Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Molecules ; 29(3)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38338317

RESUMO

µ-opioid receptor ligands such as morphine and fentanyl are the most known and potent painkillers. However, the severe side effects seen with their use significantly limit their widespread use. The continuous broadening of knowledge about the properties of the interactions of the MOP receptor (human mu opioid receptor, OP3) with ligands and specific intracellular signaling pathways allows for the designation of new directions of research with respect to compounds with analgesic effects in a mechanism different from classical ligands. Allosteric modulation is an extremely promising line of research. Compounds with modulator properties may provide a safer alternative to the currently used opioids. The aim of our research was to obtain a series of urea derivatives of 1-aryl-2-aminoimidazoline and to determine their activity, mechanism of biological action and selectivity toward the MOP receptor. The obtained compounds were subjected to functional tests (cAMP accumulation and ß-arrestin recruitment) in vitro. One of the obtained compounds, when administered alone, did not show any biological activity, while when co-administered with DAMGO, it inhibited ß-arrestin recruitment. These results indicate that this compound is a negative allosteric modulator (NAM) of the human MOP receptor.


Assuntos
Receptores Opioides mu , Receptores Opioides , Humanos , Receptores Opioides/metabolismo , Receptores Opioides mu/metabolismo , Analgésicos Opioides/efeitos adversos , Analgésicos/farmacologia , beta-Arrestinas/metabolismo
2.
Molecules ; 29(11)2024 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-38893493

RESUMO

GSK-3ß, IKK-ß, and ROCK-1 kinases are implicated in the pathomechanism of Alzheimer's disease due to their involvement in the misfolding and accumulation of amyloid ß (Aß) and tau proteins, as well as inflammatory processes. Among these kinases, GSK-3ß plays the most crucial role. In this study, we present compound 62, a novel, remarkably potent, competitive GSK-3ß inhibitor (IC50 = 8 nM, Ki = 2 nM) that also exhibits additional ROCK-1 inhibitory activity (IC50 = 2.3 µM) and demonstrates anti-inflammatory and neuroprotective properties. Compound 62 effectively suppresses the production of nitric oxide (NO) and pro-inflammatory cytokines in the lipopolysaccharide-induced model of inflammation in the microglial BV-2 cell line. Furthermore, it shows neuroprotective effects in an okadaic-acid-induced tau hyperphosphorylation cell model of neurodegeneration. The compound also demonstrates the potential for further development, characterized by its chemical and metabolic stability in mouse microsomes and fair solubility.


Assuntos
Doença de Alzheimer , Glicogênio Sintase Quinase 3 beta , Quinase I-kappa B , Tiazóis , Quinases Associadas a rho , Proteínas tau , Proteínas tau/metabolismo , Glicogênio Sintase Quinase 3 beta/antagonistas & inibidores , Glicogênio Sintase Quinase 3 beta/metabolismo , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Animais , Tiazóis/farmacologia , Tiazóis/química , Humanos , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/metabolismo , Camundongos , Quinase I-kappa B/metabolismo , Quinase I-kappa B/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Linhagem Celular , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Microglia/efeitos dos fármacos , Microglia/metabolismo , Óxido Nítrico/metabolismo , Lipopolissacarídeos , Agregados Proteicos/efeitos dos fármacos , Doenças Neuroinflamatórias/tratamento farmacológico , Doenças Neuroinflamatórias/metabolismo
3.
Bioorg Chem ; 139: 106737, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37482048

RESUMO

The new dual 5HT1A/5HT7 receptor ligands were designed based on the purine-2,6-dione scaffold with the fluorine atom. Twenty-one new derivatives were synthesized, and their structure-activity relationship was summarized. Compound 11 (7-(2-(3-fluorophenyl)-2-oxoethyl)-8-((4-(4-(2-methoxyphenyl)piperazin-1-yl)butyl)amino)-1,3-dimethyl-3,7-dihydro-1H-purine-2,6-dione) showed the highest affinity to 5HT1AR and 5HT7R, and was the most potent antagonist of 5-HT1AR (Kb = 0.26 ± 0.1 nM) which activity can be to reference compound NAN-190 (Kb = 0.26 ± 0.1 nM). The experimentally established physicochemical parameters of compound 11 showed that compound, as slightly ionized in the blood, could penetrate the blood-brain barrier. A molecular docking study showed that the fluorine substitution introduces additional stabilization effects on binding to 5HT1A/5HT7Rs. In animal assays of depression and anxiety, compound 11 revealed activity in terms of dosage compared to marketed psychotropics such as fluoxetine, citalopram, and sertraline.


Assuntos
Antidepressivos , Flúor , Animais , Ligantes , Simulação de Acoplamento Molecular , Antidepressivos/farmacologia , Relação Estrutura-Atividade , Purinas/química
4.
Int J Mol Sci ; 23(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36555568

RESUMO

Schizophrenia is a chronic mental illness, which remains difficult to treat. A high resistance to the available therapies, their insufficient efficacy, and numerous side effects are the reasons why there is an urgent need to develop new antipsychotics. This study aimed to assess the antipsychotic-like effects of JJGW08, a novel arylpiperazine alkyl derivative of salicylamide, in rodents. First, considering the JJGW08 receptor profile, we investigated the compound's intrinsic activity towards dopamine D2 and serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors using functional assays. Next, we assessed the effect of JJGW08 on MK-801- and amphetamine-induced hyperlocomotion, its risk of inducing catalepsy and impairing motor coordination, as well as the anxiolytic-like effects in the four-plate and marble burying tests in mice. Finally, we investigated the antipsychotic-like properties of JJGW08 in rats using MK-801-induced hyperlocomotion and prepulse inhibition tests. We found that JJGW08 showed antagonistic properties at dopamine D2 and serotonin 5-HT1A, 5-HT2A, and 5-HT7 receptors. However, the effect on the 5-HT2A and 5-HT7 receptors was very weak. Moreover, the tested compound showed an antipsychotic-like effect in MK-801- and amphetamine-induced hyperlocomotion but not in a prepulse inhibition test in rats. Notably, JJGW08 demonstrated anxiolytic-like properties in both behavioral tests. Importantly, the compound did not induce catalepsy or motor coordination impairment in mice at antipsychotic-like doses. Our study suggests it is worth searching for new potential antipsychotics among arylpiperazine alkyl derivatives of salicylamide.


Assuntos
Ansiolíticos , Antipsicóticos , Ratos , Camundongos , Animais , Antipsicóticos/efeitos adversos , Serotonina/efeitos adversos , Ansiolíticos/farmacologia , Dopamina/efeitos adversos , Roedores , Maleato de Dizocilpina/efeitos adversos , Catalepsia/induzido quimicamente , Catalepsia/tratamento farmacológico , Anfetamina/farmacologia
5.
Molecules ; 27(9)2022 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-35566280

RESUMO

The µ-opioid receptors belong to the family of G protein-coupled receptors (GPCRs), and their activation triggers a cascade of intracellular relays with the final effect of analgesia. Classical agonists of this receptor, such as morphine, are the main targets in the treatment of both acute and chronic pain. However, the dangerous side effects, such as respiratory depression or addiction, significantly limit their widespread use. The allosteric centers of the receptors exhibit large structural diversity within particular types and even subtypes. Currently, a considerable interest is aroused by the modulation of µ-opioid receptors. The application of such a technique may result in a reduction in the dose or even discontinuation of classical opiates, thus eliminating the side effects typical of this class of drugs. Our aim is to obtain a series of 1-aryl-5,6(1H)dioxo-2,3-dihydroimidazo[1,2-a]imidazole derivatives and provide more information about their activity and selectivity on OP3 (MOP, human mu opioid receptor). The study was based on an observation that some carbonyl derivatives of 1-aryl-2-aminoimidazoline cooperate strongly with morphine or DAMGO in sub-threshold doses, producing similar results to those of normal active doses. To elucidate the possible mechanism of such enhancement, we performed a few in vitro functional tests (involving cAMP and ß-arrestin recruitment) and a radioligand binding assay on CHO-K1 cells with the expression of the OP3 receptor. One of the compounds had no orthosteric affinity or intrinsic activity, but inhibited the efficiency of DAMGO. These results allow to conclude that this compound is a negative allosteric modulator (NAM) of the human µ-opioid receptor.


Assuntos
Morfina , Receptores Opioides mu , Analgésicos Opioides/uso terapêutico , Animais , Cricetinae , Cricetulus , Ala(2)-MePhe(4)-Gly(5)-Encefalina , Humanos , Imidazóis/farmacologia , Morfina/farmacologia , Receptores Opioides mu/metabolismo
6.
Molecules ; 27(24)2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36557861

RESUMO

Carbon dots (CDs) are carbon-based zero-dimensional nanomaterials that can be prepared from a number of organic precursors. In this research, they are prepared using fat-free UHT cow milk through the hydrothermal method. FTIR analysis shows C=O and C-H bond presence, as well as nitrogen-based bond like C-N, C=N and -NH2 presence in CDs, while the absorption spectra show the absorption band at 280 ± 3 nm. Next, the Biuret test was performed, with the results showing no presence of unreacted proteins in CDs. It can be said that all proteins are converted in CDs. Photo luminance spectra shows the emission of CDs is 420 nm and a toxicity study of CDs was performed. The Presto Blue method was used to test the toxicity of CDs for murine hippocampal cells. CDs at a concentration of 4 mg/mL were hazardous independent of synthesis time, while the toxicity was higher for lower synthesis times of 1 and 2 h. When the concentration is reduced in 1 and 2 h synthesized CDs, the cytotoxic effect also decreases significantly, ensuring a survival rate of 60-80%. However, when the synthesis time of CDs is increased, the cytotoxic effect decreases to a lesser extent. The CDs with the highest synthesis time of 8 h do not show a cytotoxic effect above 60%. The cytotoxicity study shows that CDs may have a concentration and time-dependent cytotoxic effect, reducing the number of viable cells by 40%.


Assuntos
Pontos Quânticos , Animais , Camundongos , Pontos Quânticos/toxicidade , Pontos Quânticos/química , Leite , Carbono/toxicidade , Carbono/química , Corantes Fluorescentes/química
7.
Bioorg Chem ; 100: 103912, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32388437

RESUMO

Molecular docking studies using appropriate 5-HT1A, 5-HT2A and D2 receptors models were used to design sixteen new 5-hydroxycoumarin derivatives with piperazine moiety (3-18). The microwave radiation have been used to synthesize them and their structures have been confirmed using mass spectrometry, 1H and 13C NMR. All newly prepared derivatives were evaluated for their 5-HT1A, 5-HT2A and D2 receptor affinity. Seven of the synthesized derivatives showed very high affinities to 5-HT1A receptor (3-4.0 nM, 6-4.0 nM, 7-1.0 nM, 9-6.0 nM, 15-4.3 nM, 16-1.0 nM, 18-3.0 nM) and one of them showed high affinities to 5-HT2A receptor (16-8.0 nM). In the case of the D2 receptor none of the tested derivatives showed high affinity. Compounds 7 and 16 were identified as potent antagonists of the 5-HT1A receptor as shown by the [35S]GTPcS binding assay but they didn't show any antidepressant effect at the single dose tested (10 mg/kg) in the tail suspension tests.


Assuntos
Cumarínicos/química , Cumarínicos/farmacologia , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Dopamina D2/metabolismo , Acetilação , Animais , Células CHO , Cumarínicos/síntese química , Cricetulus , Desenho de Fármacos , Descoberta de Drogas , Humanos , Masculino , Metilação , Camundongos Endogâmicos BALB C , Simulação de Acoplamento Molecular , Piperazina/síntese química , Piperazina/química , Piperazina/farmacologia , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Antagonistas do Receptor 5-HT1 de Serotonina/química , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia
8.
Bioorg Chem ; 101: 104033, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32629282

RESUMO

A library of 34 novel compounds based on a xanthine scaffold was explored in biological studies for interaction with adenosine receptors (ARs). Structural modifications of the xanthine core were introduced in the 8-position (benzylamino and benzyloxy substitution) as well as at N1, N3, and N7 (small alkyl residues), thereby improving affinity and selectivity for the A2A AR. The compounds were characterized by radioligand binding assays, and our study resulted in the development of the potent A2A AR ligands including 8-((6-chloro-2-fluoro-3-methoxybenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12d; Ki human A2AAR: 68.5 nM) and 8-((2-chlorobenzyl)amino)-1-ethyl-3,7-dimethyl-3,7-dihydro-1H-purine-2,6-dione (12h; Ki human A2AAR: 71.1 nM). Moreover, dual A1/A2AAR ligands were identified in the group of 1,3-diethyl-7-methylxanthine derivatives. Compound 14b displayed Ki values of 52.2 nM for the A1AR and 167 nM for the A2AAR. Selected A2AAR ligands were further evaluated as inactive for inhibition of monoamine oxidase A, B and isoforms of phosphodiesterase-4B1, -10A, which represent classical targets for xanthine derivatives. Therefore, the developed 8-benzylaminoxanthine scaffold seems to be highly selective for AR activity and relevant for potent and selective A2A ligands. Compound 12d with high selectivity for ARs, especially for the A2AAR subtype, evaluated in animal models of inflammation has shown anti-inflammatory activity. Investigated compounds were found to display high selectivity and may therefore be of high interest for further development as drugs for treating cancer or neurodegenerative diseases.


Assuntos
Antagonistas do Receptor A2 de Adenosina/uso terapêutico , Simulação de Acoplamento Molecular/métodos , Humanos , Ligantes , Estrutura Molecular , Relação Estrutura-Atividade
9.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796594

RESUMO

The present study aimed to design and synthesize a new series of hybrid compounds with pyrrolidine-2,5-dione and thiophene rings in the structure as potential anticonvulsant and antinociceptive agents. For this purpose, we obtained a series of new compounds and evaluated their anticonvulsant activity in animal models of epilepsy (maximal electroshock (MES), psychomotor (6 Hz), and subcutaneous pentylenetetrazole (scPTZ) seizure tests). To determine the mechanism of action of the most active anticonvulsant compounds (3, 4, 6, 9), their influence on the voltage-gated sodium and calcium channels as well as GABA transporter (GAT) was assessed. The most promising compound 3-(3-methylthiophen-2-yl)-1-(3-morpholinopropyl)pyrrolidine-2,5-dione hydrochloride (4) showed higher ED50 value than those of the reference drugs: valproic acid (VPA) and ethosuximide (ETX) (62.14 mg/kg vs. 252.7 mg/kg (VPA) in the MES test, and 75.59 mg/kg vs. 130.6 mg/kg (VPA) and 221.7 mg/kg (ETX) in the 6 Hz test, respectively). Moreover, in vitro studies of compound 4 showed moderate but balanced inhibition of the neuronal voltage-sensitive sodium (site 2) and L-type calcium channels. Additionally, the antinociceptive activity of the most active compounds (3, 4, 6, 9) was also evaluated in the hot plate test and writhing tests, and their hepatotoxic properties in HepG2 cells were also investigated. To determine the possible mechanism of the analgesic effect of compounds 3, 6, and 9, the affinity for the TRPV1 receptor was investigated.


Assuntos
Analgésicos/síntese química , Analgésicos/farmacologia , Anticonvulsivantes/síntese química , Anticonvulsivantes/farmacologia , Pirrolidinas/síntese química , Pirrolidinas/farmacologia , Analgésicos/química , Animais , Anticonvulsivantes/química , Sobrevivência Celular/efeitos dos fármacos , Células Hep G2 , Humanos , Masculino , Camundongos , Pirrolidinas/química
10.
Molecules ; 25(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854402

RESUMO

In this study, a series of compounds derived from 4-methoxy-1H-isoindole-1,3(2H)-dione, potential ligands of phosphodiesterase 10A and serotonin receptors, were investigated as potential antipsychotics. A library of 4-methoxy-1H-isoindole-1,3(2H)-dione derivatives with various amine moieties was synthesized and examined for their phosphodiesterase 10A (PDE10A)-inhibiting properties and their 5-HT1A and 5-HT7 receptor affinities. Based on in vitro studies, the most potent compound, 18 (2-[4-(1H-benzimidazol-2-yl)butyl]-4-methoxy-1H-isoindole-1,3(2H)-dione), was selected and its safety in vitro was evaluated. In order to explain the binding mode of compound 18 in the active site of the PDE10A enzyme and describe the molecular interactions responsible for its inhibition, computer-aided docking studies were performed. The potential antipsychotic properties of compound 18 in a behavioral model of schizophrenia were also investigated.


Assuntos
Antipsicóticos , Simulação de Acoplamento Molecular , Diester Fosfórico Hidrolases/química , Receptor 5-HT1A de Serotonina/química , Receptores de Serotonina/química , Animais , Antipsicóticos/síntese química , Antipsicóticos/química , Antipsicóticos/farmacologia , Comportamento Animal/efeitos dos fármacos , Modelos Animais de Doenças , Células Hep G2 , Humanos , Camundongos , Diester Fosfórico Hidrolases/metabolismo , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Esquizofrenia/tratamento farmacológico , Relação Estrutura-Atividade
11.
Bioorg Med Chem ; 27(18): 4163-4173, 2019 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-31383628

RESUMO

On the basis of the structures of serotonin modulators or drugs (NAN-190, buspirone, aripiprazole) and phosphodiesterase 4 (PDE4) inhibitors (rolipram, RO-20-1724), a series of novel multitarget 5-arylidenehydantoin derivatives with arylpiperazine fragment was synthesized. Among these compounds, 5-(3,4-dimethoxybenzylidene-3-(4-(4-(2,3-dichlorophenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (13) and 5-(3-cyclopentyloxy-4-methoxybenzylidene-3-(4-(4-(2-methoxyphenyl)piperazine-1-yl)butyl)-imidazolidine-2,4-dione (18) were found to be the most promising showing very high affinity toward 5-HT1A and 5-HT7 receptors (Ki = 0.2-1.0 nM) but a negligible inhibitory effect on PDE4. The high affinity of the compounds for 5-HT1A and 5-HT7 receptors was further investigated by computer-aided studies. Moreover, compounds 13 and 18 showed no significant cytotoxicity in the MTT assay, but high clearance in the in vitro assay. In addition, these compounds behaved like 5-HT1A and 5-HT7 receptor antagonists and exhibited antidepressant-like activity, similar to the reference drug citalopram, in an animal model of depression.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Receptores de Serotonina/metabolismo , Animais , Antidepressivos/farmacologia , Modelos Animais de Doenças , Humanos , Relação Estrutura-Atividade
12.
Bioorg Med Chem ; 27(7): 1254-1262, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30792106

RESUMO

This study focuses on the design, synthesis, molecular modeling and biological evaluation of a novel group of alkyl-1,3,5-triazinyl-methylpiperazines. New compounds were synthesized and their affinities for human histamine H4 receptor (hH4R) were evaluated. Among them, 4-(cyclohexylmethyl)-6-(4-methylpiperazin-1-yl)-1,3,5-triazin-2-amine (14) exhibited hH4R affinity with a Ki of 160 nM and behaved as antagonist in functional assays: the cellular aequorin-based assay (IC50 = 32 nM) and [35S]GTPγS binding assay (pKb = 6.67). In addition, antinociceptive activity of 14in vivo was observed in Formalin test (in mice) and in Carrageenan-induced acute inflammation test (in rats).


Assuntos
Analgésicos/farmacologia , Inflamação/tratamento farmacológico , Receptores Histamínicos H4/antagonistas & inibidores , Triazinas/farmacologia , Analgésicos/síntese química , Analgésicos/química , Animais , Carragenina , Relação Dose-Resposta a Droga , Formaldeído , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Ligantes , Camundongos , Estrutura Molecular , Ratos , Receptores Histamínicos H4/metabolismo , Relação Estrutura-Atividade , Triazinas/síntese química , Triazinas/química
13.
Bioorg Med Chem Lett ; 28(11): 2039-2049, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29730027

RESUMO

Aim of the study was evaluation of anxiolytic, antidepressant, anticonvulsant and analgesic activity in a series of a consistent group of compounds. A series of eleven new N-(phenoxyalkyl)- or N-{2-[2-(phenoxy)ethoxy]ethyl}piperazine derivatives has been obtained. Their affinity towards 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, D2 and α1 receptors has been assessed, and then functional assays were performed. The compounds were evaluated in mice, i.p. for their antidepressant-like (forced swim test), locomotor, anxiolytic-like (four-plate test) activities as well as - at higher doses - for anticonvulsant potential (MES) and neurotoxicity (rotarod). Two compounds (3, 6) were also evaluated for their analgesic activity in neuropathic pain models (streptozocin test, oxaliplatin test) and they were found active against allodynia in diabetic neuropathic pain at 30 mg/kg. Among the compounds, anxiolytic-like, anticonvulsant or analgesic activity was observed but antidepressant-like activity was not. One of the two most interesting compounds is 1-{2-[2-(2,4,6-trimethylphenoxy)ethoxy]ethyl}-4-(2-methoxyphenyl)piperazine dihydrochloride (9), exhibiting anxiolytic and anticonvulsant activity in mice, i.p. 30 min after administration (at 2.5 mg/kg and ED50 = 26.33 mg/kg, respectively), which can be justified by the receptor profile: 5-HT1A Ki = 5 nM (antagonist), 5-HT7 Ki = 70 nM, α1 Ki = 15 nM, D2 Ki = 189 nM (antagonist). Another interesting compound is 1-[3-(2,4,6-trimethylphenoxy)propyl]-4-(4-methoxyphenyl)piperazine dihydrochloride (3), exhibiting anxiolytic, anticonvulsant and antiallodynic activity in mice, i.p., 30 min after administration (at 10 mg/kg, ED50 = 23.50 mg/kg, at 30 mg/kg, respectively), which can be related with 5-HT1A weak antagonism (Ki = 146 nM), or other possible mechanism of action, not evaluated within presented study. Additionally, for the most active compound in the four-plate test (7), molecular modeling was performed (docking to receptors 5-HT1A, 5-HT2A, 5-HT7, D2 and α1A).


Assuntos
Anticonvulsivantes/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Piperazina/farmacologia , Receptores de Serotonina/metabolismo , Agonistas do Receptor de Serotonina/farmacologia , Animais , Anticonvulsivantes/administração & dosagem , Anticonvulsivantes/química , Sistema Nervoso Central/metabolismo , Relação Dose-Resposta a Droga , Injeções Intraperitoneais , Camundongos , Modelos Moleculares , Estrutura Molecular , Piperazina/administração & dosagem , Piperazina/química , Agonistas do Receptor de Serotonina/administração & dosagem , Agonistas do Receptor de Serotonina/química , Relação Estrutura-Atividade
14.
Bioorg Med Chem ; 26(2): 527-535, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29269256

RESUMO

In this work we describe the synthesis, docking studies and biological evaluation of a focused library of novel arylpiperazinyl derivatives of 8-acetyl-7-hydroxy-4-methylcoumarin. The new compounds were screened for their 5-HT1A and 5-HT2A receptor affinity. Among the evaluated compounds, six displayed high affinities to 5-HT1A receptors (4a-0.9 nM, 6a-0.5 nM, 10a-0.6 nM, 3b-0.9 nM, 6b-1.5 nM, 10b-1 nM). Compound 6a and 10a bearing a bromo- or methoxy- substituent in ortho position of the piperazine phenyl ring, were identified as potent antagonists of the 5-HT1A receptors. In the tail suspension test, mice injected with 6a showed a dose-dependent increase in depressive-like behavior that was related to a decrease in locomotor activity. Compound 10a did not decrease or prolong immobility time nor did it affect home cage activity. Molecular docking studies using 5-HT1A and 5-HT2A homology models revealed structural basis of the high affinity of ortho-substituted derivatives and subtle changes in amino acid interactions patterns depending on the length of the alkyl linker.


Assuntos
Cumarínicos/farmacologia , Simulação de Acoplamento Molecular , Receptor 5-HT1A de Serotonina/metabolismo , Receptor 5-HT2A de Serotonina/metabolismo , Antagonistas do Receptor 5-HT1 de Serotonina/farmacologia , Antagonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Cumarínicos/síntese química , Cumarínicos/química , Relação Dose-Resposta a Droga , Humanos , Locomoção/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Antagonistas do Receptor 5-HT1 de Serotonina/síntese química , Antagonistas do Receptor 5-HT1 de Serotonina/química , Antagonistas do Receptor 5-HT2 de Serotonina/síntese química , Antagonistas do Receptor 5-HT2 de Serotonina/química , Relação Estrutura-Atividade
15.
Inflamm Res ; 66(1): 79-95, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27766379

RESUMO

OBJECTIVE AND DESIGN: Histamine H4 receptor (H4R) offers a great potential for new therapeutic strategies for the treatment of inflammation-based diseases. The aim of this study is to present the pharmacological profile of two recently synthesized ligands of H4R with particular reference to their anti-inflammatory and analgesic activity. MATERIALS AND SUBJECTS: We used mice and rats in the in vivo tests. We also used murine RAW 264.7 cells and isolated guinea-pig ileum in in vitro test. TREATMENTS: In the in vivo tests, animals were pre-treated with the increasing doses of investigated compounds (12.5, 25 and 50 mg/kg) and reference compounds: JNJ7777120 (25 mg/kg), indomethacin (10 mg/kg). Macrophages were pre-treated with two concentrations of tested compounds 100 and 10 µM. METHODS: We examined anti-inflammatory and analgesic effects of the new H4R antagonists in the in vivo models of inflammation induced by carrageenan or zymosan. We assessed the level of cAMP and release of cytokines, ROS and NO in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages. Moreover, we assessed the affinity of the investigated compounds for histamine H1 receptor in functional studies. RESULTS: Both investigated compounds reduced paw edema, mechanical and thermal hyperalgesia in the carrageenan-induced acute inflammation. Moreover, administration of the investigated compounds resulted in decreased granulocyte influx and attenuated nociceptive reaction in the zymosan-induced peritonitis model. In the same model of inflammation, the investigated compounds reduced vascular permeability; however, this effect was observed only after the highest applied dose. Furthermore, the test compounds had no impact on cell viability in the experiments on RAW 264.7 macrophages. In these cells, stimulated with LPS, the test compounds decreased reactive oxygen species (ROS) production. They increased the cellular concentration of cAMP and attenuated the production of inflammatory cytokines such as TNFα and IL-1ß. All results were comparable to those obtained for the reference compound JNJ7777120 with the exception of the impact on NO production. Nevertheless, this effect was similar to that obtained for the other reference compound rolipram, which is a phosphodiesterase 4 (PDE 4) inhibitor. Further experiments revealed that both of the investigated compounds possessed relatively low affinity for histamine H1 receptor and do not inhibit the activity of the PDE 4B1 enzyme. In addition, all the effects of the investigated compounds in in vivo experiments were observed at doses that did not cause neurologic deficits in rotarod test and did not reduce spontaneous locomotor activity. CONCLUSIONS: Our results demonstrate the anti-inflammatory and analgesic activity of the new aryl-1,3,5-triazine derivatives, which are primarily H4R-dependent.


Assuntos
Analgésicos/uso terapêutico , Anti-Inflamatórios/uso terapêutico , Antagonistas dos Receptores Histamínicos/uso terapêutico , Triazinas/uso terapêutico , Analgésicos/farmacologia , Animais , Anti-Inflamatórios/farmacologia , Carragenina , AMP Cíclico/metabolismo , Cobaias , Antagonistas dos Receptores Histamínicos/farmacologia , Hiperalgesia/induzido quimicamente , Hiperalgesia/tratamento farmacológico , Hiperalgesia/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Ligantes , Lipopolissacarídeos , Masculino , Camundongos , Óxido Nítrico/metabolismo , Dor/induzido quimicamente , Dor/tratamento farmacológico , Dor/metabolismo , Células RAW 264.7 , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Receptores Histamínicos/metabolismo , Triazinas/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Zimosan
16.
Int J Med Sci ; 14(8): 741-749, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28824309

RESUMO

Previously, it was found that 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (TP-315) effectively protects mice from maximal electroshock-induced seizures. The aim of this study was to determine possible interactions between TP-315 and different molecular targets, i.e. GABAA receptors, voltage-gated sodium channels, and human neuronal α7 and α4ß2 nicotinic acetylcholine receptors. The influence of TP-315 on the viability of human hepatic HepG2 cells was also established using PrestoBlue and ToxiLight assays. It was found that the anticonvulsant activity of TP-315 results (at least partially) from its influence on voltage-gated sodium channels (VGSCs). Moreover, the title compound slightly affected the viability of human hepatic cells.


Assuntos
Anticonvulsivantes/administração & dosagem , Convulsões/tratamento farmacológico , Tionas/administração & dosagem , Canais de Sódio Disparados por Voltagem/genética , Animais , Modelos Animais de Doenças , Eletrochoque/efeitos adversos , Células Hep G2 , Humanos , Camundongos , Técnicas de Patch-Clamp , Convulsões/genética , Convulsões/patologia , Triazóis/administração & dosagem , Canais de Sódio Disparados por Voltagem/efeitos dos fármacos
17.
Bioorg Med Chem Lett ; 26(21): 5315-5321, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27692547

RESUMO

In the search for new hypotensive agents some new aroxyalkyl or aroxyethoxyethyl derivatives of piperazine have been synthesized and evaluated for their pharmacological properties. Pharmacological tests included receptor binding assays toward adrenergic receptors α1, α2 and ß1, additionally 5-HT1A, functional bioassay and in vivo evaluation of hypotensive activity as well as antidepressant-like potential. All the tested compounds exhibited α1-antagonistic properties, three of them possessed also hypotensive activity in rats. The most promising compound 3 1-[4-(2,6-dimethylphenoxy)butyl]-4-(2-methoxyphenyl)piperazine hydrochloride was a selective α1 receptor antagonist (Ki=23.5±1.3, α1/α2=15.77, pKB=8.538±0.109). It was active in all tested doses in vivo (1, 0.5, and 0.1mg/kg) and it reduced blood pressure by 10-13% at the dose of 1mg/kg (rats, i.v.). Compound 5 1-[2-(2,3-dimethylphenoxy)ethoxyethyl]-4-(2-methoxyphenyl)piperazine dihydrochloride exhibited the lowest dose for antidepressant-like activity 5mg/kgb.w. (mice, i.p.) without influence on spontaneous activity (mice, i.p.).


Assuntos
Sistema Cardiovascular/efeitos dos fármacos , Sistema Nervoso Central/efeitos dos fármacos , Piperazinas/síntese química , Piperazinas/farmacologia , Animais , Antidepressivos de Segunda Geração/síntese química , Antidepressivos de Segunda Geração/farmacologia , Anti-Hipertensivos/síntese química , Anti-Hipertensivos/farmacologia , Linhagem Celular Tumoral , Humanos , Camundongos , Ratos
18.
J Enzyme Inhib Med Chem ; 31(sup3): 10-24, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27353547

RESUMO

A series of 2-fluoro and 3-trifluoromethylphenylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (4-21) were synthesized and evaluated for their serotonin (5-HT1A/5-HT7) receptor affinity and phosphodiesterase (PDE4B and PDE10A) inhibitor activity. The study enabled the identification of potent 5-HT1A, 5-HT7 and mixed 5-HT1A/5-HT7 receptor ligands with weak inhibitory potencies for PDE4B and PDE10A. The tests have been completed with the determination of lipophilicity and metabolic stability using micellar electrokinetic chromatography (MEKC) system and human liver microsomes (HLM) model. In preliminary pharmacological in vivo studies, selected compound 8-(5-(4-(2-fluorophenyl)piperazin-1-yl)pentyl)-1,3,7-trimethyl-1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione (9) behaved as a potential antidepressant in forced swim test (FST) in mice. Moreover, potency of antianxiety effects evoked by 9 (2.5 mg/kg) is greater than that of the reference anxiolytic drug, diazepam. Molecular modeling revealed that fluorinated arylpiperazinylalkyl derivatives of 1H-imidazo[2,1-f]purine-2,4(3H,8H)-dione have major significance for the provision of lead compounds for antidepressant and/or anxiolytic application.


Assuntos
Ansiolíticos/farmacologia , Antidepressivos/farmacologia , Comportamento Animal/efeitos dos fármacos , Imidazóis/farmacologia , Atividade Motora/efeitos dos fármacos , Purinonas/farmacologia , Animais , Ansiolíticos/síntese química , Ansiolíticos/química , Antidepressivos/síntese química , Antidepressivos/química , Cromatografia Capilar Eletrocinética Micelar , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Modelos Moleculares , Estrutura Molecular , Diester Fosfórico Hidrolases/metabolismo , Purinonas/síntese química , Purinonas/química , Receptor 5-HT1A de Serotonina/metabolismo , Receptores de Serotonina/metabolismo , Relação Estrutura-Atividade , Natação
19.
J Enzyme Inhib Med Chem ; 31(6): 1048-62, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26406608

RESUMO

A series of new 7-arylpiperazinylalkyl-1,3-dimethyl-purine-2,6-dione derivatives with diversified 8-amino substituent in 8 position was synthesized and their 5-HT1A, 5-HT2A, 5-HT6, 5-HT7, and D2 receptor affinities were determined. The binding study allowed identifying some potent 5-HT1A/5-HT2A/5-HT7/D2 ligands. The most interesting because of their multireceptor profile were 8-piperidine (30-35) and 8-dipropylamine (45-47) analogs with four and five carbon aliphatic linkers. The selected compounds 24, 31, 34, 39, 41, 43, 45, and 46 in the functional in vitro evaluation for all targeted receptors showed significant partial D2 agonist, partial 5-HT1A agonist, and 5-HT2A antagonist properties. The advantageous in vitro affinity of compound 34 for 5-HT1A and D2 receptors has been explained by means of molecular modeling, taking into consideration its partial agonist activity towards the latter one. In behavioral studies, compounds 32 and 34 revealed antipsychotic-like properties, significantly decreasing d-amphetamine-induced hyperactivity in mice.


Assuntos
Antipsicóticos/farmacologia , Piperazinas/química , Purinas/química , Receptores de Serotonina/efeitos dos fármacos , Cromatografia Líquida , Espectroscopia de Prótons por Ressonância Magnética
20.
Arch Pharm (Weinheim) ; 349(12): 889-903, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27869315

RESUMO

In the search for potential psychotropic agents, a new series of 3,7-dimethyl- and 1,3-dimethyl-8-alkoxypurine-2,6-dione derivatives of arylpiperazines, perhydroisoquinolines, or tetrahydroisoquinolines with flexible alkylene spacers (5-16 and 21-32) were synthesized and evaluated for 5-HT1A /5-HT7 receptor affinities as well as PDE4B1 and PDE10A inhibitory properties. The 1-(4-(4-(2-hydroxyphenyl)piperazin-1-yl)butyl)-3,7-dimethyl-8-propoxypurine-2,6-dione (16) and 7-(2-hydroxyphenyl)piperazinylalkyl-1,3-dimethyl-8-ethoxypurine-2,6-diones (31 and 32) as potent dual 5-HT1A /5-HT7 receptor ligands with antagonistic activity produced an antidepressant-like effect in the forced swim test in mice. This effect was similar to that produced by citalopram. All the tested compounds were stronger phosphodiesterase isoenzyme inhibitors than theophylline and theobromine. The most potent compounds, 15 and 16, were characterized by 51 and 52% inhibition, respectively, of PDE4B1 activity at a concentration of 10-5 M. Concerning the above findings, it may be assumed that the inhibition of PDE4B1 may impact on the signal strength and specificity resulting from antagonism toward the 5-HT1 and 5-HT7 receptors, especially in the case of compounds 15 and 16. This dual receptor and enzyme binding mode was analyzed and explained via molecular modeling studies.


Assuntos
Antidepressivos/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Piperazinas/síntese química , Piperazinas/farmacologia , Antagonistas da Serotonina/farmacologia , Agonistas do Receptor de Serotonina/farmacologia , Animais , Antidepressivos/síntese química , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/efeitos dos fármacos , Resposta de Imobilidade Tônica/efeitos dos fármacos , Isoenzimas/antagonistas & inibidores , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Masculino , Camundongos , Modelos Moleculares , Inibidores de Fosfodiesterase/síntese química , Diester Fosfórico Hidrolases/efeitos dos fármacos , Receptores de Serotonina/efeitos dos fármacos , Antagonistas da Serotonina/síntese química , Agonistas do Receptor de Serotonina/síntese química , Relação Estrutura-Atividade , Teobromina/farmacologia , Teofilina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA