Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
1.
Nature ; 632(8025): 656-663, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39048817

RESUMO

Dysregulated transcription due to disruption in histone lysine methylation dynamics is an established contributor to tumorigenesis1,2. However, whether analogous pathologic epigenetic mechanisms act directly on the ribosome to advance oncogenesis is unclear. Here we find that trimethylation of the core ribosomal protein L40 (rpL40) at lysine 22 (rpL40K22me3) by the lysine methyltransferase SMYD5 regulates mRNA translation output to promote malignant progression of gastric adenocarcinoma (GAC) with lethal peritoneal ascites. A biochemical-proteomics strategy identifies the monoubiquitin fusion protein partner rpL40 (ref. 3) as the principal physiological substrate of SMYD5 across diverse samples. Inhibiting the SMYD5-rpL40K22me3 axis in GAC cell lines reprogrammes protein synthesis to attenuate oncogenic gene expression signatures. SMYD5 and rpL40K22me3 are upregulated in samples from patients with GAC and negatively correlate with clinical outcomes. SMYD5 ablation in vivo in familial and sporadic mouse models of malignant GAC blocks metastatic disease, including peritoneal carcinomatosis. Suppressing SMYD5 methylation of rpL40 inhibits human cancer cell and patient-derived GAC xenograft growth and renders them hypersensitive to inhibitors of PI3K and mTOR. Finally, combining SMYD5 depletion with PI3K-mTOR inhibition and chimeric antigen receptor T cell administration cures an otherwise lethal in vivo mouse model of aggressive GAC-derived peritoneal carcinomatosis. Together, our work uncovers a ribosome-based epigenetic mechanism that facilitates the evolution of malignant GAC and proposes SMYD5 targeting as part of a potential combination therapy to treat this cancer.


Assuntos
Metiltransferases , Proteínas Ribossômicas , Ribossomos , Neoplasias Gástricas , Animais , Feminino , Humanos , Camundongos , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Progressão da Doença , Epigênese Genética/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Histona-Lisina N-Metiltransferase/metabolismo , Histona-Lisina N-Metiltransferase/genética , Lisina/metabolismo , Metilação/efeitos dos fármacos , Metiltransferases/antagonistas & inibidores , Metiltransferases/deficiência , Metiltransferases/metabolismo , Neoplasias Peritoneais/tratamento farmacológico , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/metabolismo , Neoplasias Peritoneais/patologia , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Biossíntese de Proteínas , Proteínas Ribossômicas/química , Proteínas Ribossômicas/metabolismo , Ribossomos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/patologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/metabolismo , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
2.
EMBO J ; 41(6): e108650, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35156721

RESUMO

Gene expression is tightly regulated at the levels of both mRNA translation and stability. The poly(A)-binding protein (PABP) is thought to play a role in regulating these processes by binding the mRNA 3' poly(A) tail and interacting with both the translation and mRNA deadenylation machineries. In this study, we directly investigate the impact of PABP on translation and stability of endogenous mRNAs in human cells. Remarkably, our transcriptome-wide analysis only detects marginal mRNA translation changes in PABP-depleted cells. In contrast, rapidly depleting PABP alters mRNA abundance and stability, albeit non-uniformly. Otherwise stable transcripts, including those encoding proteins with constitutive functions, are destabilized in PABP-depleted cells. In contrast, many unstable mRNAs, including those encoding proteins with regulatory functions, decay at similar rates in presence or absence of PABP. Moreover, PABP depletion-induced cell death can partially be suppressed by disrupting the mRNA decapping and 5'-3' decay machinery. Finally, we provide evidence that the LSM1-7 complex promotes decay of "stable" mRNAs in PABP-depleted cells. Taken together, these findings suggest that PABP plays an important role in preventing the untimely decay of select mRNA populations.


Assuntos
Perfilação da Expressão Gênica , Morte Celular , Humanos , RNA Mensageiro/genética
3.
Nat Immunol ; 15(6): 503-11, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24840981

RESUMO

Selective translational control of gene expression is emerging as a principal mechanism for the regulation of protein abundance that determines a variety of functions in both the adaptive immune system and the innate immune system. The translation-initiation factor eIF4E acts as a node for such regulation, but non-eIF4E mechanisms are also prevalent. Studies of 'translatomes' (genome-wide pools of translated mRNA) have facilitated mechanistic discoveries by identifying key regulatory components, including transcription factors, that are under translational control. Here we review the current knowledge on mechanisms that regulate translation and thereby modulate immunological function. We further describe approaches for measuring and analyzing translatomes and how such powerful tools can facilitate future insights on the role of translational control in the immune system.


Assuntos
Regulação da Expressão Gênica/genética , Sistema Imunitário/imunologia , Biossíntese de Proteínas/genética , Transcrição Gênica , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Proteínas de Ciclo Celular , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/imunologia , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Camundongos , Complexos Multiproteicos/genética , Fosfoproteínas/genética , Fosfoproteínas/imunologia , Biossíntese de Proteínas/imunologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Serina-Treonina Quinases TOR/genética
4.
Mol Cell ; 67(6): 922-935.e5, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28918902

RESUMO

The mechanisms that link environmental and intracellular stimuli to mitochondrial functions, including fission/fusion, ATP production, metabolite biogenesis, and apoptosis, are not well understood. Here, we demonstrate that the nutrient-sensing mechanistic/mammalian target of rapamycin complex 1 (mTORC1) stimulates translation of mitochondrial fission process 1 (MTFP1) to control mitochondrial fission and apoptosis. Expression of MTFP1 is coupled to pro-fission phosphorylation and mitochondrial recruitment of the fission GTPase dynamin-related protein 1 (DRP1). Potent active-site mTOR inhibitors engender mitochondrial hyperfusion due to the diminished translation of MTFP1, which is mediated by translation initiation factor 4E (eIF4E)-binding proteins (4E-BPs). Uncoupling MTFP1 levels from the mTORC1/4E-BP pathway upon mTOR inhibition blocks the hyperfusion response and leads to apoptosis by converting mTOR inhibitor action from cytostatic to cytotoxic. These data provide direct evidence for cell survival upon mTOR inhibition through mitochondrial hyperfusion employing MTFP1 as a critical effector of mTORC1 to govern cell fate decisions.


Assuntos
Proteínas de Membrana/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Serina-Treonina Quinases TOR/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Apoptose , Sistemas CRISPR-Cas , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Dinaminas/genética , Dinaminas/metabolismo , Fatores de Iniciação em Eucariotos/genética , Fatores de Iniciação em Eucariotos/metabolismo , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Dinâmica Mitocondrial/efeitos dos fármacos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/farmacologia , Interferência de RNA , Transdução de Sinais , Serina-Treonina Quinases TOR/antagonistas & inibidores , Serina-Treonina Quinases TOR/genética , Transfecção
5.
Mol Cell ; 68(5): 885-900.e6, 2017 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-29220654

RESUMO

The integrated stress response (ISR) is a homeostatic mechanism induced by endoplasmic reticulum (ER) stress. In acute/transient ER stress, decreased global protein synthesis and increased uORF mRNA translation are followed by normalization of protein synthesis. Here, we report a dramatically different response during chronic ER stress. This chronic ISR program is characterized by persistently elevated uORF mRNA translation and concurrent gene expression reprogramming, which permits simultaneous stress sensing and proteostasis. The program includes PERK-dependent switching to an eIF3-dependent translation initiation mechanism, resulting in partial, but not complete, translational recovery, which, together with transcriptional reprogramming, selectively bolsters expression of proteins with ER functions. Coordination of transcriptional and translational reprogramming prevents ER dysfunction and inhibits "foamy cell" development, thus establishing a molecular basis for understanding human diseases associated with ER dysfunction.


Assuntos
Estresse do Retículo Endoplasmático , Fator de Iniciação 3 em Eucariotos/metabolismo , Fibroblastos/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/biossíntese , Transcrição Gênica , eIF-2 Quinase/metabolismo , Animais , Reprogramação Celular , Fator de Iniciação 3 em Eucariotos/genética , Fibroblastos/patologia , Células HEK293 , Humanos , Camundongos , Fases de Leitura Aberta , Fenótipo , Proteostase , Interferência de RNA , RNA Mensageiro/genética , Transdução de Sinais , Fatores de Tempo , Transfecção , eIF-2 Quinase/genética
6.
EMBO J ; 39(21): e105111, 2020 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-32945574

RESUMO

Elevated ribosome biogenesis in oncogene-driven cancers is commonly targeted by DNA-damaging cytotoxic drugs. Our previous first-in-human trial of CX-5461, a novel, less genotoxic agent that specifically inhibits ribosome biogenesis via suppression of RNA polymerase I (Pol I) transcription, revealed single-agent efficacy in refractory blood cancers. Despite this clinical response, patients were not cured. In parallel, we demonstrated a marked improvement in the in vivo efficacy of CX-5461 in combination with PI3K/AKT/mTORC1 pathway inhibitors. Here, we reveal the molecular basis for this improved efficacy observed in vivo, which is associated with specific suppression of translation of mRNAs encoding regulators of cellular metabolism. Importantly, acquired resistance to this cotreatment is driven by translational rewiring that results in dysregulated cellular metabolism and induction of a cAMP-dependent pathway critical for the survival of blood cancers including lymphoma and acute myeloid leukemia. Our studies thus identify key molecular mechanisms underpinning the response of blood cancers to selective inhibition of ribosome biogenesis and define metabolic vulnerabilities that will facilitate the rational design of more effective regimens for Pol I-directed therapies.


Assuntos
Neoplasias/metabolismo , Biossíntese de Proteínas/genética , Biossíntese de Proteínas/fisiologia , Ribossomos/metabolismo , Transcrição Gênica/efeitos dos fármacos , Animais , Antineoplásicos/farmacologia , Benzotiazóis/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Naftiridinas/farmacologia , Neoplasias/genética , Fosfatidilinositol 3-Quinases/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Inibidores de Proteínas Quinases , RNA Polimerase I/metabolismo , RNA Mensageiro/metabolismo , RNA Ribossômico , Ribossomos/efeitos dos fármacos , Transcriptoma
7.
Nat Chem Biol ; 18(9): 942-953, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35697798

RESUMO

Regenerating pancreatic ß-cells is a potential curative approach for diabetes. We previously identified the small molecule CID661578 as a potent inducer of ß-cell regeneration, but its target and mechanism of action have remained unknown. We now screened 257 million yeast clones and determined that CID661578 targets MAP kinase-interacting serine/threonine kinase 2 (MNK2), an interaction we genetically validated in vivo. CID661578 increased ß-cell neogenesis from ductal cells in zebrafish, neonatal pig islet aggregates and human pancreatic ductal organoids. Mechanistically, we found that CID661578 boosts protein synthesis and regeneration by blocking MNK2 from binding eIF4G in the translation initiation complex at the mRNA cap. Unexpectedly, this blocking activity augmented eIF4E phosphorylation depending on MNK1 and bolstered the interaction between eIF4E and eIF4G, which is necessary for both hypertranslation and ß-cell regeneration. Taken together, our findings demonstrate a targetable role of MNK2-controlled translation in ß-cell regeneration, a role that warrants further investigation in diabetes.


Assuntos
Fator de Iniciação 4E em Eucariotos , Fator de Iniciação Eucariótico 4G , Animais , Linhagem Celular , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Recém-Nascido , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Peixe-Zebra/metabolismo
8.
EMBO J ; 38(23): e101323, 2019 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-31556460

RESUMO

Estrogen receptor alpha (ERα) activity is associated with increased cancer cell proliferation. Studies aiming to understand the impact of ERα on cancer-associated phenotypes have largely been limited to its transcriptional activity. Herein, we demonstrate that ERα coordinates its transcriptional output with selective modulation of mRNA translation. Importantly, translational perturbations caused by depletion of ERα largely manifest as "translational offsetting" of the transcriptome, whereby amounts of translated mRNAs and corresponding protein levels are maintained constant despite changes in mRNA abundance. Transcripts whose levels, but not polysome association, are reduced following ERα depletion lack features which limit translation efficiency including structured 5'UTRs and miRNA target sites. In contrast, mRNAs induced upon ERα depletion whose polysome association remains unaltered are enriched in codons requiring U34-modified tRNAs for efficient decoding. Consistently, ERα regulates levels of U34-modifying enzymes and thereby controls levels of U34-modified tRNAs. These findings unravel a hitherto unprecedented mechanism of ERα-dependent orchestration of transcriptional and translational programs that may be a pervasive mechanism of proteome maintenance in hormone-dependent cancers.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/genética , Regulação Neoplásica da Expressão Gênica , Polirribossomos/genética , Biossíntese de Proteínas , RNA Mensageiro/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proliferação de Células , Receptor alfa de Estrogênio/metabolismo , Feminino , Humanos , Células MCF-7 , Polirribossomos/metabolismo , RNA Mensageiro/metabolismo , Transdução de Sinais , Ativação Transcricional
9.
Biochem Biophys Res Commun ; 654: 73-79, 2023 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-36893606

RESUMO

Identifying mechanisms driving the transition from ductal carcinoma in situ (DCIS) to invasive breast cancer remains a challenge in breast cancer research. Breast cancer progression is accompanied by remodelling and stiffening of the extracellular matrix, leading to increased proliferation, survival, and migration. Here, we studied stiffness-dependent phenotypes in MCF10CA1a (CA1a) breast cancer cells cultured on hydrogels with stiffness corresponding to normal breast and breast cancer. This revealed a stiffness-associated morphology consistent with acquisition of an invasive phenotype in breast cancer cells. Surprisingly, this strong phenotypic switch was accompanied by relatively modest transcriptome-wide alterations in mRNA levels, as independently quantified using both DNA-microarrays and bulk RNA sequencing. Strikingly, however, the stiffness-dependent alterations in mRNA levels overlapped with those contrasting ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC). This supports a role of matrix stiffness in driving the pre-invasive to invasive transition and suggests that mechanosignalling may be a target for prevention of invasive breast cancer.


Assuntos
Neoplasias da Mama , Carcinoma in Situ , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Humanos , Feminino , Carcinoma Intraductal não Infiltrante/genética , Carcinoma Intraductal não Infiltrante/patologia , Carcinoma Ductal de Mama/genética , Carcinoma Ductal de Mama/patologia , Transcriptoma , Matriz Extracelular/genética , Matriz Extracelular/patologia , Neoplasias da Mama/genética , Neoplasias da Mama/patologia
10.
Nat Chem Biol ; 17(10): 1065-1074, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34168367

RESUMO

The clinical benefits of pan-mTOR active-site inhibitors are limited by toxicity and relief of feedback inhibition of receptor expression. To address these limitations, we designed a series of compounds that selectively inhibit mTORC1 and not mTORC2. These 'bi-steric inhibitors' comprise a rapamycin-like core moiety covalently linked to an mTOR active-site inhibitor. Structural modification of these components modulated their affinities for their binding sites on mTOR and the selectivity of the bi-steric compound. mTORC1-selective compounds potently inhibited 4EBP1 phosphorylation and caused regressions of breast cancer xenografts. Inhibition of 4EBP1 phosphorylation was sufficient to block cancer cell growth and was necessary for maximal antitumor activity. At mTORC1-selective doses, these compounds do not alter glucose tolerance, nor do they relieve AKT-dependent feedback inhibition of HER3. Thus, in preclinical models, selective inhibitors of mTORC1 potently inhibit tumor growth while causing less toxicity and receptor reactivation as compared to pan-mTOR inhibitors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Desenho de Fármacos , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA