not been clarified yet. A full understanding of sex-role effects on the response to nanomedicine products is essential to building an effective and unbiased response to the pandemic. Here, we exposed model lipid nanoparticles (LNPs) to whole blood of 18 healthy donors (10 females and 8 males) and used flow cytometry to measure cellular uptake by circulating leukocytes. Our results demonstrated significant differences in the uptake of LNP between male and female natural killer (NK) cells. The results of this proof-of-concept study show the importance of recipient sex as a critical factor which enables researchers to better consider sex in the development and administration of vaccines for safer and more-efficient sex-specific outcomes.


Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Nanopartículas/química , SARS-CoV-2/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/química , Composição de Medicamentos/métodos , Ácidos Graxos Monoinsaturados/química , Feminino , Voluntários Saudáveis , Humanos , Imunogenicidade da Vacina , Lipossomos , Masculino , Pandemias/prevenção & controle , Compostos de Amônio Quaternário/química , Fatores Sexuais , Resultado do Tratamento
10.
Chem Rev ; 119(21): 11352-11390, 2019 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-31490059

RESUMO

The adult myocardium has a limited regenerative capacity following heart injury, and the lost cells are primarily replaced by fibrotic scar tissue. Suboptimal efficiency of current clinical therapies to resurrect the infarcted heart results in injured heart enlargement and remodeling to maintain its physiological functions. These remodeling processes ultimately leads to ischemic cardiomyopathy and heart failure (HF). Recent therapeutic approaches (e.g., regenerative and nanomedicine) have shown promise to prevent HF postmyocardial infarction in animal models. However, these preclinical, clinical, and technological advancements have yet to yield substantial enhancements in the survival rate and quality of life of patients with severe ischemic injuries. This could be attributed largely to the considerable gap in knowledge between clinicians and nanobioengineers. Development of highly effective cardiac regenerative therapies requires connecting and coordinating multiple fields, including cardiology, cellular and molecular biology, biochemistry and chemistry, and mechanical and materials sciences, among others. This review is particularly intended to bridge the knowledge gap between cardiologists and regenerative nanomedicine experts. Establishing this multidisciplinary knowledge base may help pave the way for developing novel, safer, and more effective approaches that will enable the medical community to reduce morbidity and mortality in HF patients.


Assuntos
Insuficiência Cardíaca/terapia , Nanomedicina/métodos , Medicina Regenerativa/métodos , Animais , Insuficiência Cardíaca/prevenção & controle , Humanos
11.
J Cell Physiol ; 234(6): 9378-9386, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520022

RESUMO

Lung cancer (LC) is the most common type of cancer and the second cause of death worldwide in men and women after cardiovascular diseases. Non-small-cell lung cancer (NSCLC) is the most frequent type of LC occurring in 85% of cases. Developing new methods for early detection of NSCLC could substantially increase the chances of survival and, therefore, is an urgent task for current research. Nowadays, explosion in nanotechnology offers unprecedented opportunities for therapeutics and diagnosis applications. In this context, exploiting the bio-nano-interactions between nanoparticles (NPs) and biological fluids is an emerging field of research. Upon contact with biofluids, NPs are covered by a biomolecular coating referred to as "biomolecular corona" (BC). In this study, we exploited BC for discriminating between NSCLC patients and healthy volunteers. Blood samples from 10 NSCLC patients and 5 subjects without malignancy were allowed to interact with negatively charged lipid NPs, leading to the formation of a BC at the NP surface. After isolation, BCs were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We found that the BCs of NSCLC patients was significantly different from that of healthy individuals. Statistical analysis of SDS-PAGE results allowed discriminating between NSCLC cancer patients and healthy subjects with 80% specificity, 80% sensitivity and a total discriminate correctness rate of 80%. While the results of the present investigation cannot be conclusive due to the small size of the data set, we have shown that exploitation of the BC is a promising approach for the early diagnosis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Detecção Precoce de Câncer , Neoplasias Pulmonares/diagnóstico , Nanopartículas/química , Proteínas Sanguíneas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/sangue , Difusão Dinâmica da Luz , Humanos , Hidrodinâmica , Lipossomos/química , Neoplasias Pulmonares/sangue , Análise de Componente Principal
12.
Biochem Biophys Res Commun ; 503(2): 508-512, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29733845

RESUMO

Recent advances in biochemical and biophysical research have been achieved through the employment of microfluidic devices. Microfluidic mixing of therapeutic agents with biomaterials yields systems with finely tuned physical-chemical properties for applications in drug and gene delivery. Here, we investigate the role of preparation technology (microfluidic mixing vs. bulk self-assembly) on the transfection efficiency (TE) and cytotoxicity of multicomponent cationic liposome/DNA complexes (lipoplexes) in live Chinese hamster ovarian (CHO) cells. Decoupling TE and cytotoxicity allowed us to combine them in a unique coherent vision. While bulk self-assembly produces highly efficient and highly toxic MC lipoplexes, microfluidics manufacture leads to less efficient, but less cytotoxic complexes. This discrepancy is ascribed to two main factors controlling lipid-mediated cell transfection, i.e. the lipoplex concentration at the cell surface and the lipoplex arrangement at the nanoscale. Further research is required to optimize microfluidic manufacturing of lipoplexes to obtain highly efficient and not cytotoxic gene delivery systems.


Assuntos
DNA/administração & dosagem , Lipídeos/química , Lipossomos/química , Transfecção/métodos , Animais , Células CHO , Cátions/química , Cricetulus , DNA/química , DNA/genética , Desenho de Equipamento , Dispositivos Lab-On-A-Chip
13.
Biochim Biophys Acta ; 1858(2): 189-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26607013

RESUMO

Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment.


Assuntos
Proteínas Sanguíneas/química , Lipossomos/química , Polietilenoglicóis/química , Animais , Humanos , Espectrometria de Massas
14.
Nanomedicine ; 13(2): 681-691, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27565691

RESUMO

To date, efficiency upon non-viral DNA delivery remains low and this implies the existence of unidentified transfection barriers. Here we explore the mechanisms of action of multicomponent (MC) cationic liposome/DNA complexes (lipoplexes) by a combination of reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), fluorescence activated cell sorting (FACS) analysis and laser scanning confocal microscopy (LSCM) in live cells. Lipofectamine - the gold standard among transfection reagents - was used as a reference. On the basis of our results, we suggest that an additional transfection barrier impairs transfection efficiency, that is: low lipoplex concentration at the cell surface. Based on the acquired knowledge we propose an optimized transfection protocol that allowed us to efficiently transfect DND41, JURKAT, MOLT3, P12-ICHIKAWA, ALL-SILL, TALL-1 human T-cell acute lymphoblastic leukemia (T-ALL) cell lines known to be difficult-to-transfect by using non-viral vectors and where LFN-based technologies fail to give satisfactory results.


Assuntos
Lipossomos , Transfecção , Animais , Linhagem Celular , DNA , Humanos , Lipídeos , Espalhamento a Baixo Ângulo , Difração de Raios X
15.
Biochem Biophys Res Commun ; 474(1): 8-14, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27012199

RESUMO

Here we address the process of lipofection by quantifying the expression of a genetically-encoded fluorescent reporter at the single-cell level, and in real-time, by confocal imaging in live cells. The Lipofectamine gold-standard formulation is compared to the alternative promising DC-Chol/DOPE formulation. In both cases, we report that only dividing cells are able to produce a detectable amount of the fluorescent reporter protein. Notably, by measuring fluorescence over time in each pair of daughter cells, we find that Lipofectamine-based transfection statistically yields a remarkably higher degree of "symmetry" in protein expression between daughter cells as compared to DC-Chol/DOPE. A model is envisioned in which the degree of symmetry of protein expression is linked to the number of bioavailable DNA copies within the cell before nuclear breakdown. Reported results open new perspectives for the understanding of the lipofection mechanism and define a new experimental platform for the quantitative comparison of transfection reagents.


Assuntos
Perfilação da Expressão Gênica/métodos , Lipídeos/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Transfecção/métodos , Transgenes/genética , Animais , Células CHO , Sistemas Computacionais , Cricetulus , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
17.
Langmuir ; 31(39): 10764-73, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26378619

RESUMO

When injected in a biological milieu, a nanomaterial rapidly adsorbs biomolecules forming a biomolecular corona. The biomolecular corona changes the interfacial composition of a nanomaterial giving it a biological identity that determines the physiological response. Characterization of the biomolecular structure and composition has received increasing attention mostly due to its detrimental impact on the nanomaterial's metabolism in vivo. It is generally accepted that an opsonin-enriched biomolecular corona promotes immune system recognition and rapid clearance from circulation. Here we applied dynamic light scattering and nanoliquid chromatography tandem mass spectrometry to thoroughly characterize the biomolecular corona formed around lipid and silica nanoparticles (NPs). Incubation with human plasma resulted in the formation of NP-biomolecular coronas enriched with immunoglobulins, complement factors, and coagulation proteins that bind to surface receptors on immune cells and elicit phagocytosis. Conversely, we found that protein-coated NPs were protected from uptake by macrophage RAW 264.7 cells. This implies that the biomolecular corona formation provides a stealth effect on macrophage recognition. Our results suggest that correct prediction of the NP's fate in vivo will require more than just the knowledge of the biomolecular corona composition. Validation of efficient methods for mapping protein binding sites on the biomolecular corona of NPs is an urgent task for future research.


Assuntos
Macrófagos/metabolismo , Nanopartículas/metabolismo , Adulto , Animais , Linhagem Celular , Cromatografia Líquida , Endocitose , Humanos , Camundongos , Espectrometria de Massas em Tandem , Adulto Jovem
18.
Nanomedicine ; 11(3): 543-57, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25555353

RESUMO

Active targeting that exploits the (over)expression of surface receptors in target cells by ligand incorporation is a central concept in nanomedicine research. Despite unprecedented efforts, no targeted liposome-based therapeutics is commercially available for clinical practice. What is inhibiting the efficient translation of targeted liposome technology from bench to bedside? After introduction in the bloodstream, the lipid surface is immediately modified by the adsorption of a "protein corona" and preserving the surface functionality appears to be challenging. On the other hand, a long-standing corona with receptor-binding sites could associate with the target cell long enough to activate the cell's uptake machinery, triggering liposome endocytosis and intracellular cargo delivery. This opens the intriguing possibility to manipulate the corona composition by liposome design. This review will focus on the emerging field of liposome-protein corona research from basic, descriptive research to readily applicable knowledge and technologies for implementation in drug improvement and development. From the clinical editor: This review is addressing the liposome protein corona research concerning the potential gains in drug improvement and for drug development.


Assuntos
Lipoproteínas/química , Lipossomos/química , Lipossomos/farmacocinética , Lipossomos/uso terapêutico , Nanomedicina/métodos , Animais , Humanos
19.
Trends Pharmacol Sci ; 45(7): 602-613, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811308

RESUMO

The protein corona surrounding nanoparticles (NPs) offers exciting possibilities for targeted drug delivery. However, realizing this potential requires direct evidence of corona-receptor interactions in vivo; a challenge hampered by the limitations of in vitro settings. This opinion proposes that utilizing engineered protein coronas can address this challenge. Artificial coronas made of selected plasma proteins retain their properties in vivo, enabling manipulation for specific receptor targeting. To directly assess corona-receptor interactions mimicking in vivo complexity, we propose testing artificial coronas with recently adapted quartz crystal microbalance (QCM) setups whose current limitations and potential advancements are critically discussed. Finally, the opinion proposes future experiments to decipher corona-receptor interactions and unlock the full potential of the protein corona for NP-based drug delivery.


Assuntos
Nanopartículas , Coroa de Proteína , Coroa de Proteína/química , Coroa de Proteína/metabolismo , Humanos , Nanopartículas/química , Animais , Sistemas de Liberação de Medicamentos , Técnicas de Microbalança de Cristal de Quartzo
20.
ACS Appl Bio Mater ; 7(6): 3746-3757, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38775109

RESUMO

The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.


Assuntos
Lipídeos , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Transfecção , Humanos , Transfecção/métodos , Nanopartículas/química , Lipídeos/química , Células Jurkat , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , DNA/administração & dosagem , DNA/química , Linfócitos T/metabolismo , Linfócitos T/citologia , Receptores de Antígenos Quiméricos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA