Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
J Nat Prod ; 84(8): 2129-2137, 2021 08 27.
Artigo em Inglês | MEDLINE | ID: mdl-34283598

RESUMO

The phloeodictine-based 6-hydroxy-2,3,4,6-tetrahydropyrrolo[1,2-a]pyrimidinium structural moiety with an n-tetradecyl side chain at C-6 has been demonstrated to be a new antifungal template. Thirty-four new synthetic analogues with modifications of the bicyclic tetrahydropyrrolopyrimidinium skeleton and the N-1 side chain have been prepared and evaluated for in vitro antifungal activities against the clinically important fungal pathogens including Cryptococcus neoformans ATCC 90113, Candida albicans ATCC 90028, Candida glabrata ATCC 90030, Candida krusei ATCC 6258, and Aspergillus fumigatus ATCC 90906. Nineteen compounds (5, 21-31, 34-38, 44, and 48) showed antifungal activities against the aforementioned five fungal pathogens with minimum inhibitory concentrations (MICs) in the range 0.88-10 µM, and all were fungicidal with minimum fungicidal concentrations (MFCs) similar to the respective MIC values. Compounds 24, 36, and 48 were especially active against C. neoformans ATCC 90113 with MIC/MFC values of 1.0/1.0, 1.6/1.6, and 1.3/2.0 µM but exhibited low cytotoxicity with an IC50 > 40 µM against the mammalian Vero cells. The structure and antifungal activity relationship indicates that synthetic modifications of the phloeodictines can afford analogues with potent antifungal activity and reduced cytotoxicity, necessitating further preclinical studies of this new class of antifungal compounds.


Assuntos
Antifúngicos/farmacologia , Compostos de Piridínio/farmacologia , Animais , Antifúngicos/síntese química , Aspergillus fumigatus/efeitos dos fármacos , Candida/efeitos dos fármacos , Chlorocebus aethiops , Cryptococcus neoformans/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Compostos de Piridínio/síntese química , Células Vero
2.
J Nat Prod ; 83(10): 3207-3211, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-33052051

RESUMO

Gentiana species including G. crassicaulis, G. macrophylla, G. dahurica, and G. straminea are used in traditional Chinese medicine as "Qinjiao" for the treatment of rheumatism, hepatitis, and pain. Four antifungal bisphosphocholines [irlbacholine (2) and three new analogues, gentianalines A-C (1, 3, and 4)] were identified from G. crassicaulis by a bioassay-guided fractionation and structure elucidation approach. Subsequent chemical analysis of 56 "Qinjiao" samples (45 from G. crassicaulis, five from G. macrophylla, three from G. dahurica, and three from G. straminea) showed that bisphosphocholines were present in all four Gentiana species, with irlbacholine as the major compound ranging from 2.0 to 6.2 mg per gram of dried material. Irlbacholine exhibited potent in vitro antifungal activity against Cryptococcus neoformans, Aspergillus fumigatus, Candida albicans, and Candida glabrata with minimum inhibitory concentration (MIC) values of 0.63, 1.25, 10.0, and 5.0 µg/mL, respectively. Identification of the bisphosphocholines, a rare class of antifungal natural products, in these medicinal plants provides scientific evidence to complement their medicinal use. The bisphosphocholines carrying a long aliphatic chain possess amphiphilic molecule-like properties with a tendency of retention in both normal and reversed-phase silica gel column chromatography and thereby may be neglected in natural products discovery. This report may stimulate interest in this class of compounds, which warrant the further study of other biological activities as well.


Assuntos
Antifúngicos/química , Antifúngicos/farmacologia , Gentiana/química , Fosforilcolina/química , Fosforilcolina/farmacologia , Bioensaio , Fungos/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Raízes de Plantas/química , Plantas Medicinais , Relação Estrutura-Atividade
3.
Molecules ; 25(24)2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33352963

RESUMO

Two new epimeric bibenzylated monoterpenes machaerifurogerol (1a) and 5-epi-machaerifurogerol (1b), and four known isoflavonoids (+)-vestitol (2), 7-O-methylvestitol (3), (+)-medicarpin (4), and 3,8-dihydroxy-9-methoxypterocarpan (5) were isolated from Machaerium Pers. This plant was previously assigned as Machaerium multiflorum Spruce, from which machaeriols A-D (6-9) and machaeridiols A-C (10-12) were reported, and all were then re-isolated, except the minor compound 9, for a comprehensive antimicrobial activity evaluation. Structures of the isolated compounds were determined by full NMR and mass spectroscopic data. Among the isolated compounds, the mixture 10 + 11 was the most active with an MIC value of 1.25 µg/mL against methicillin-resistant Staphylococcus aureus (MRSA) strains BAA 1696, -1708, -1717, -33591, and vancomycin-resistant Enterococcus faecium (VRE 700221) and E. faecalis (VRE 51299) and vancomycin-sensitive E. faecalis (VSE 29212). Compounds 6-8 and 10-12 were found to be more potent against MRSA 1708, and 6, 11, and 12 against VRE 700221, than the drug control ciprofloxacin and vancomycin. A combination study using an in vitro Checkerboard method was carried out for machaeriols (7 or 8) and machaeridiols (11 or 12), which exhibited a strong synergistic activity of 12 + 8 (MIC 0.156 and 0.625 µg/mL), with >32- and >8-fold reduction of MIC's, compared to 12, against MRSA 1708 and -1717, respectively. In the presence of sub-inhibitory concentrations on polymyxin B nonapeptide (PMBN), compounds 10 + 11, 11, 12, and 8 showed activity in the range of 0.5-8 µg/mL for two strains of Acinetobacter baumannii, 2-16 µg/mL against Pseudomonas aeruginosa PAO1, and 2 µg/mL against Escherichia coli NCTC 12923, but were inactive (MIC > 64 µg/mL) against the two isolates of Klebsiella pneumoniae.


Assuntos
Antibacterianos/farmacologia , Benzopiranos/farmacologia , Fabaceae/química , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/química , Antibacterianos/isolamento & purificação , Benzopiranos/química , Benzopiranos/isolamento & purificação , Testes de Sensibilidade Microbiana , Estrutura Molecular
4.
J Biol Chem ; 292(40): 16578-16593, 2017 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-28821607

RESUMO

Eupolauridine and liriodenine are plant-derived aporphinoid alkaloids that exhibit potent inhibitory activity against the opportunistic fungal pathogens Candida albicans and Cryptococcus neoformans However, the molecular mechanism of this antifungal activity is unknown. In this study, we show that eupolauridine 9591 (E9591), a synthetic analog of eupolauridine, and liriodenine methiodide (LMT), a methiodide salt of liriodenine, mediate their antifungal activities by disrupting mitochondrial iron-sulfur (Fe-S) cluster synthesis. Several lines of evidence supported this conclusion. First, both E9591 and LMT elicited a transcriptional response indicative of iron imbalance, causing the induction of genes that are required for iron uptake and for the maintenance of cellular iron homeostasis. Second, a genome-wide fitness profile analysis showed that yeast mutants with deletions in iron homeostasis-related genes were hypersensitive to E9591 and LMT. Third, treatment of wild-type yeast cells with E9591 or LMT generated cellular defects that mimicked deficiencies in mitochondrial Fe-S cluster synthesis including an increase in mitochondrial iron levels, a decrease in the activities of Fe-S cluster enzymes, a decrease in respiratory function, and an increase in oxidative stress. Collectively, our results demonstrate that E9591 and LMT perturb mitochondrial Fe-S cluster biosynthesis; thus, these two compounds target a cellular pathway that is distinct from the pathways commonly targeted by clinically used antifungal drugs. Therefore, the identification of this pathway as a target for antifungal compounds has potential applications in the development of new antifungal therapies.


Assuntos
Antifúngicos/farmacologia , Aporfinas/farmacologia , Candida albicans , Proteínas Fúngicas , Indenos/farmacologia , Proteínas Ferro-Enxofre , Proteínas Mitocondriais , Naftiridinas/farmacologia , Antifúngicos/química , Aporfinas/química , Candida albicans/genética , Candida albicans/crescimento & desenvolvimento , Cryptococcus neoformans/genética , Cryptococcus neoformans/crescimento & desenvolvimento , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Estudo de Associação Genômica Ampla , Indenos/química , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Naftiridinas/química , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Consumo de Oxigênio/efeitos dos fármacos , Consumo de Oxigênio/genética , Saccharomyces cerevisiae
5.
J Nat Prod ; 81(6): 1321-1332, 2018 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-29897754

RESUMO

A functional metagenomic approach identified novel and diverse soil-derived DNAs encoding inhibitors to methicillin-resistant Staphylococcus aureus (MRSA). A metagenomic DNA soil library containing 19 200 recombinant Escherichia coli BAC clones with 100 Kb average insert size was screened for antibiotic activity. Twenty-seven clones inhibited MRSA, seven of which were found by LC-MS to possess modified chloramphenicol ( Cm) derivatives, including three new compounds whose structures were established as 1-acetyl-3-propanoylchloramphenicol, 1-acetyl-3-butanoylchloramphenicol, and 3-butanoyl-1-propanoylchloramphenicol. Cm was used as the selectable antibiotic for cloning, suggesting that heterologously expressed enzymes resulted in derivatization of Cm into new chemical entities with biological activity. An esterase was found to be responsible for the enzymatic regeneration of Cm, and the gene trfA responsible for plasmid copy induction was found to be responsible for inducing antibacterial activity in some clones. Six additional acylchloramphenicols were synthesized for structure and antibacterial activity relationship studies, with 1- p-nitrobenzoylchloramphenicol the most active against Mycobacterium intracellulare and Mycobacterium tuberculosis, with MICs of 12.5 and 50.0 µg/mL, respectively.


Assuntos
Antibacterianos/farmacologia , Cloranfenicol/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Metagenômica/métodos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana/métodos
6.
Artigo em Inglês | MEDLINE | ID: mdl-28893778

RESUMO

In the screening of natural plant extracts for antifungal activity, assessment of their effects on the growth of cells in suspension or in the wells of microtiter plates is expedient. However, microorganisms, including Candida albicans, grow in nature as biofilms, which are organized cellular communities with a complex architecture capable of conditioning their microenvironment, communicating, and excluding low- and high-molecular-weight molecules and white blood cells. Here, a confocal laser scanning microscopy (CLSM) protocol for testing the effects of large numbers of agents on biofilm development is described. The protocol assessed nine parameters from a single z-stack series of CLSM scans for each individual biofilm analyzed. The parameters included adhesion, thickness, formation of a basal yeast cell polylayer, hypha formation, the vertical orientation of hyphae, the hyphal bend point, pseudohypha formation, calcofluor white staining of the extracellular matrix (ECM), and human white blood cell impenetrability. The protocol was applied first to five plant extracts and derivative compounds and then to a collection of 88 previously untested plant extracts. They were found to cause a variety of phenotypic profiles, as was the case for 64 of the 88 extracts (73%). Half of the 46 extracts that did not affect biofilm thickness affected other biofilm parameters. Correlations between specific effects were revealed. The protocol will be useful not only in the screening of chemical libraries but also in the analysis of compounds with known effects and mutations.


Assuntos
Antifúngicos/farmacologia , Biofilmes/efeitos dos fármacos , Candida albicans/patogenicidade , Avaliação Pré-Clínica de Medicamentos/métodos , Leucócitos/microbiologia , Alcaloides/farmacologia , Aporfinas/farmacologia , Candida albicans/efeitos dos fármacos , Candida albicans/fisiologia , Ciclopentanos/farmacologia , Dimetil Sulfóxido/farmacologia , Matriz Extracelular/efeitos dos fármacos , Ácidos Graxos Monoinsaturados/farmacologia , Células HL-60 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Microscopia Confocal/métodos , Naftiridinas , Extratos Vegetais/química , Extratos Vegetais/farmacologia
7.
J Nat Prod ; 80(10): 2795-2798, 2017 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-29023124

RESUMO

The first synthesis of 2-methyl-6-pentadecyl-Δ1,6-piperideine (1), a major alkaloid of the piperideine chemotype in fire ant venoms, and its analogues, 2-methyl-6-tetradecyl-Δ1,6-piperideine (2) and 2-methyl-6-hexadecyl-Δ1,6-piperideine (3), was achieved by a facile synthetic method starting with glutaric acid (4) and urea (5). Compound 1 showed in vitro antifungal activity against Cryptococcus neoformans and Candida albicans with IC50 values of 6.6 and 12.4 µg/mL, respectively, and antibacterial activity against vancomycin-resistant Enterococcus faecium with an IC50 value of 19.4 µg/mL, while compounds 2 and 3 were less active against these pathogens. All three compounds strongly inhibited the parasites Leishmania donovani promastigotes and Trypanosoma brucei with IC50 values in the range of 5.0-6.7 and 2.7-4.0 µg/mL, respectively.


Assuntos
Alcaloides , Venenos de Formiga , Anti-Infecciosos , Piperidinas , Alcaloides/síntese química , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Animais , Venenos de Formiga/síntese química , Venenos de Formiga/química , Venenos de Formiga/farmacologia , Antibacterianos/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Anti-Infecciosos/farmacologia , Antifúngicos/farmacologia , Formigas/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cryptococcus neoformans/efeitos dos fármacos , Resistência a Medicamentos , Enterococcus faecium/efeitos dos fármacos , Concentração Inibidora 50 , Leishmania donovani/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Piperidinas/síntese química , Piperidinas/química , Piperidinas/isolamento & purificação , Piperidinas/farmacologia , Piperidonas/farmacologia , Trypanosoma brucei brucei/efeitos dos fármacos , Vancomicina/farmacologia
8.
Planta Med ; 83(1-02): 143-150, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27405106

RESUMO

Sixty-three amide alkaloids, including three new, piperflaviflorine A (1), piperflaviflorine B (2), and sarmentamide D (4), and two previously synthesized ones, (1E,3S)-1-cinnamoyl-3- hydroxypyrrolidine (3) and N-[7'-(4'-methoxyphenyl)ethyl]-2-methoxybenzamide (5), were isolated from the aerial parts of Piper flaviflorum and Piper sarmentosum. Their structures were elucidated by detailed spectroscopic analysis and, in case of 3, by single-crystal X-ray diffraction. Most of the isolates were tested for their antifungal and antibacterial activities. Ten amides (6-15) showed antifungal activity against Cryptococcus neoformans ATCC 90 113 with IC50 values in the range between 4.7 and 20.0 µg/mL.


Assuntos
Alcaloides/farmacologia , Amidas/farmacologia , Antifúngicos/farmacologia , Cryptococcus neoformans/efeitos dos fármacos , Estrutura Molecular , Piper/química , Alcaloides/química , Alcaloides/isolamento & purificação , Amidas/química , Amidas/isolamento & purificação , Antifúngicos/química , Antifúngicos/isolamento & purificação , Componentes Aéreos da Planta/química , Extratos Vegetais/química , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/farmacologia , Difração de Raios X
9.
Mem Inst Oswaldo Cruz ; 112(10): 692-697, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28953997

RESUMO

BACKGROUND: Endophytic fungi, present mainly in the Ascomycota and Basidiomycota phyla, are associated with different plants and represent important producers of bioactive natural products. Brazil has a rich biodiversity of plant species, including those reported as being endemic. Among the endemic Brazilian plant species, Vellozia gigantea (Velloziaceae) is threatened by extinction and is a promising target to recover endophytic fungi. OBJECTIVE: The present study focused on bioprospecting of bioactive compounds of the endophytic fungi associated with V. gigantea, an endemic, ancient, and endangered plant species that occurs only in the rupestrian grasslands of Brazil. METHODS: The capability of 285 fungal isolates to produce antimicrobial and antimalarial activities was examined. Fungi were grown at solid-state fermentation to recover their crude extracts in dichloromethane. Bioactive extracts were analysed by chromatographic fractionation and NMR and displayed compounds with antimicrobial, antimycobacterial, and antimalarial activities. FINDINGS: Five fungi produced antimicrobial and antimalarial compounds. Extracts of Diaporthe miriciae showed antifungal, antibacterial, and antimalarial activities; Trichoderma effusum displayed selective antibacterial activity against methicillin-resistant Staphylococcus aureus and Mycobacterium intracellulare; and three Penicillium species showed antibacterial activity. D. miriciae extract contained highly functionalised secondary metabolites, yielding the compound epoxycytochalasin H with high antimalarial activity against the chloroquine-resistant strain of Plasmodium falciparum, with an IC50 approximately 3.5-fold lower than that with chloroquine. MAIN CONCLUSION: Our results indicate that V. gigantea may represent a microhabitat repository hotspot of potential fungi producers of bioactive compounds and suggest that endophytic fungal communities might be an important biological component contributing to the fitness of the plants living in the rupestrian grassland.


Assuntos
Antibacterianos/farmacologia , Antifúngicos/farmacologia , Antimaláricos/farmacologia , Endófitos/química , Magnoliopsida/microbiologia , Antibacterianos/isolamento & purificação , Antifúngicos/isolamento & purificação , Antimaláricos/isolamento & purificação , Bioensaio , Candida/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Magnoliopsida/classificação , Testes de Sensibilidade Microbiana , Fungos Mitospóricos/efeitos dos fármacos , Plasmodium/efeitos dos fármacos , Clima Tropical
10.
Environ Microbiol ; 18(1): 232-45, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26235221

RESUMO

This study assessed the diversity of cultivable rock-associated fungi from Atacama Desert. A total of 81 fungal isolates obtained were identified as 29 Ascomycota taxa by sequencing different regions of DNA. Cladosporium halotolerans, Penicillium chrysogenum and Penicillium cf. citrinum were the most frequent species, which occur at least in four different altitudes. The diversity and similarity indices ranged in the fungal communities across the latitudinal gradient. The Fisher-α index displayed the higher values for the fungal communities obtained from the siltstone and fine matrix of pyroclastic rocks with finer grain size, which are more degraded. A total of 23 fungal extracts displayed activity against the different targets screened. The extract of P. chrysogenum afforded the compounds α-linolenic acid and ergosterol endoperoxide, which were active against Cryptococcus neoformans and methicillin-resistance Staphylococcus aureus respectively. Our study represents the first report of a new habitat of fungi associated with rocks of the Atacama Desert and indicated the presence of interesting fungal community, including species related with saprobes, parasite/pathogen and mycotoxigenic taxa. The geological characteristics of the rocks, associated with the presence of rich resident/resilient fungal communities suggests that the rocks may provide a favourable microenvironment fungal colonization, survival and dispersal in extreme conditions.


Assuntos
Ascomicetos/metabolismo , Cladosporium/metabolismo , Cryptococcus neoformans/efeitos dos fármacos , Sedimentos Geológicos/microbiologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Penicillium/metabolismo , Ascomicetos/classificação , Ascomicetos/genética , Ascomicetos/isolamento & purificação , Chile , Cladosporium/classificação , Cladosporium/genética , Cladosporium/isolamento & purificação , Clima Desértico , Ecologia , Ecossistema , Dados de Sequência Molecular , Penicillium/classificação , Penicillium/genética , Penicillium/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA