Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nano Lett ; 21(23): 9889-9895, 2021 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-34807625

RESUMO

The functionality of a ferroic device is intimately coupled to the configuration of domains, domain boundaries, and the possibility for tailoring them. Exemplified with a ferromagnetic system, we present a novel approach which allows the creation of new, metastable multidomain patterns with tailored wall configurations through a self-assembled geometrical transformation. By preparing a magnetic layer system on a polymeric platform including swelling layer, a repeated self-assembled rolling into a multiwinding tubular structure and unrolling of the functional membrane is obtained. When polarizing the rolled-up 3D structure in a simple homogeneous magnetic field, the imprinted configuration translates into a regularly arranged multidomain configuration once the tubular structure is unwound. The process is linked to the employed magnetic anisotropy with respect to the surface normal, and the geometrical transformation connects the angular with the lateral degrees of freedom. This combination offers unparalleled possibilities for designing new magnetic or other ferroic micropatterns.


Assuntos
Magnetismo , Imãs , Anisotropia , Campos Magnéticos , Polímeros
2.
Small ; 17(24): e2101704, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33977641

RESUMO

Imperceptible electronics will make next-generation healthcare and biomedical systems thinner, lighter, and more flexible. While other components are thoroughly investigated, imperceptible energy storage devices lag behind because the decrease of thickness impairs the area-specific energy density. Imperceptible supercapacitors with high area-specific capacitance based on reduced graphene oxide/polyaniline (RGO/PANI) composite electrodes and polyvinyl alcohol (PVA)/H2 SO4 gel electrolyte are reported. Two strategies to realize a supercapacitor with a total device thickness of 5 µm-including substrate, electrode, and electrolyte-and an area-specific capacitance of 36 mF cm-2 simultaneously are implemented. First, the void volume of the RGO/PANI electrodes through mechanical compression is reduced, which decreases the thickness by 83% while retaining 89% of the capacitance. Second, the PVA-to-H2 SO4 mass ratio is decreased to 1:4.5, which improves the ion conductivity by 5000% compared to the commonly used PVA/H2 SO4 gel. Both advantages enable a 2 µm-thick gel electrolyte for planar interdigital supercapacitors. The impressive electromechanical stability of the imperceptible supercapacitors by wrinkling the substrate to produce folds with radii of 6 µm or less is demonstrated. The supercapacitors will be meaningful energy storage modules for future self-powered imperceptible electronics.


Assuntos
Eletrólitos , Álcool de Polivinil , Capacitância Elétrica , Condutividade Elétrica , Eletrodos
3.
Small ; 17(5): e2002549, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448115

RESUMO

Analytical platforms based on impedance spectroscopy are promising for non-invasive and label-free analysis of single cells as well as of their extracellular matrix, being essential to understand cell function in the presence of certain diseases. Here, an innovative rolled-up impedimetric microfulidic sensor, called sensor-in-a-tube, is introduced for the simultaneous analysis of single human monocytes CD14+ and their extracellular medium upon liposaccharides (LPS)-mediated activation. In particular, rolled-up platinum microelectrodes are integrated within for the static and dynamic (in-flow) detection of cells and their surrounding medium (containing expressed cytokines) over an excitation frequency range from 102 to 5 × 106  Hz. The correspondence between cell activation stages and the electrical properties of the cell surrounding medium have been detected by electrical impedance spectroscopy in dynamic mode without employing electrode surface functionalization or labeling. The designed sensor-in-a-tube platform is shown as a sensitive and reliable tool for precise single cell analysis toward immune-deficient diseases diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Espectroscopia Dielétrica , Impedância Elétrica , Humanos , Microeletrodos , Microfluídica , Análise de Célula Única
4.
Nat Commun ; 15(1): 2048, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38448405

RESUMO

Modification of the magnetic properties under the induced strain and curvature is a promising avenue to build three-dimensional magnetic devices, based on the domain wall motion. So far, most of the studies with 3D magnetic structures were performed in the helixes and nanowires, mainly with stationary domain walls. In this study, we demonstrate the impact of 3D geometry, strain and curvature on the current-induced domain wall motion and spin-orbital torque efficiency in the heterostructure, realized via a self-assembly rolling technique on a polymeric platform. We introduce a complete 3D memory unit with write, read and store functionality, all based on the field-free domain wall motion. Additionally, we conducted a comparative analysis between 2D and 3D structures, particularly addressing the influence of heat during the electric current pulse sequences. Finally, we demonstrated a remarkable increase of 30% in spin-torque efficiency in 3D configuration.

5.
Adv Mater ; 36(26): e2313327, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38402420

RESUMO

Choreographing the adaptive shapes of patterned surfaces to exhibit designable mechanical interactions with their environment remains an intricate challenge. Here, a novel category of strain-engineered dynamic-shape materials, empowering diverse multi-dimensional shape modulations that are combined to form fine-grained adaptive microarchitectures is introduced. Using micro-origami tessellation technology, heterogeneous materials are provided with strategic creases featuring stimuli-responsive micro-hinges that morph precisely upon chemical and electrical cues. Freestanding multifaceted foldable packages, auxetic mesosurfaces, and morphable cages are three of the forms demonstrated herein of these complex 4-dimensional (4D) metamaterials. These systems are integrated in dual proof-of-concept bioelectronic demonstrations: a soft foldable supercapacitor enhancing its power density (≈108 mW cm-2), and a bio-adaptive device with a dynamic shape that may enable novel smart-implant technologies. This work demonstrates that intelligent material systems are now ready to support ultra-flexible 4D microelectronics, which can impart autonomy to devices culminating in the tangible realization of microelectronic morphogenesis.

6.
Adv Mater ; 36(15): e2310667, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38232386

RESUMO

Zn batteries show promise for microscale applications due to their compatibility with air fabrication but face challenges like dendrite growth and chemical corrosion, especially at the microscale. Despite previous attempts in electrolyte engineering, achieving successful patterning of electrolyte microscale devices has remained challenging. Here, successful patterning using photolithography is enabled by incorporating caffeine into a UV-crosslinked polyacrylamide hydrogel electrolyte. Caffeine passivates the Zn anode, preventing chemical corrosion, while its coordination with Zn2+ ions forms a Zn2+-conducting complex that transforms into ZnCO3 and 2ZnCO3·3Zn(OH)2 over cycling. The resulting Zn-rich interphase product significantly enhances Zn reversibility. In on-chip microbatteries, the resulting solid-electrolyte interphase allows the Zn||MnO2 full cell to cycle for over 700 cycles with an 80% depth of discharge. Integrating the photolithographable electrolyte into multilayer microfabrication creates a microbattery with a 3D Swiss-roll structure that occupies a footprint of 0.136 mm2. This tiny microbattery retains 75% of its capacity (350 µAh cm-2) for 200 cycles at a remarkable 90% depth of discharge. The findings offer a promising solution for enhancing the performance of Zn microbatteries, particularly for on-chip microscale devices, and have significant implications for the advancement of autonomous microscale devices.

7.
Chemphyschem ; 14(9): 1771-6, 2013 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-23568510

RESUMO

The field of printable electronics is well developed. A large variety of electronic components assembled as printable optoelectronic devices and communication modules are already available. However, the element responding to a magnetic field, which is highly demanded for the concept of printable electronics has only been realized very recently. A printable magnetic sensing device has been one of the remaining missing building blocks crucial to realize the concept of entirely printable electronics. Here, we position the novel topic of printable magnetic sensorics in a family of printable electronics and highlight possible application directions of this technology.

8.
Adv Mater ; 35(51): e2306344, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37814374

RESUMO

Microelectronic morphogenesis is the creation and maintenance of complex functional structures by microelectronic information within shape-changing materials. Only recently has in-built information technology begun to be used to reshape materials and their functions in three dimensions to form smart microdevices and microrobots. Electronic information that controls morphology is inheritable like its biological counterpart, genetic information, and is set to open new vistas of technology leading to artificial organisms when coupled with modular design and self-assembly that can make reversible microscopic electrical connections. Three core capabilities of cells in organisms, self-maintenance (homeostatic metabolism utilizing free energy), self-containment (distinguishing self from nonself), and self-reproduction (cell division with inherited properties), once well out of reach for technology, are now within the grasp of information-directed materials. Construction-aware electronics can be used to proof-read and initiate game-changing error correction in microelectronic self-assembly. Furthermore, noncontact communication and electronically supported learning enable one to implement guided self-assembly and enhance functionality. Here, the fundamental breakthroughs that have opened the pathway to this prospective path are reviewed, the extent and way in which the core properties of life can be addressed are analyzed, and the potential and indeed necessity of such technology for sustainable high technology in society is discussed.

9.
ACS Nano ; 17(6): 5211-5295, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36892156

RESUMO

Humans rely increasingly on sensors to address grand challenges and to improve quality of life in the era of digitalization and big data. For ubiquitous sensing, flexible sensors are developed to overcome the limitations of conventional rigid counterparts. Despite rapid advancement in bench-side research over the last decade, the market adoption of flexible sensors remains limited. To ease and to expedite their deployment, here, we identify bottlenecks hindering the maturation of flexible sensors and propose promising solutions. We first analyze challenges in achieving satisfactory sensing performance for real-world applications and then summarize issues in compatible sensor-biology interfaces, followed by brief discussions on powering and connecting sensor networks. Issues en route to commercialization and for sustainable growth of the sector are also analyzed, highlighting environmental concerns and emphasizing nontechnical issues such as business, regulatory, and ethical considerations. Additionally, we look at future intelligent flexible sensors. In proposing a comprehensive roadmap, we hope to steer research efforts towards common goals and to guide coordinated development strategies from disparate communities. Through such collaborative efforts, scientific breakthroughs can be made sooner and capitalized for the betterment of humanity.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Qualidade de Vida
10.
Nano Lett ; 11(6): 2522-6, 2011 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-21557570

RESUMO

We fabricated [Co/Cu] multilayers revealing a giant magnetoresistance (GMR) effect on free-standing elastic poly(dimethylsiloxane) (PDMS) membranes. The GMR performance of [Co/Cu] multilayers on rigid silicon and on free-standing PDMS is similar and does not change with tensile deformations up to 4.5%. Mechanical deformations imposed on the sensor are totally reversible, due to the elasticity of the PDMS membranes. This remarkable performance upon stretching relies on a wrinkling of GMR layers on top of the PDMS membrane.


Assuntos
Magnetismo , Cobalto/química , Cobre/química , Dimetilpolisiloxanos/química , Eletrônica , Membranas Artificiais , Tamanho da Partícula , Silício/química , Propriedades de Superfície
11.
Nat Commun ; 13(1): 2121, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440595

RESUMO

Magnetic sensors are widely used in our daily life for assessing the position and orientation of objects. Recently, the magnetic sensing modality has been introduced to electronic skins (e-skins), enabling remote perception of moving objects. However, the integration density of magnetic sensors is limited and the vector properties of the magnetic field cannot be fully explored since the sensors can only perceive field components in one or two dimensions. Here, we report an approach to fabricate high-density integrated active matrix magnetic sensor with three-dimensional (3D) magnetic vector field sensing capability. The 3D magnetic sensor is composed of an array of self-assembled micro-origami cubic architectures with biased anisotropic magnetoresistance (AMR) sensors manufactured in a wafer-scale process. Integrating the 3D magnetic sensors into an e-skin with embedded magnetic hairs enables real-time multidirectional tactile perception. We demonstrate a versatile approach for the fabrication of active matrix integrated 3D sensor arrays using micro-origami and pave the way for new electronic devices relying on the autonomous rearrangement of functional elements in space.


Assuntos
Percepção do Tato , Dispositivos Eletrônicos Vestíveis , Magnetismo , Pele
12.
Nanoscale ; 14(37): 13667-13678, 2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36082910

RESUMO

Linear oscillatory motion of domain walls (DWs) in the kHz and MHz regime is crucial when realizing precise magnetic field sensors such as giant magnetoimpedance devices. Numerous magnetically active defects lead to pinning of the DWs during their motion, affecting the overall behavior. Thus, the direct monitoring of the domain wall's oscillatory behavior is an important step to comprehend the underlying micromagnetic processes and to improve the magnetoresistive performance of these devices. Here, we report an imaging approach to investigate such DW dynamics with nanoscale spatial resolution employing conventional table-top microscopy techniques. Time-averaged magnetic force microscopy and Kerr imaging methods are applied to quantify the DW oscillations in Ni81Fe19 rectangular structures with Landau domain configuration and are complemented by numeric micromagnetic simulations. We study the oscillation amplitude as a function of external magnetic field strength, frequency, magnetic structure size, thickness and anisotropy and understand the excited DW behavior as a forced damped harmonic oscillator with restoring force being influenced by the geometry, thickness, and anisotropy of the Ni81Fe19 structure. This approach offers new possibilities for the analysis of DW motion at elevated frequencies and at a spatial resolution of well below 100 nm in various branches of nanomagnetism.

13.
J Magn Reson ; 332: 107077, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634649

RESUMO

We derive the normalized limit of detection for frequency space (nLODf) as a parameter to measure the sensitivity of an NMR spectroscopy setup. nLODf is independent of measurement settings such as bandwidth or number of measurement points, and allows to compare performances of different setups. We demonstrate the usefulness of the new nLODf by comparing the sensitivity of NMR setups from various publications, which all use microcoils. Finally, we want to propose a standard measurement and report format for the sensitivity of new NMR setups.

14.
Sci Adv ; 7(44): eabj0767, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705511

RESUMO

Oscillations at several hertz are a key feature of dynamic behavior of various biological entities, such as the pulsating heart, firing neurons, or the sperm-beating flagellum. Inspired by nature's fundamental self-oscillations, we use electroactive polymer microactuators and three-dimensional microswitches to create a synthetic electromechanical parametric relaxation oscillator (EMPRO) that relies on the shape change of micropatterned polypyrrole and generates a rhythmic motion at biologically relevant stroke frequencies of up to ~95 Hz. We incorporate an Ag-Mg electrochemical battery into the EMPRO for autonomous operation in a nontoxic environment. Such a self-sufficient self-oscillating microsystem offers new opportunities for artificial life at low Reynolds numbers by, for instance, mimicking and replacing nature's propulsion and pumping units.

15.
Adv Mater ; 33(8): e2007497, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33448064

RESUMO

Owing to their high safety and reversibility, aqueous microbatteries using zinc anodes and an acid electrolyte have emerged as promising candidates for wearable electronics. However, a critical limitation that prevents implementing zinc chemistry at the microscale lies in its spontaneous corrosion in an acidic electrolyte that causes a capacity loss of 40% after a ten-hour rest. Widespread anti-corrosion techniques, such as polymer coating, often retard the kinetics of zinc plating/stripping and lack spatial control at the microscale. Here, a polyimide coating that resolves this dilemma is reported. The coating prevents corrosion and hence reduces the capacity loss of a standby microbattery to 10%. The coordination of carbonyl oxygen in the polyimide with zinc ions builds up over cycling, creating a zinc blanket that minimizes the concentration gradient through the electrode/electrolyte interface and thus allows for fast kinetics and low plating/stripping overpotential. The polyimide's patternable feature energizes microbatteries in both aqueous and hydrogel electrolytes, delivering a supercapacitor-level rate performance and 400 stable cycles in the hydrogel electrolyte. Moreover, the microbattery is able to be attached to human skin and offers strong resistance to deformations, splashing, and external shock. The skin-mountable microbattery demonstrates an excellent combination of anti-corrosion, reversibility, and durability in wearables.

16.
Nat Commun ; 12(1): 4967, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426576

RESUMO

Today's smallest energy storage devices for in-vivo applications are larger than 3 mm3 and lack the ability to continuously drive the complex functions of smart dust electronic and microrobotic systems. Here, we create a tubular biosupercapacitor occupying a mere volume of 1/1000 mm3 (=1 nanoliter), yet delivering up to 1.6 V in blood. The tubular geometry of this nano-biosupercapacitor provides efficient self-protection against external forces from pulsating blood or muscle contraction. Redox enzymes and living cells, naturally present in blood boost the performance of the device by 40% and help to solve the self-discharging problem persistently encountered by miniaturized supercapacitors. At full capacity, the nano-biosupercapacitors drive a complex integrated sensor system to measure the pH-value in blood. This demonstration opens up opportunities for next generation intravascular implants and microrobotic systems operating in hard-to-reach small spaces deep inside the human body.


Assuntos
Técnicas Biossensoriais , Sangue/metabolismo , Capacitância Elétrica , Nanopartículas/química , Animais , Cães , Eletroquímica , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons , Células Madin Darby de Rim Canino , Temperatura
17.
Sci Adv ; 7(51): eabl5408, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919439

RESUMO

Existing electronically integrated catheters rely on the manual assembly of separate components to integrate sensing and actuation capabilities. This strongly impedes their miniaturization and further integration. Here, we report an electronically integrated self-assembled microcatheter. Electronic components for sensing and actuation are embedded into the catheter wall through the self-assembly of photolithographically processed polymer thin films. With a diameter of only about 0.1 mm, the catheter integrates actuated digits for manipulation and a magnetic sensor for navigation and is capable of targeted delivery of liquids. Fundamental functionalities are demonstrated and evaluated with artificial model environments and ex vivo tissue. Using the integrated magnetic sensor, we develop a strategy for the magnetic tracking of medical tools that facilitates basic navigation with a high resolution below 0.1 mm. These highly flexible and microsized integrated catheters might expand the boundary of minimally invasive surgery and lead to new biomedical applications.

18.
Adv Mater ; 33(26): e2101272, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34028906

RESUMO

Many modern electronic applications rely on functional units arranged in an active-matrix integrated on a single chip. The active-matrix allows numerous identical device pixels to be addressed within a single system. However, next-generation electronics requires heterogeneous integration of dissimilar devices, where sensors, actuators, and display pixels sense and interact with the local environment. Heterogeneous material integration allows the reduction of size, increase of functionality, and enhancement of performance; however, it is challenging since front-end fabrication technologies in microelectronics put extremely high demands on materials, fabrication protocols, and processing environments. To overcome the obstacle in heterogeneous material integration, digital electrochemistry is explored here, which site-selectively carries out electrochemical processes to deposit and address electroactive materials within the pixel array. More specifically, an amorphous indium-gallium-zinc oxide (a-IGZO) thin-film-transistor (TFT) active-matrix is used to address pixels within the matrix and locally control electrochemical reactions for material growth and actuation. The digital electrochemistry procedure is studied in-depth by using polypyrrole (PPy) as a model material. Active-matrix-driven multicolored electrochromic patterns and actuator arrays are fabricated to demonstrate the capabilities of this approach for material integration. The approach can be extended to a broad range of materials and structures, opening up a new path for advanced heterogeneous microsystem integration.

19.
Adv Mater ; 32(15): e1902994, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31512308

RESUMO

Modern microelectronic systems and their components are essentially 3D devices that have become smaller and lighter in order to improve performance and reduce costs. To maintain this trend, novel materials and technologies are required that provide more structural freedom in 3D over conventional microelectronics, as well as easier parallel fabrication routes while maintaining compatability with existing manufacturing methods. Self-assembly of initially planar membranes into complex 3D architectures offers a wealth of opportunities to accommodate thin-film microelectronic functionalities in devices and systems possessing improved performance and higher integration density. Existing work in this field, with a focus on components constructed from 3D self-assembly, is reviewed, and an outlook on their application potential in tomorrow's microelectronics world is provided.

20.
Adv Mater ; 32(37): e2003252, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32686201

RESUMO

Mechanical strain formed at the interfaces of thin films has been widely applied to self-assemble 3D microarchitectures. Among them, rolled-up microtubes possess a unique 3D geometry beneficial for working as photonic, electromagnetic, energy storage, and sensing devices. However, the yield and quality of microtubular architectures are often limited by the wet-release of lithographically patterned stacks of thin-film structures. To address the drawbacks of conventionally used wet-etching methods in self-assembly techniques, here a dry-release approach is developed to roll-up both metallic and dielectric, as well as metallic/dielectric hybrid thin films for the fabrication of electronic and optical devices. A silicon thin film sacrificial layer on insulator is etched by dry fluorine chemistry, triggering self-assembly of prestrained nanomembranes in a well-controlled wafer scale fashion. More than 6000 integrated microcapacitors as well as hundreds of active microtubular optical cavities are obtained in a simultaneous self-assembly process. The fabrication of wafer-scale self-assembled microdevices results in high yield, reproducibility, uniformity, and performance, which promise broad applications in microelectronics, photonics, and opto-electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA