Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Scand J Psychol ; 63(5): 484-494, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35524466

RESUMO

This study investigated whether differences between personality styles in the processing of social stimuli reflect variability in underlying general-purpose or social-specific neurocognitive mechanisms. Sixty-five individuals classified previously into two distinct personality profiles underwent high-density electroencephalography whilst performing tasks that tap into both aspects of cognitive processing - namely, two distinct facets of general-purpose response inhibition (interference resolution and action withholding) during social information processing. To determine the stage of processing at which personality differences manifest, we assessed event-related components associated with the early visual discrimination of social stimuli (N170, N190) and later more general conflict-related processes (N2, P3). Although a performance index of interference resolution was comparable between the personality profiles, differences were detected in action withholding. Specifically, individuals expressing a wider repertoire of personality styles and more adaptive emotion regulation performed significantly better at withholding inappropriate actions to neutral faces presented in emotional contexts compared with those exhibiting stronger preferences for fewer and less adaptive personality styles and more ruminative affective tendencies. At the neurophysiological level, however, difference between the profiles was observed in brain responses elicited to the same stimuli within the N170. These results indicate that neural processes related to early visual discrimination might contribute to differences in the suppression of inappropriate responses towards social stimuli in populations with different personality dispositions.


Assuntos
Eletroencefalografia , Potenciais Evocados , Cognição/fisiologia , Eletroencefalografia/métodos , Emoções/fisiologia , Potenciais Evocados/fisiologia , Humanos , Personalidade
2.
Hum Brain Mapp ; 42(17): 5626-5635, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34448523

RESUMO

The degree of response to subthalamic nucleus deep brain stimulation (STN-DBS) is individual and hardly predictable. We hypothesized that DBS-related changes in cortical network organization are related to the clinical effect. Network analysis based on graph theory was used to evaluate the high-density electroencephalography (HDEEG) recorded during a visual three-stimuli paradigm in 32 Parkinson's disease (PD) patients treated by STN-DBS in stimulation "off" and "on" states. Preprocessed scalp data were reconstructed into the source space and correlated to the behavioral parameters. In the majority of patients (n = 26), STN-DBS did not lead to changes in global network organization in large-scale brain networks. In a subgroup of suboptimal responders (n = 6), identified according to reaction times (RT) and clinical parameters (lower Unified Parkinson's Disease Rating Scale [UPDRS] score improvement after DBS and worse performance in memory tests), decreased global connectivity in the 1-8 Hz frequency range and regional node strength in frontal areas were detected. The important role of the supplementary motor area for the optimal DBS response was demonstrated by the increased node strength and eigenvector centrality in good responders. This response was missing in the suboptimal responders. Cortical topologic architecture is modified by the response to STN-DBS leading to a dysfunction of the large-scale networks in suboptimal responders.


Assuntos
Córtex Cerebral/fisiopatologia , Estimulação Encefálica Profunda , Rede Nervosa/fisiopatologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/terapia , Desempenho Psicomotor/fisiologia , Núcleo Subtalâmico/fisiopatologia , Idoso , Eletroencefalografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Avaliação de Resultados em Cuidados de Saúde
3.
Hum Brain Mapp ; 42(9): 2921-2930, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33772952

RESUMO

Many methods applied to data acquired by various imaging modalities have been evaluated for their benefit in localizing lesions in magnetic resonance (MR) negative epilepsy patients. No approach has proven to be a stand-alone method with sufficiently high sensitivity and specificity. The presented study addresses the potential benefit of the automated fusion of results of individual methods in presurgical evaluation. We collected electrophysiological, MR, and nuclear imaging data from 137 patients with pharmacoresistant MR-negative/inconclusive focal epilepsy. A subgroup of 32 patients underwent surgical treatment with known postsurgical outcomes and histopathology. We employed a Gaussian mixture model to reveal several classes of gray matter tissue. Classes specific to epileptogenic tissue were identified and validated using the surgery subgroup divided into two disjoint sets. We evaluated the classification accuracy of the proposed method at a voxel-wise level and assessed the effect of individual methods. The training of the classifier resulted in six classes of gray matter tissue. We found a subset of two classes specific to tissue located in resected areas. The average classification accuracy (i.e., the probability of correct classification) was significantly higher than the level of chance in the training group (0.73) and even better in the validation surgery subgroup (0.82). Nuclear imaging, diffusion-weighted imaging, and source localization of interictal epileptic discharges were the strongest methods for classification accuracy. We showed that the automatic fusion of results can identify brain areas that show epileptogenic gray matter tissue features. The method might enhance the presurgical evaluations of MR-negative epilepsy patients.


Assuntos
Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Tomografia por Emissão de Pósitrons/métodos , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Adulto , Feminino , Humanos , Masculino , Imagem Multimodal
4.
Cogn Affect Behav Neurosci ; 21(1): 212-230, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33432546

RESUMO

During social interactions, humans tend to imitate one another involuntarily. To investigate the neurocognitive mechanisms driving this tendency, researchers often employ stimulus-response compatibility (SRC) tasks to assess the influence that action observation has on action execution. This is referred to as automatic imitation (AI). The stimuli used frequently in SRC procedures to elicit AI often confound action-related with other nonsocial influences on behaviour; however, in response to the rotated hand-action stimuli employed increasingly, AI partly reflects unspecific up-right/down-left biases in stimulus-response mapping. Despite an emerging awareness of this confounding orthogonal spatial-compatibility effect, psychological and neuroscientific research into social behaviour continues to employ these stimuli to investigate AI. To increase recognition of this methodological issue, the present study measured the systematic influence of orthogonal spatial effects on behavioural and neurophysiological measures of AI acquired with rotated hand-action stimuli in SRC tasks. In Experiment 1, behavioural data from a large sample revealed that complex orthogonal spatial effects exert an influence on AI over and above any topographical similarity between observed and executed actions. Experiment 2 reproduced this finding in a more systematic, within-subject design, and high-density electroencephalography revealed that electrocortical expressions of AI elicited also are modulated by orthogonal spatial compatibility. Finally, source localisations identified a collection of cortical areas sensitive to this spatial confound, including nodes of the multiple-demand and semantic-control networks. These results indicate that AI measured on SRC procedures with the rotated hand stimuli used commonly might reflect neurocognitive mechanisms associated with spatial associations rather than imitative tendencies.


Assuntos
Mãos , Comportamento Imitativo , Humanos , Tempo de Reação
5.
Mov Disord ; 36(10): 2435-2440, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34346104

RESUMO

BACKGROUND: Electrophysiological markers of prodromal dementia with Lewy bodies were described in the spectral domain. The sub-second temporal resolution may provide additional information. OBJECTIVE: To evaluate electroencephalography (EEG) microstates in patients with mild cognitive impairment with Lewy bodies and to assess the association between their temporal dynamics and the spectral marker. METHODS: Temporal parameters of microstates were compared between 21 patients with mild cognitive impairment with Lewy bodies and 21 healthy controls. The dominant alpha frequency was correlated with microstate parameters. RESULTS: Microstates A-D showed higher occurrence in the patient group. Microstate B additionally revealed shorter mean duration and increased time coverage; its occurrence correlated with the dominant alpha frequency in the patient group. CONCLUSIONS: Temporal dynamics of all EEG microstates were altered in medication-naïve subjects with prodromal dementia with Lewy bodies. Longitudinal follow-up may reveal how EEG microstates reflect progression of brain function deficits and effects of treatment manipulations. © 2021 International Parkinson and Movement Disorder Society.


Assuntos
Disfunção Cognitiva , Doença por Corpos de Lewy , Encéfalo , Disfunção Cognitiva/etiologia , Eletroencefalografia , Humanos , Corpos de Lewy , Descanso
6.
Epilepsia ; 62(5): e70-e75, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33755992

RESUMO

We hypothesized that local/regional properties of stimulated structure/circuitry contribute to the effect of deep brain stimulation (DBS). We analyzed intracerebral electroencephalographic (EEG) recordings from externalized DBS electrodes targeted bilaterally in the anterior nuclei of the thalamus (ANT) in 12 patients (six responders, six nonresponders) with more than 1 year of follow-up care. In the bipolar local field potentials of the EEG, spectral power (PW) and power spectral entropy (PSE) were calculated in the passbands 1-4, 4-8, 8-12, 12-20, 20-45, 65-80, 80-200 and 200-500 Hz. The most significant differences between responders and nonresponders were observed in the BRIDGE area (bipolar recordings with one contact within the ANT and the second contact in adjacent tissue). In responders, PW was significantly decreased in the frequency bands of 65-80, 80-200, and 200-500 Hz (p < .05); PSE was significantly increased in all frequency bands (p < .05) except for 200-500 Hz (p = .06). The local EEG characteristics of ANT recorded after implantation may play a significant role in DBS response prediction.


Assuntos
Núcleos Anteriores do Tálamo/fisiopatologia , Núcleos Anteriores do Tálamo/cirurgia , Estimulação Encefálica Profunda/métodos , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/cirurgia , Eletroencefalografia/métodos , Humanos
7.
Brain Topogr ; 34(3): 272-282, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33515171

RESUMO

It has been suggested that slow oscillations in the subthalamic nucleus (STN) reflect top-down inputs from the medial prefrontal cortex, thus implementing behavior control. It is unclear, however, whether the STN oscillations are related to cortical activity in a bottom-up manner. To assess resting-state subcortico-cortical interactions, we recorded simultaneous scalp electroencephalographic activity and local field potentials in the STN (LFP-STN) in 11 patients with Parkinson's disease implanted with deep brain stimulation electrodes in the on-medication state during rest. We assessed the cross-structural phase-amplitude coupling (PAC) between the STN and cortical activity within a wide frequency range of 1 to 100 Hz. The PAC was dominant between the δ/θ STN phase and ß/γ cortical amplitude in most investigated scalp regions and between the δ cortical phase and θ/α STN amplitude in the frontal and temporal regions. The cross-frequency linkage between the slow oscillations of the LFP-STN activity and the amplitude of the scalp-recorded cortical activity at rest was demonstrated, and similar involvement of the left and right STNs in the coupling was observed. Our results suggest that the STN plays a role in both bottom-up and top-down processes within the subcortico-cortical circuitries of the human brain during the resting state. A relative left-right symmetry in the STN-cortex functional linkage was suggested. Practical treatment studies would be necessary to assess whether unilateral stimulation of the STN might be sufficient for treatment of Parkinson's disease.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Eletroencefalografia , Humanos , Doença de Parkinson/terapia , Couro Cabeludo
8.
Epilepsy Behav ; 122: 108196, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34256340

RESUMO

OBJECTIVE: We analyzed the impact of temporal lobe epilepsy (TLE) with hippocampal sclerosis (HS) on functional connectivity (FC) between mesiotemporal structures. Functional connectivity modifications related to word retrieval were investigated. METHODS: High-density EEG of 21 patients with TLE with HS (12 left TLE and 9 right TLE) and 10 healthy controls (HCs) were recorded during a verbal subsequent memory paradigm. Electroencephalography data were reconstructed into the source space and FC was calculated from the source activity of regions of interest. RESULTS: A significant decrease in FC between the right- and left-sided mesiotemporal structures in TLE was observed. The decrease was significant only with words that were correctly recognized. The decrease in interhemispheric FC between mesiotemporal structures was found in the 8- to 20-Hz frequency range in both left and right TLE. SIGNIFICANCE: The decreased FC between the mesiotemporal structures in TLE is a condition for successful performance of a memory retrieval task. The successful memory retrieval in TLE is related to functional segregation of lesional from nonlesional mesiotemporal structures. This decrease was absent in non-successful responses.


Assuntos
Epilepsia do Lobo Temporal , Eletroencefalografia , Epilepsia do Lobo Temporal/complicações , Lateralidade Funcional , Hipocampo , Humanos , Imageamento por Ressonância Magnética , Memória , Lobo Temporal
9.
Conscious Cogn ; 93: 103149, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34098153

RESUMO

Intentional motor action is typically characterized by the decision about the timing, and the selection of the action variant, known as the "what" component. We compared free action selection with instructed action, where the movement type was externally cued, in order to investigate the action selection and action representation in a Libet's task. Temporal and spatial locus of these processes was examined using the combination of high-density electroencephalography, topographic analysis of variance, and source reconstruction. Instructed action, engaging representation of the response movement, was associated with distinct negativity at the parietal and centro-parietal channels starting around 750 ms before the movement, which has a source particularly in the bilateral inferior parietal lobule. This suggests that in delayed-action tasks, the process of action representation in the inferior parietal lobule may play an important part in the larger parieto-frontal activity responsible for movement selection.


Assuntos
Movimento , Lobo Parietal , Mapeamento Encefálico , Preparações de Ação Retardada , Eletroencefalografia , Humanos
10.
J Neural Transm (Vienna) ; 127(12): 1579-1588, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32965592

RESUMO

Although deep brain stimulation of the subthalamic nucleus (STN-DBS) in Parkinson's disease (PD) is generally a successful therapy, adverse events and insufficient clinical effect can complicate the treatment in some patients. We studied clinical parameters and cortical oscillations related to STN-DBS to identify patients with suboptimal responses. High-density EEG was recorded during a visual oddball three-stimuli paradigm in DBS "off" and "on" conditions in 32 PD patients with STN-DBS. Pre-processed data were reconstructed into the source space and the time-frequency analysis was evaluated. We identified a subgroup of six patients with longer reaction times (RT) during the DBS "on" state than in the DBS "off" state after target stimuli. These subjects had lower motor responsiveness to DBS and decreased memory test results compared to the other subjects. Moreover, the alpha and beta power decrease (event-related desynchronizations, ERD), known as an activation correlate linked to motor and cognitive processing, was also reduced in the DBS "on" condition in these patients. A subgroup of PD patients with a suboptimal response to STN-DBS was identified. Evaluation of RT could potentially serve as a biomarker for responsiveness to STN-DBS.


Assuntos
Estimulação Encefálica Profunda , Doença de Parkinson , Núcleo Subtalâmico , Cognição , Humanos , Doença de Parkinson/terapia , Tempo de Reação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA