Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 142
Filtrar
1.
Nat Rev Neurosci ; 22(8): 503-513, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34226715

RESUMO

The default mode network (DMN) is a set of widely distributed brain regions in the parietal, temporal and frontal cortex. These regions often show reductions in activity during attention-demanding tasks but increase their activity across multiple forms of complex cognition, many of which are linked to memory or abstract thought. Within the cortex, the DMN has been shown to be located in regions furthest away from those contributing to sensory and motor systems. Here, we consider how our knowledge of the topographic characteristics of the DMN can be leveraged to better understand how this network contributes to cognition and behaviour.


Assuntos
Encéfalo/fisiologia , Cognição/fisiologia , Rede de Modo Padrão/fisiologia , Encéfalo/diagnóstico por imagem , Mapeamento Encefálico , Rede de Modo Padrão/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética
2.
Proc Natl Acad Sci U S A ; 120(13): e2218949120, 2023 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-36940333

RESUMO

Psychedelics have attracted medical interest, but their effects on human brain function are incompletely understood. In a comprehensive, within-subjects, placebo-controlled design, we acquired multimodal neuroimaging [i.e., EEG-fMRI (electroencephalography-functional MRI)] data to assess the effects of intravenous (IV) N,N-Dimethyltryptamine (DMT) on brain function in 20 healthy volunteers. Simultaneous EEG-fMRI was acquired prior to, during, and after a bolus IV administration of 20 mg DMT, and, separately, placebo. At dosages consistent with the present study, DMT, a serotonin 2A receptor (5-HT2AR) agonist, induces a deeply immersive and radically altered state of consciousness. DMT is thus a useful research tool for probing the neural correlates of conscious experience. Here, fMRI results revealed robust increases in global functional connectivity (GFC), network disintegration and desegregation, and a compression of the principal cortical gradient under DMT. GFC × subjective intensity maps correlated with independent positron emission tomography (PET)-derived 5-HT2AR maps, and both overlapped with meta-analytical data implying human-specific psychological functions. Changes in major EEG-measured neurophysiological properties correlated with specific changes in various fMRI metrics, enriching our understanding of the neural basis of DMT's effects. The present findings advance on previous work by confirming a predominant action of DMT-and likely other 5-HT2AR agonist psychedelics-on the brain's transmodal association pole, i.e., the neurodevelopmentally and evolutionarily recent cortex that is associated with species-specific psychological advancements, and high expression of 5-HT2A receptors.


Assuntos
Alucinógenos , N,N-Dimetiltriptamina , Humanos , N,N-Dimetiltriptamina/farmacologia , Alucinógenos/farmacologia , Imageamento por Ressonância Magnética , Encéfalo , Eletroencefalografia
3.
J Neurosci ; 44(20)2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38589231

RESUMO

The default mode network (DMN) typically deactivates to external tasks, yet supports semantic cognition. It comprises medial temporal (MT), core, and frontotemporal (FT) subsystems, but its functional organization is unclear: the requirement for perceptual coupling versus decoupling, input modality (visual/verbal), type of information (social/spatial), and control demands all potentially affect its recruitment. We examined the effect of these factors on activation and deactivation of DMN subsystems during semantic cognition, across four task-based human functional magnetic resonance imaging (fMRI) datasets, and localized these responses in whole-brain state space defined by gradients of intrinsic connectivity. FT showed activation consistent with a central role across domains, tasks, and modalities, although it was most responsive to abstract, verbal tasks; this subsystem uniquely showed more "tuned" states characterized by increases in both activation and deactivation when semantic retrieval demands were higher. MT also activated to both perceptually coupled (scenes) and decoupled (autobiographical memory) tasks and showed stronger responses to picture associations, consistent with a role in scene construction. Core DMN consistently showed deactivation, especially to externally oriented tasks. These diverse contributions of DMN subsystems to semantic cognition were related to their location on intrinsic connectivity gradients: activation was closer to the sensory-motor cortex than deactivation, particularly for FT and MT, while activation for core DMN was distant from both visual cortex and cognitive control. These results reveal distinctive yet complementary DMN responses: MT and FT support different memory-based representations that are accessed externally and internally, while deactivation in core DMN is associated with demanding, external semantic tasks.


Assuntos
Cognição , Rede de Modo Padrão , Imageamento por Ressonância Magnética , Semântica , Humanos , Masculino , Feminino , Adulto , Cognição/fisiologia , Rede de Modo Padrão/fisiologia , Rede de Modo Padrão/diagnóstico por imagem , Adulto Jovem , Rede Nervosa/fisiologia , Rede Nervosa/diagnóstico por imagem , Mapeamento Encefálico/métodos , Encéfalo/fisiologia , Encéfalo/diagnóstico por imagem
4.
PLoS Comput Biol ; 19(10): e1011571, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37844124

RESUMO

The definition of a brain state remains elusive, with varying interpretations across different sub-fields of neuroscience-from the level of wakefulness in anaesthesia, to activity of individual neurons, voltage in EEG, and blood flow in fMRI. This lack of consensus presents a significant challenge to the development of accurate models of neural dynamics. However, at the foundation of dynamical systems theory lies a definition of what constitutes the 'state' of a system-i.e., a specification of the system's future. Here, we propose to adopt this definition to establish brain states in neuroimaging timeseries by applying Dynamic Causal Modelling (DCM) to low-dimensional embedding of resting and task condition fMRI data. We find that ~90% of subjects in resting conditions are better described by first-order models, whereas ~55% of subjects in task conditions are better described by second-order models. Our work calls into question the status quo of using first-order equations almost exclusively within computational neuroscience and provides a new way of establishing brain states, as well as their associated phase space representations, in neuroimaging datasets.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Modelos Teóricos
5.
Cereb Cortex ; 33(8): 4305-4318, 2023 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-36066439

RESUMO

Auditory language comprehension recruits cortical regions that are both close to sensory-motor landmarks (supporting auditory and motor features) and far from these landmarks (supporting word meaning). We investigated whether the responsiveness of these regions in task-based functional MRI is related to individual differences in their physical distance to primary sensorimotor landmarks. Parcels in the auditory network, that were equally responsive across story and math tasks, showed stronger activation in individuals who had less distance between these parcels and transverse temporal sulcus, in line with the predictions of the "tethering hypothesis," which suggests that greater proximity to input regions might increase the fidelity of sensory processing. Conversely, language and default mode parcels, which were more active for the story task, showed positive correlations between individual differences in activation and sensory-motor distance from primary sensory-motor landmarks, consistent with the view that physical separation from sensory-motor inputs supports aspects of cognition that draw on semantic memory. These results demonstrate that distance from sensorimotor regions provides an organizing principle of functional differentiation within the cortex. The relationship between activation and geodesic distance to sensory-motor landmarks is in opposite directions for cortical regions that are proximal to the heteromodal (DMN and language network) and unimodal ends of the principal gradient of intrinsic connectivity.


Assuntos
Mapeamento Encefálico , Encéfalo , Humanos , Encéfalo/fisiologia , Mapeamento Encefálico/métodos , Distanciamento Físico , Imageamento por Ressonância Magnética/métodos , Idioma
6.
Stroke ; 54(4): 1066-1077, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36972348

RESUMO

BACKGROUND: Functional magnetic resonance imaging (fMRI) is ubiquitously used to study poststroke recovery. However, the fMRI-derived hemodynamic responses are vulnerable to vascular insult which can result in reduced magnitude and temporal delays (lag) in the hemodynamic response function (HRF). The cause of HRF lag remains controversial, and a better understanding of it is required to ensure accurate interpretation of poststroke fMRI studies. In this longitudinal study, we investigate the relationship between hemodynamic lag and cerebrovascular reactivity (CVR) following stroke. METHODS: Voxel-wise lag maps were calculated relative to a mean gray matter reference signal for 27 healthy controls and 59 patients with stroke across 2 time points (≈2 weeks and ≈4 months poststroke) and 2 conditions: resting-state and breath-holding. The breath-holding condition was additionally used to calculate CVR in response to hypercapnia. HRF lag was computed for both conditions across tissue compartments: lesion, perilesional tissue, unaffected tissue of the lesioned hemisphere, and their homolog regions in the unaffected hemisphere. CVR and lag maps were correlated. Group, condition, and time effects were assessed using ANOVA analyses. RESULTS: Compared with the average gray matter signal, a relative hemodynamic lead was observed in the primary sensorimotor cortices in resting-state and bilateral inferior parietal cortices in the breath-holding condition. Whole-brain hemodynamic lag was significantly correlated across conditions irrespective of group, with regional differences across conditions suggestive of a neural network pattern. Patients showed relative lag in the lesioned hemisphere which significantly reduced over time. Breath-hold derived lag and CVR had no significant voxel-wise correlation in controls, or patients within the lesioned hemisphere or the homologous regions of the lesion and perilesional tissue in the right hemisphere (mean r<0.1). CONCLUSIONS: The contribution of altered CVR to HRF lag was negligible. We suggest that HRF lag is largely independent of CVR, and could partly reflect intrinsic neural network dynamics among other factors.


Assuntos
Acidente Vascular Cerebral , Humanos , Estudos Longitudinais , Encéfalo/patologia , Imageamento por Ressonância Magnética/métodos , Hemodinâmica , Circulação Cerebrovascular/fisiologia
7.
Conscious Cogn ; 114: 103530, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37619452

RESUMO

Health and well-being are impacted by our thoughts and the things we do. In the laboratory, studies suggest specific task contexts impact thought processes. More broadly, this suggests the people we are with, the places we are in, and the activities we perform may influence our thought patterns. In our study, participants completed experience sampling surveys for five days in daily life. Principal component analysis decomposed this data to identify common "patterns of thought," and linear mixed modelling related these patterns to the participants' activities. Our study replicated the influence of socializing on patterns of thought and established that this is part of a broader set of relationships linking activities to how thoughts are organized in daily life. Our study suggests sampling thinking in the real world may help map thoughts to activities, and these "thought-activity" mappings could be useful to researchers and health care professionals interested in health and well-being.


Assuntos
Avaliação Momentânea Ecológica , Processos Mentais , Humanos , Análise de Componente Principal , Comportamento Social
8.
Hum Brain Mapp ; 43(5): 1749-1765, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34953014

RESUMO

Current neuroimaging acquisition and processing approaches tend to be optimised for quality rather than speed. However, rapid acquisition and processing of neuroimaging data can lead to novel neuroimaging paradigms, such as adaptive acquisition, where rapidly processed data is used to inform subsequent image acquisition steps. Here we first evaluate the impact of several processing steps on the processing time and quality of registration of manually labelled T1 -weighted MRI scans. Subsequently, we apply the selected rapid processing pipeline both to rapidly acquired multicontrast EPImix scans of 95 participants (which include T1 -FLAIR, T2 , T2 *, T2 -FLAIR, DWI and ADC contrasts, acquired in ~1 min), as well as to slower, more standard single-contrast T1 -weighted scans of a subset of 66 participants. We quantify the correspondence between EPImix T1 -FLAIR and single-contrast T1 -weighted scans, using correlations between voxels and regions of interest across participants, measures of within- and between-participant identifiability as well as regional structural covariance networks. Furthermore, we explore the use of EPImix for the rapid construction of morphometric similarity networks. Finally, we quantify the reliability of EPImix-derived data using test-retest scans of 10 participants. Our results demonstrate that quantitative information can be derived from a neuroimaging scan acquired and processed within minutes, which could further be used to implement adaptive multimodal imaging and tailor neuroimaging examinations to individual patients.


Assuntos
Encéfalo , Neuroimagem , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Imagem Multimodal , Neuroimagem/métodos , Reprodutibilidade dos Testes
9.
J Comput Neurosci ; 50(2): 241-249, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35182268

RESUMO

An isotropic dynamical system is one that looks the same in every direction, i.e., if we imagine standing somewhere within an isotropic system, we would not be able to differentiate between different lines of sight. Conversely, anisotropy is a measure of the extent to which a system deviates from perfect isotropy, with larger values indicating greater discrepancies between the structure of the system along its axes. Here, we derive the form of a generalised scalable (mechanically similar) discretized field theoretic Lagrangian that allows for levels of anisotropy to be directly estimated via timeseries of arbitrary dimensionality. We generate synthetic data for both isotropic and anisotropic systems and, by using Bayesian model inversion and reduction, show that we can discriminate between the two datasets - thereby demonstrating proof of principle. We then apply this methodology to murine calcium imaging data collected in rest and task states, showing that anisotropy can be estimated directly from different brain states and cortical regions in an empirical in vivo biological setting. We hope that this theoretical foundation, together with the methodology and publicly available MATLAB code, will provide an accessible way for researchers to obtain new insight into the structural organization of neural systems in terms of how scalable neural regions grow - both ontogenetically during the development of an individual organism, as well as phylogenetically across species.


Assuntos
Encéfalo , Modelos Neurológicos , Animais , Anisotropia , Teorema de Bayes , Cabeça , Camundongos
10.
Brain ; 144(7): 2120-2134, 2021 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-33725125

RESUMO

Post-stroke cognitive and linguistic impairments are debilitating conditions, with limited therapeutic options. Domain-general brain networks play an important role in stroke recovery and characterizing their residual function with functional MRI has the potential to yield biomarkers capable of guiding patient-specific rehabilitation. However, this is challenging as such detailed characterization requires testing patients on multitudes of cognitive tasks in the scanner, rendering experimental sessions unfeasibly lengthy. Thus, the current status quo in clinical neuroimaging research involves testing patients on a very limited number of tasks, in the hope that it will reveal a useful neuroimaging biomarker for the whole cohort. Given the great heterogeneity among stroke patients and the volume of possible tasks this approach is unsustainable. Advancing task-based functional MRI biomarker discovery requires a paradigm shift in order to be able to swiftly characterize residual network activity in individual patients using a diverse range of cognitive tasks. Here, we overcome this problem by leveraging neuroadaptive Bayesian optimization, an approach combining real-time functional MRI with machine-learning, by intelligently searching across many tasks, this approach rapidly maps out patient-specific profiles of residual domain-general network function. We used this technique in a cross-sectional study with 11 left-hemispheric stroke patients with chronic aphasia (four female, age ± standard deviation: 59 ± 10.9 years) and 14 healthy, age-matched control subjects (eight female, age ± standard deviation: 55.6 ± 6.8 years). To assess intra-subject reliability of the functional profiles obtained, we conducted two independent runs per subject, for which the algorithm was entirely reinitialized. Our results demonstrate that this technique is both feasible and robust, yielding reliable patient-specific functional profiles. Moreover, we show that group-level results are not representative of patient-specific results. Whereas controls have highly similar profiles, patients show idiosyncratic profiles of network abnormalities that are associated with behavioural performance. In summary, our study highlights the importance of moving beyond traditional 'one-size-fits-all' approaches where patients are treated as one group and single tasks are used. Our approach can be extended to diverse brain networks and combined with brain stimulation or other therapeutics, thereby opening new avenues for precision medicine targeting a diverse range of neurological and psychiatric conditions.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Aprendizado de Máquina , Acidente Vascular Cerebral/diagnóstico por imagem , Adulto , Idoso , Teorema de Bayes , Encéfalo/fisiopatologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Acidente Vascular Cerebral/fisiopatologia
11.
PLoS Comput Biol ; 16(5): e1007865, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32365069

RESUMO

In contrast to the symmetries of translation in space, rotation in space, and translation in time, the known laws of physics are not universally invariant under transformation of scale. However, a special case exists in which the action is scale invariant if it satisfies the following two constraints: 1) it must depend upon a scale-free Lagrangian, and 2) the Lagrangian must change under scale in the same way as the inverse time, [Formula: see text]. Our contribution lies in the derivation of a generalised Lagrangian, in the form of a power series expansion, that satisfies these constraints. This generalised Lagrangian furnishes a normal form for dynamic causal models-state space models based upon differential equations-that can be used to distinguish scale symmetry from scale freeness in empirical data. We establish face validity with an analysis of simulated data, in which we show how scale symmetry can be identified and how the associated conserved quantities can be estimated in neuronal time series.


Assuntos
Modelos Neurológicos , Neurônios/fisiologia , Animais , Macaca , Imageamento por Ressonância Magnética , Camundongos
12.
PLoS Comput Biol ; 16(12): e1008448, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33259483

RESUMO

The propagation of epileptic seizure activity in the brain is a widespread pathophysiology that, in principle, should yield to intervention techniques guided by mathematical models of neuronal ensemble dynamics. During a seizure, neural activity will deviate from its current dynamical regime to one in which there are significant signal fluctuations. In silico treatments of neural activity are an important tool for the understanding of how the healthy brain can maintain stability, as well as of how pathology can lead to seizures. The hope is that, contained within the mathematical foundations of such treatments, there lie potential strategies for mitigating instabilities, e.g. via external stimulation. Here, we demonstrate that the dynamic causal modelling neuronal state equation generalises to a Fokker-Planck formalism if one extends the framework to model the ways in which activity propagates along the structural connections of neural systems. Using the Jacobian of this generalised state equation, we show that an initially unstable system can be rendered stable via a reduction in diffusivity-i.e., by lowering the rate at which neuronal fluctuations disperse to neighbouring regions. We show, for neural systems prone to epileptic seizures, that such a reduction in diffusivity can be achieved via external stimulation. Specifically, we show that this stimulation should be applied in such a way as to temporarily mirror the activity profile of a pathological region in its functionally connected areas. This counter-intuitive method is intended to be used pre-emptively-i.e., in order to mitigate the effects of the seizure, or ideally even prevent it from occurring in the first place. We offer proof of principle using simulations based on functional neuroimaging data collected from patients with idiopathic generalised epilepsy, in which we successfully suppress pathological activity in a distinct sub-network prior to seizure onset. Our hope is that this technique can form the basis for future real-time monitoring and intervention devices that are capable of treating epilepsy in a non-invasive manner.


Assuntos
Epilepsia Generalizada/fisiopatologia , Rede Nervosa/fisiologia , Convulsões/fisiopatologia , Encéfalo/fisiopatologia , Estudos de Casos e Controles , Eletroencefalografia/métodos , Humanos , Imageamento por Ressonância Magnética/métodos , Modelos Estatísticos
13.
Proc Natl Acad Sci U S A ; 115(3): E536-E545, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29284747

RESUMO

Attention control (or executive control) is a higher cognitive function involved in response selection and inhibition, through close interactions with the motor system. Here, we tested whether influences of attention control are also seen on lower level motor functions of dexterity and strength-by examining relationships between attention control and motor performance in healthy-aged and hemiparetic-stroke subjects (n = 93 and 167, respectively). Subjects undertook simple-tracking, precision-hold, and maximum force-generation tasks, with each hand. Performance across all tasks correlated strongly with attention control (measured as distractor resistance), independently of factors such as baseline performance, hand use, lesion size, mood, fatigue, or whether distraction was tested during motor or nonmotor cognitive tasks. Critically, asymmetric dissociations occurred in all tasks, in that severe motor impairment coexisted with normal (or impaired) attention control whereas normal motor performance was never associated with impaired attention control (below a task-dependent threshold). This implies that dexterity and force generation require intact attention control. Subsequently, we examined how motor and attention-control performance mapped to lesion location and cerebral functional connectivity. One component of motor performance (common to both arms), as well as attention control, correlated with the anatomical and functional integrity of a cingulo-opercular "salience" network. Independently of this, motor performance difference between arms correlated negatively with the integrity of the primary sensorimotor network and corticospinal tract. These results suggest that the salience network, and its attention-control function, are necessary for virtually all volitional motor acts while its damage contributes significantly to the cardinal motor deficits of stroke.


Assuntos
Atenção/fisiologia , Função Executiva , Atividade Motora/fisiologia , Desempenho Psicomotor/fisiologia , Acidente Vascular Cerebral/fisiopatologia , Idoso , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Memória/fisiologia , Pessoa de Meia-Idade
14.
Neuroimage ; 208: 116452, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31830589

RESUMO

Models of coupled phase oscillators are used to describe a wide variety of phenomena in neuroimaging. These models typically rest on the premise that oscillator dynamics do not evolve beyond their respective limit cycles, and hence that interactions can be described purely in terms of phase differences. Whilst mathematically convenient, the restrictive nature of phase-only models can limit their explanatory power. We therefore propose a generalisation of dynamic causal modelling that incorporates both phase and amplitude. This allows for the separate quantifications of phase and amplitude contributions to the connectivity between neural regions. We show, using model-generated data and simulations of coupled pendula, that phase-amplitude models can describe strongly coupled systems more effectively than their phase-only counterparts. We relate our findings to four metrics commonly used in neuroimaging: the Kuramoto order parameter, cross-correlation, phase-lag index, and spectral entropy. We find that, with the exception of spectral entropy, the phase-amplitude model is able to capture all metrics more effectively than the phase-only model. We then demonstrate, using local field potential recordings in rodents and functional magnetic resonance imaging in macaque monkeys, that amplitudes in oscillator models play an important role in describing neural dynamics in anaesthetised brain states.


Assuntos
Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Modelos Teóricos , Neuroimagem , Animais , Córtex Auditivo/fisiologia , Eletrocorticografia , Neuroimagem Funcional/métodos , Macaca , Neuroimagem/métodos , Roedores , Inconsciência/induzido quimicamente , Inconsciência/fisiopatologia , Vigília/fisiologia
15.
Neuroimage ; 214: 116765, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32213314

RESUMO

Human cognition is not always tethered to events in the external world. Laboratory and real world experience sampling studies reveal that attention is often devoted to self-generated mental content rather than to events taking place in the immediate environment. Recent studies have begun to explicitly examine the consistency between states of off-task thought in the laboratory and in daily life, highlighting differences in the psychological correlates of these states across the two contexts. Our study used neuroimaging to further understand the generalizability of off-task thought across laboratory and daily life contexts. We examined (1) whether context (daily life versus laboratory) impacts on individuals' off-task thought patterns and whether individual variations in these patterns are correlated across contexts; (2) whether neural correlates for the patterns of off-task thoughts in the laboratory show similarities with those thoughts in daily life, in particular, whether differences in cortical grey matter associated with detail and off-task thoughts in the para-hippocampus, identified in a prior study on laboratory thoughts, were apparent in real life thought patterns. We also measured neural responses to common real-world stimuli (faces and scenes) and examined how neural responses to these stimuli were related to experiences in the laboratory and in daily life - finding evidence of both similarities and differences. There were consistent patterns of off-task thoughts reported across the two contexts, and both patterns had a commensurate relationship with medial temporal lobe architecture. However, compared to real world off-task thoughts, those in the laboratory focused more on social content and showed a stronger correlation with neural activity when viewing faces compared to scenes. Overall our results show that off-task thought patterns have broad similarities in the laboratory and in daily life, and the apparent differences may be, in part, driven by the richer environmental context in the real world. More generally, our findings are broadly consistent with emerging evidence that shows off-task thoughts emerge through the prioritisation of information that has greater personal relevance than events in the here and now.


Assuntos
Atenção/fisiologia , Reconhecimento Facial/fisiologia , Lobo Temporal/fisiologia , Pensamento/fisiologia , Adolescente , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Acontecimentos que Mudam a Vida , Imageamento por Ressonância Magnética/métodos , Masculino , Adulto Jovem
16.
Hum Brain Mapp ; 41(13): 3555-3566, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32415917

RESUMO

The use of machine learning (ML) algorithms has significantly increased in neuroscience. However, from the vast extent of possible ML algorithms, which one is the optimal model to predict the target variable? What are the hyperparameters for such a model? Given the plethora of possible answers to these questions, in the last years, automated ML (autoML) has been gaining attention. Here, we apply an autoML library called Tree-based Pipeline Optimisation Tool (TPOT) which uses a tree-based representation of ML pipelines and conducts a genetic programming-based approach to find the model and its hyperparameters that more closely predicts the subject's true age. To explore autoML and evaluate its efficacy within neuroimaging data sets, we chose a problem that has been the focus of previous extensive study: brain age prediction. Without any prior knowledge, TPOT was able to scan through the model space and create pipelines that outperformed the state-of-the-art accuracy for Freesurfer-based models using only thickness and volume information for anatomical structure. In particular, we compared the performance of TPOT (mean absolute error [MAE]: 4.612 ± .124 years) and a relevance vector regression (MAE 5.474 ± .140 years). TPOT also suggested interesting combinations of models that do not match the current most used models for brain prediction but generalise well to unseen data. AutoML showed promising results as a data-driven approach to find optimal models for neuroimaging applications.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Aprendizado de Máquina , Modelos Teóricos , Neuroimagem/métodos , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Conjuntos de Dados como Assunto , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Adulto Jovem
17.
Eur J Neurosci ; 49(9): 1196-1209, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30471149

RESUMO

Neurons in the ventral tegmental area (VTA) and substantia nigra pars compacta (SNC) play central roles in reward-related behaviours. Nonhuman animal studies suggest that these neurons also process aversive events. However, our understanding of how the human VTA and SNC responds to such events is limited and has been hindered by the technical challenge of using functional magnetic resonance imaging (fMRI) to investigate a small structure where the signal is particularly vulnerable to physiological noise. Here we show, using methods optimized specifically for the midbrain (including high-resolution imaging, a novel registration protocol, and physiological noise modelling), a BOLD (blood-oxygen-level dependent) signal to both financial gain and loss in the VTA and SNC, along with a response to nil outcomes that are better or worse than expected in the VTA. Taken together, these findings suggest that the human VTA and SNC are involved in the processing of both appetitive and aversive financial outcomes in humans.


Assuntos
Parte Compacta da Substância Negra/fisiologia , Recompensa , Área Tegmentar Ventral/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Adulto Jovem
18.
Brain ; 141(1): 148-164, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29186356

RESUMO

Traumatic brain injury often produces executive dysfunction. This characteristic cognitive impairment often causes long-term problems with behaviour and personality. Frontal lobe injuries are associated with executive dysfunction, but it is unclear how these injuries relate to corticostriatal interactions that are known to play an important role in behavioural control. We hypothesized that executive dysfunction after traumatic brain injury would be associated with abnormal corticostriatal interactions, a question that has not previously been investigated. We used structural and functional MRI measures of connectivity to investigate this. Corticostriatal functional connectivity in healthy individuals was initially defined using a data-driven approach. A constrained independent component analysis approach was applied in 100 healthy adult dataset from the Human Connectome Project. Diffusion tractography was also performed to generate white matter tracts. The output of this analysis was used to compare corticostriatal functional connectivity and structural integrity between groups of 42 patients with traumatic brain injury and 21 age-matched controls. Subdivisions of the caudate and putamen had distinct patterns of functional connectivity. Traumatic brain injury patients showed disruption to functional connectivity between the caudate and a distributed set of cortical regions, including the anterior cingulate cortex. Cognitive impairments in the patients were mainly seen in processing speed and executive function, as well as increased levels of apathy and fatigue. Abnormalities of caudate functional connectivity correlated with these cognitive impairments, with reductions in right caudate connectivity associated with increased executive dysfunction, information processing speed and memory impairment. Structural connectivity, measured using diffusion tensor imaging between the caudate and anterior cingulate cortex was impaired and this also correlated with measures of executive dysfunction. We show for the first time that altered subcortical connectivity is associated with large-scale network disruption in traumatic brain injury and that this disruption is related to the cognitive impairments seen in these patients.


Assuntos
Lesões Encefálicas Traumáticas/complicações , Núcleo Caudado/diagnóstico por imagem , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Função Executiva/fisiologia , Giro do Cíngulo/diagnóstico por imagem , Adulto , Idoso , Animais , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/psicologia , Mapeamento Encefálico , Estudos de Casos e Controles , Conectoma , Imagem de Tensor de Difusão , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Escalas de Graduação Psiquiátrica , Adulto Jovem
19.
Proc Natl Acad Sci U S A ; 113(17): 4853-8, 2016 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-27071089

RESUMO

Lysergic acid diethylamide (LSD) is the prototypical psychedelic drug, but its effects on the human brain have never been studied before with modern neuroimaging. Here, three complementary neuroimaging techniques: arterial spin labeling (ASL), blood oxygen level-dependent (BOLD) measures, and magnetoencephalography (MEG), implemented during resting state conditions, revealed marked changes in brain activity after LSD that correlated strongly with its characteristic psychological effects. Increased visual cortex cerebral blood flow (CBF), decreased visual cortex alpha power, and a greatly expanded primary visual cortex (V1) functional connectivity profile correlated strongly with ratings of visual hallucinations, implying that intrinsic brain activity exerts greater influence on visual processing in the psychedelic state, thereby defining its hallucinatory quality. LSD's marked effects on the visual cortex did not significantly correlate with the drug's other characteristic effects on consciousness, however. Rather, decreased connectivity between the parahippocampus and retrosplenial cortex (RSC) correlated strongly with ratings of "ego-dissolution" and "altered meaning," implying the importance of this particular circuit for the maintenance of "self" or "ego" and its processing of "meaning." Strong relationships were also found between the different imaging metrics, enabling firmer inferences to be made about their functional significance. This uniquely comprehensive examination of the LSD state represents an important advance in scientific research with psychedelic drugs at a time of growing interest in their scientific and therapeutic value. The present results contribute important new insights into the characteristic hallucinatory and consciousness-altering properties of psychedelics that inform on how they can model certain pathological states and potentially treat others.


Assuntos
Mapeamento Encefálico/métodos , Encéfalo/efeitos dos fármacos , Estado de Consciência/efeitos dos fármacos , Alucinações/fisiopatologia , Alucinógenos/farmacologia , Dietilamida do Ácido Lisérgico/farmacologia , Imageamento por Ressonância Magnética/métodos , Magnetoencefalografia/métodos , Imagem Multimodal/métodos , Encéfalo/fisiopatologia , Circulação Cerebrovascular/efeitos dos fármacos , Conectoma , Estado de Consciência/fisiologia , Alucinações/induzido quimicamente , Humanos , Rede Nervosa/efeitos dos fármacos , Oxigênio/sangue , Receptor 5-HT2A de Serotonina/fisiologia , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Marcadores de Spin , Transmissão Sináptica/efeitos dos fármacos
20.
J Neurosci ; 37(32): 7606-7618, 2017 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-28676576

RESUMO

It is well established that networks within multiple-demand cortex (MDC) become active when diverse skills and behaviors are being learnt. However, their causal role in learning remains to be established. In the present study, we first performed functional magnetic resonance imaging on healthy female and male human participants to confirm that MDC was most active in the initial stages of learning a novel vocabulary, consisting of pronounceable nonwords (pseudowords), each associated with a picture of a real object. We then examined, in healthy female and male human participants, whether repetitive transcranial magnetic stimulation of a frontal midline node of the cingulo-opercular MDC affected learning rates specifically during the initial stages of learning. We report that stimulation of this node, but not a control brain region, substantially improved both accuracy and response times during the earliest stage of learning pseudoword-object associations. This stimulation had no effect on the processing of established vocabulary, tested by the accuracy and response times when participants decided whether a real word was accurately paired with a picture of an object. These results provide evidence that noninvasive stimulation to MDC nodes can enhance learning rates, thereby demonstrating their causal role in the learning process. We propose that this causal role makes MDC candidate target for experimental therapeutics; for example, in stroke patients with aphasia attempting to reacquire a vocabulary.SIGNIFICANCE STATEMENT Learning a task involves the brain system within which that specific task becomes established. Therefore, successfully learning a new vocabulary establishes the novel words in the language system. However, there is evidence that in the early stages of learning, networks within multiple-demand cortex (MDC), which control higher cognitive functions, such as working memory, attention, and monitoring of performance, become active. This activity declines once the task is learnt. The present study demonstrated that a node within MDC, located in midline frontal cortex, becomes active during the early stage of learning a novel vocabulary. Importantly, noninvasive brain stimulation of this node improved performance during this stage of learning. This observation demonstrated that MDC activity is important for learning.


Assuntos
Estimulação Acústica/métodos , Córtex Cerebral/fisiologia , Estimulação Luminosa/métodos , Tempo de Reação/fisiologia , Aprendizagem Verbal/fisiologia , Vocabulário , Adulto , Idoso , Aprendizagem por Associação/fisiologia , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Distribuição Aleatória , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA