Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Cell ; 172(4): 825-840.e18, 2018 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-29336888

RESUMO

Therapeutic harnessing of adaptive immunity via checkpoint inhibition has transformed the treatment of many cancers. Despite unprecedented long-term responses, most patients do not respond to these therapies. Immunotherapy non-responders often harbor high levels of circulating myeloid-derived suppressor cells (MDSCs)-an immunosuppressive innate cell population. Through genetic and pharmacological approaches, we uncovered a pathway governing MDSC abundance in multiple cancer types. Therapeutic liver-X nuclear receptor (LXR) agonism reduced MDSC abundance in murine models and in patients treated in a first-in-human dose escalation phase 1 trial. MDSC depletion was associated with activation of cytotoxic T lymphocyte (CTL) responses in mice and patients. The LXR transcriptional target ApoE mediated these effects in mice, where LXR/ApoE activation therapy elicited robust anti-tumor responses and also enhanced T cell activation during various immune-based therapies. We implicate the LXR/ApoE axis in the regulation of innate immune suppression and as a target for enhancing the efficacy of cancer immunotherapy in patients.


Assuntos
Apolipoproteínas E/imunologia , Imunidade Inata , Receptores X do Fígado/imunologia , Células Supressoras Mieloides/imunologia , Neoplasias Experimentais/imunologia , Animais , Apolipoproteínas E/genética , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Linhagem Celular Tumoral , Feminino , Receptores X do Fígado/genética , Masculino , Camundongos , Camundongos Endogâmicos NOD , Camundongos Knockout , Camundongos SCID , Células Supressoras Mieloides/patologia , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Neoplasias Experimentais/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Cell ; 173(4): 864-878.e29, 2018 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-29681454

RESUMO

Diversity in the genetic lesions that cause cancer is extreme. In consequence, a pressing challenge is the development of drugs that target patient-specific disease mechanisms. To address this challenge, we employed a chemistry-first discovery paradigm for de novo identification of druggable targets linked to robust patient selection hypotheses. In particular, a 200,000 compound diversity-oriented chemical library was profiled across a heavily annotated test-bed of >100 cellular models representative of the diverse and characteristic somatic lesions for lung cancer. This approach led to the delineation of 171 chemical-genetic associations, shedding light on the targetability of mechanistic vulnerabilities corresponding to a range of oncogenotypes present in patient populations lacking effective therapy. Chemically addressable addictions to ciliogenesis in TTC21B mutants and GLUT8-dependent serine biosynthesis in KRAS/KEAP1 double mutants are prominent examples. These observations indicate a wealth of actionable opportunities within the complex molecular etiology of cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células/efeitos dos fármacos , Neoplasias Pulmonares/patologia , Bibliotecas de Moléculas Pequenas/farmacologia , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Família 4 do Citocromo P450/deficiência , Família 4 do Citocromo P450/genética , Descoberta de Drogas , Pontos de Checagem da Fase G1 do Ciclo Celular/efeitos dos fármacos , Glucocorticoides/farmacologia , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Neoplasias Pulmonares/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Mutação , Fator 2 Relacionado a NF-E2/antagonistas & inibidores , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Receptor Notch2/genética , Receptor Notch2/metabolismo , Receptores de Glucocorticoides/antagonistas & inibidores , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo
3.
Mol Cell ; 76(5): 838-851.e5, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31564558

RESUMO

Intermediary metabolism in cancer cells is regulated by diverse cell-autonomous processes, including signal transduction and gene expression patterns, arising from specific oncogenotypes and cell lineages. Although it is well established that metabolic reprogramming is a hallmark of cancer, we lack a full view of the diversity of metabolic programs in cancer cells and an unbiased assessment of the associations between metabolic pathway preferences and other cell-autonomous processes. Here, we quantified metabolic features, mostly from the 13C enrichment of molecules from central carbon metabolism, in over 80 non-small cell lung cancer (NSCLC) cell lines cultured under identical conditions. Because these cell lines were extensively annotated for oncogenotype, gene expression, protein expression, and therapeutic sensitivity, the resulting database enables the user to uncover new relationships between metabolism and these orthogonal processes.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral/metabolismo , Metaboloma/fisiologia , Biomarcadores Tumorais/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/métodos , Regulação Neoplásica da Expressão Gênica/fisiologia , Glucose/metabolismo , Glutamina/metabolismo , Humanos , Redes e Vias Metabólicas/genética , Metabolômica/métodos , Neoplasias/metabolismo
4.
EMBO J ; 40(2): e106696, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33346941

RESUMO

Eukaryotic transfer RNAs can become selectively fragmented upon various stresses, generating tRNA-derived small RNA fragments. Such fragmentation has been reported to impact a small fraction of the tRNA pool and thus presumed to not directly impact translation. We report that oxidative stress can rapidly generate tyrosine-tRNAGUA fragments in human cells-causing significant depletion of the precursor tRNA. Tyrosine-tRNAGUA depletion impaired translation of growth and metabolic genes enriched in cognate tyrosine codons. Depletion of tyrosine tRNAGUA or its translationally regulated targets USP3 and SCD repressed proliferation-revealing a dedicated tRNA-regulated growth-suppressive pathway for oxidative stress response. Tyrosine fragments are generated in a DIS3L2 exoribonuclease-dependent manner and inhibit hnRNPA1-mediated transcript destabilization. Moreover, tyrosine fragmentation is conserved in C. elegans. Thus, tRNA fragmentation can coordinately generate trans-acting small RNAs and functionally deplete a tRNA. Our findings reveal the existence of an underlying adaptive codon-based regulatory response inherent to the genetic code.


Assuntos
Códon/genética , Biossíntese de Proteínas/genética , RNA de Transferência/genética , Tirosina/genética , Animais , Caenorhabditis elegans/genética , Linhagem Celular , Proliferação de Células/genética , Células HEK293 , Humanos , Estresse Oxidativo/genética , Proteases Específicas de Ubiquitina/genética
5.
Proc Natl Acad Sci U S A ; 119(49): e2208458119, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36449542

RESUMO

Determining mechanism of action (MOA) is one of the biggest challenges in natural products discovery. Here, we report a comprehensive platform that uses Similarity Network Fusion (SNF) to improve MOA predictions by integrating data from the cytological profiling high-content imaging platform and the gene expression platform Functional Signature Ontology, and pairs these data with untargeted metabolomics analysis for de novo bioactive compound discovery. The predictive value of the integrative approach was assessed using a library of target-annotated small molecules as benchmarks. Using Kolmogorov-Smirnov (KS) tests to compare in-class to out-of-class similarity, we found that SNF retains the ability to identify significant in-class similarity across a diverse set of target classes, and could find target classes not detectable in either platform alone. This confirmed that integration of expression-based and image-based phenotypes can accurately report on MOA. Furthermore, we integrated untargeted metabolomics of complex natural product fractions with the SNF network to map biological signatures to specific metabolites. Three examples are presented where SNF coupled with metabolomics was used to directly functionally characterize natural products and accelerate identification of bioactive metabolites, including the discovery of the azoxy-containing biaryl compounds parkamycins A and B. Our results support SNF integration of multiple phenotypic screening approaches along with untargeted metabolomics as a powerful approach for advancing natural products drug discovery.


Assuntos
Produtos Biológicos , Produtos Biológicos/farmacologia , Metabolômica , Benchmarking , Fusão Gênica , Biblioteca Gênica
6.
Mol Cell ; 61(1): 39-53, 2016 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-26725010

RESUMO

The transition from transcription initiation to elongation at promoters of primary response genes (PRGs) in metazoan cells is controlled by inducible transcription factors, which utilize P-TEFb to phosphorylate RNA polymerase II (Pol II) in response to stimuli. Prior to stimulation, a fraction of P-TEFb is recruited to promoter-proximal regions in a catalytically inactive state bound to the 7SK small nuclear ribonucleoprotein (snRNP) complex. However, it remains unclear how and why the 7SK snRNP is assembled at these sites. Here we report that the transcriptional regulator KAP1 continuously tethers the 7SK snRNP to PRG promoters to facilitate P-TEFb recruitment and productive elongation in response to stimulation. Remarkably, besides PRGs, genome-wide studies revealed that KAP1 and 7SK snRNP co-occupy most promoter-proximal regions containing paused Pol II. Collectively, we provide evidence of an unprecedented mechanism controlling 7SK snRNP delivery to promoter-proximal regions to facilitate "on-site" P-TEFb activation and Pol II elongation.


Assuntos
Regulação Viral da Expressão Gênica , HIV/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteínas Repressoras/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Elongação da Transcrição Genética , Sítios de Ligação , Ativação Enzimática , Células HCT116 , Células HEK293 , HIV/genética , Humanos , Células Jurkat , Complexos Multiproteicos , Fator B de Elongação Transcricional Positiva/metabolismo , Interferência de RNA , RNA Polimerase II/genética , Proteínas Repressoras/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Fatores de Tempo , Transfecção , Proteína 28 com Motivo Tripartido , Ativação Viral
7.
Lett Appl Microbiol ; 76(8)2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37505450

RESUMO

A globally circulating strain of Salmonella enterica serotype Infantis containing the pESI plasmid has increased in prevalence in poultry meat samples and cases of human infections. In this study, a polymerase chain reaction (PCR) protocol was designed to detect the pESI plasmid and confirm the Infantis serotype of Salmonella isolates. Primers were tested bioinformatically to predict specificity, sensitivity, and precision. A total of 54 isolates of Salmonella serotypes Infantis, Senftenberg, and Alachua were tested, with and without the pESI plasmid carriage. Isolates of 31 additional serotypes were also screened to confirm specificity to Infantis. Specificity, sensitivity, and precision of each primer were >0.95. All isolates tested produced the expected band sizes. This PCR protocol provides a rapid and clear result for the detection of the pESI plasmid and serotype Infantis and will allow for the in vitro detection for epidemiological studies where whole-genome sequencing is not available.


Assuntos
Salmonella enterica , Salmonella , Animais , Humanos , Plasmídeos/genética , Reação em Cadeia da Polimerase , Surtos de Doenças
8.
Appl Environ Microbiol ; 88(10): e0039322, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35532233

RESUMO

As the cases of Salmonella enterica infections associated with contaminated water are increasing, this study was conducted to address the role of surface water as a reservoir of S. enterica serotypes. We sampled rivers and streams (n = 688) over a 3-year period (2015 to 2017) in a mixed-use watershed in Georgia, USA, and 70.2% of the total stream samples tested positive for Salmonella. A total of 1,190 isolates were recovered and characterized by serotyping, antimicrobial susceptibility testing, and pulsed-field gel electrophoresis (PFGE). A wide range of serotypes was identified, including those commonly associated with humans and animals, with S. enterica serotype Muenchen being predominant (22.7%) and each serotype exhibiting a high degree of strain diversity by PFGE. About half (46.1%) of the isolates had PFGE patterns indistinguishable from those of human clinical isolates in the CDC PulseNet database. A total of 52 isolates (4.4%) were resistant to antimicrobials, out of which 43 isolates were multidrug resistant (MDR; resistance to two or more classes of antimicrobials). These 52 resistant Salmonella isolates were screened for the presence of antimicrobial resistance genes, plasmid replicons, and class 1 integrons, out of which four representative MDR isolates were selected for whole-genome sequencing analysis. The results showed that 28 MDR isolates resistant to 10 antimicrobials had blacmy-2 on an A/C plasmid. Persistent contamination of surface water with a high diversity of Salmonella strains, some of which are drug resistant and genetically indistinguishable from human isolates, supports a role of environmental surface water as a reservoir for and transmission route of this pathogen. IMPORTANCE Salmonella has been traditionally considered a foodborne pathogen, as it is one of the most common etiologies of foodborne illnesses worldwide; however, recent Salmonella outbreaks attributed to fresh produce and water suggest a potential environmental source of Salmonella that causes some human illnesses. Here, we investigated the prevalence, diversity, and antimicrobial resistance of Salmonella isolated from a mixed-use watershed in Georgia, USA, in order to enhance the overall understanding of waterborne Salmonella. The persistence and widespread distribution of Salmonella in surface water confirm environmental sources of the pathogen. A high proportion of waterborne Salmonella with clinically significant serotypes and genetic similarity to strains of human origin supports the role of environmental water as a significant reservoir of Salmonella and indicates a potential waterborne transmission of Salmonella to humans. The presence of antimicrobial-resistant and MDR Salmonella demonstrates additional risks associated with exposure to contaminated environmental water.


Assuntos
Infecções por Salmonella , Salmonella enterica , Animais , Antibacterianos/farmacologia , Farmacorresistência Bacteriana , Farmacorresistência Bacteriana Múltipla/genética , Eletroforese em Gel de Campo Pulsado , Georgia , Humanos , Testes de Sensibilidade Microbiana , Salmonella , Sorogrupo , Sorotipagem , Água
9.
BMC Microbiol ; 21(1): 29, 2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468047

RESUMO

BACKGROUND: Salmonella enterica remains a leading cause of food-borne diseases worldwide. Serotype information is important in food safety and public health activities to reduce the burden of salmonellosis. In the current study, two methods were used to determine serotypes of 111 strains of Salmonella isolated from poultry feces in Burkina Faso. First, Salmonella Multiplex Assay for Rapid Typing (SMART) Polymerase Chain Reaction (PCR) was used to determine the serovars of the S. enterica isolates. Second, serovar prediction based on whole genome sequencing (WGS) data was performed using SeqSero 2.0. RESULTS: Among the 111 Salmonella isolates, serotypes for 17 (15.31%) isolates were identified based on comparison to a panel of representative SMART codes previously determined for the 50 most common serovars in the United States. Forty-four (44) new SMART codes were developed for common and uncommon serotypes. A total of 105 (94.59%) isolates were serotyped using SeqSero 2.0 for serovar prediction based on WGS data. CONCLUSION: We determined that SeqSero 2.0 was more comprehensive for identifying Salmonella serotypes from Burkina Faso than SMART PCR.


Assuntos
Aves Domésticas/microbiologia , Salmonella/classificação , Salmonella/genética , Sorotipagem/métodos , Animais , Burkina Faso , Eletroforese Capilar , Fezes/microbiologia , Microbiologia de Alimentos , Reação em Cadeia da Polimerase Multiplex , Filogenia , Salmonella/isolamento & purificação , Sequenciamento Completo do Genoma
10.
Nat Chem Biol ; 11(6): 401-8, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25867045

RESUMO

Modern cancer treatment employs many effective chemotherapeutic agents originally discovered from natural sources. The cyclic depsipeptide didemnin B has demonstrated impressive anticancer activity in preclinical models. Clinical use has been approved but is limited by sparse patient responses combined with toxicity risk and an unclear mechanism of action. From a broad-scale effort to match antineoplastic natural products to their cellular activities, we found that didemnin B selectively induces rapid and wholesale apoptosis through dual inhibition of PPT1 and EEF1A1. Furthermore, empirical discovery of a small panel of exceptional responders to didemnin B allowed the generation of a regularized regression model to extract a sparse-feature genetic biomarker capable of predicting sensitivity to didemnin B. This may facilitate patient selection in a fashion that could enhance and expand the therapeutic application of didemnin B against neoplastic disease.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Depsipeptídeos/farmacologia , Proteínas de Membrana/antagonistas & inibidores , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Farmacogenética , Apoptose/genética , Biomarcadores/metabolismo , Linhagem Celular Tumoral , Estudo de Associação Genômica Ampla , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas de Membrana/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fator 1 de Elongação de Peptídeos/genética , Biossíntese de Proteínas/efeitos dos fármacos , Biossíntese de Proteínas/genética , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Tioléster Hidrolases , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética
11.
Microbiol Resour Announc ; 13(6): e0102423, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38700349

RESUMO

Whole-genome sequencing (WGS) was used to characterize four Salmonella enterica Enteritidis isolates from poultry (n=2) and human (n=2) from Ouagadougou, Burkina Faso. Antimicrobial resistance genes, chromosomal mutations, and mobile genetic elements were identified by analysis of WGS data using sequence homology.

12.
J Food Prot ; 86(8): 100123, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37414284

RESUMO

Campylobacter spp. are a leading cause of human foodborne illness associated with chicken meat products in the United States. Chicken livers, including exudate from packaging, commonly carry Campylobacter and could be a source of illness if mishandled. Survivability of naturally occurring Campylobacter, total aerobic bacteria, and coliforms was determined under drying conditions in two consumer simulated environments: moist sponge and solid surface. Fresh chicken liver exudate was dispensed onto sponges and glass slides and allowed to dry under ambient conditions for 7 days. Bacterial concentration was measured at 0, 6, 24, 48, 72, and 168 h. Total aerobic population did not decrease by more than one log over 7 days and did not correlate to water activity or time in either simulation. Coliform concentrations increased in sponge simulations but decreased in solid surface simulations. Further, coliform concentrations were significantly higher in sponge simulations than in solid surface. Campylobacter was naturally present in exudate and survived at least to 6 h in every trial. Campylobacter was recoverable at 24 h in some sponge trials. However, Campylobacter concentration was strongly correlated to water activity. Fresh chicken liver exudate could present a risk of campylobacteriosis to consumers if mishandled even after drying.


Assuntos
Infecções por Campylobacter , Campylobacter , Animais , Humanos , Galinhas/microbiologia , Microbiologia de Alimentos , Infecções por Campylobacter/epidemiologia , Fígado/microbiologia , Água , Carne/microbiologia , Contaminação de Alimentos/análise
13.
J Food Prot ; 86(11): 100170, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37777113

RESUMO

Human Campylobacter infections have been associated with chicken and other poultry meat products. Environmental conditions such as temperature and season can affect Campylobacter recoverability from chicken meat products. In the presented study, we sought to investigate the relationship between ambient weather conditions and the isolation of Campylobacter from chicken flocks, as well as the subtype of these isolates. Campylobacter was isolated from the ceca of broilers collected in a commercial processing facility over 7 years, representing 452 flocks. Isolates were subjected to whole-genome sequencing and subtyping by multilocus sequence typing (MLST). Approximately 60% (269/452) of flocks sampled were positive for Campylobacter. There was no significant effect on the presence of detectable Campylobacter by month, season, temperature, or rainfall during grow-out or transportation. Sixty-eight different STs were detected; 45 C. jejuni and 23 C. coli. Diversity as measured by Shannon's diversity index was higher in the spring and fall than in mid-winter and summer. We concluded that in the warm temperate climate of the Southeastern U.S., seasonality does not affect the rate of Campylobacter isolation from broilers, but the diversity of isolates was higher in the milder spring and fall seasons.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Animais , Humanos , Galinhas , Prevalência , Tipagem de Sequências Multilocus , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/veterinária
14.
J Food Prot ; 86(2): 100033, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36916571

RESUMO

Salmonella enterica is a major cause of human foodborne illness and is often attributed to poultry food sources. S. enterica serovar Infantis, specifically those carrying the pESI plasmid, has become a frequently isolated serotype from poultry meat samples at processing and has caused numerous recent human infections. In 2016, the USDA-Food Safety and Inspection Service changed the official sampling method for raw poultry products from BPW to using neutralizing BPW (nBPW) as the rinsing agent in order to prevent residual antimicrobial effects from acidifying and oxidizing processing aids. This change was contemporaneous to the emergence of pESI-positive ser. Infantis as a prevalent serovar in poultry, prompting some to question if nBPW could be selecting for this prevalent serovar. We performed two experiments: a comparison of ser. Infantis growth in BPW versus nBPW, and a simulation of regulatory sampling methods. We found that when inoculated into both broths, ser. Infantis initially grows slightly slower in nBPW than in BPW but little difference was seen in abundance after 6 h of growth. Additionally, the use of nBPW to simulate poultry rinse sample and overnight cold shipping to a regulatory lab did not affect the survival or subsequent growth of ser. Infantis in BPW. We concluded that the change in USDA-FSIS methodology to include nBPW in sampling procedures has likely not affected the emergence of S. ser. Infantis as a prevalent serovar in chicken and turkey meat product samples.


Assuntos
Salmonella enterica , Animais , Humanos , Sorogrupo , Peptonas , Água , Aves Domésticas , Galinhas
15.
Microorganisms ; 10(7)2022 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-35889197

RESUMO

Infantis has recently become one of the most common serotypes of Salmonella isolated in the U.S. from raw meat samples collected in processing facilities and in retail stores. Investigations have determined that the majority of these isolates contain the pESI plasmid, but there has not been a large-scale investigation of the chromosome of these isolates. Here, we investigated 3276 whole-genome sequences of Salmonella Infantis with and without the pESI plasmid to understand chromosomal differences between plasmid carriage groups. S. Infantis genomes arranged into multiple clades with a single clade containing the isolates carrying the plasmid. Fifty-eight SNPs were identified in complete linkage disequilibrium between isolates that did and did not carry the plasmid. However, there were no unique genes present only in the genomes of isolates containing the plasmid. On average, isolates with the plasmid did contain more insertion sequences than those without (p < 0.05). Given that S. Infantis isolates carrying pESI form a single clade, it can be inferred that the increase in carriage of this plasmid in the U.S. is due to rapid clonal expansion of a single strain rather than as a result of multiple transfer events. As this S. Infantis clone does not contain any unique chromosomal genes, its proliferation appears to be due to pESI plasmid-encoded genes that may be advantageous in the chickens and turkeys or in their environment.

16.
Microorganisms ; 10(6)2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35744761

RESUMO

The presence and transfer of plasmids from commensal bacteria to more pathogenic bacteria may contribute to the dissemination of antimicrobial resistance. However, the prevalence of plasmids from commensal bacteria, such as the enterococci, in food animals remains largely unknown. In this study, the diversity and prevalence of plasmid families from multidrug-resistant (MDR; resistance to three or more antimicrobials) enterococci from poultry carcasses were determined. Plasmid-positive MDR enterococci were also tested for the ability to transfer plasmids to other enterococci using conjugation. MDR Enterococcus faecalis (n = 98) and Enterococcus faecium (n = 696) that were isolated from poultry carcass rinsates between 2004 and 2011 were tested for the presence of 21 plasmid replicon (rep) families using multiplex PCR. Approximately 48% of E. faecalis (47/98) and 16% of E. faecium (110/696) were positive for at least one rep-family. Fourteen rep-families were detected overall, and ten rep-families were shared between E. faecalis and E. faecium. The rep7 and rep17 families were unique to E. faecalis, while the rep5 and rep8 families were unique to E. faecium. The rep9 family was predominant in both E. faecalis and E. faecium for all the years tested. The greatest number of rep-families detected was in 2005 (n = 10), and the least was in 2009 (n = 1). Eight rep-families were transferred from E. faecalis donors to the E. faecalis JH2-2 recipient using conjugation. Results from this study showed that E. faecalis and E. faecium from poultry carcasses contain numerous and diverse rep-families that are capable of conjugal transfer.

17.
Antibiotics (Basel) ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740187

RESUMO

The emergence of antimicrobial-resistant bacteria in developing countries increases risks to the health of both such countries' residents and the global community due to international travel. It is consequently necessary to investigate antimicrobial-resistant pathogens in countries such as Burkina Faso, where surveillance data are not available. To study the epidemiology of antibiotic resistance in Salmonella, 102 Salmonella strains isolated from slaughtered chickens were subjected to whole-genome sequencing (WGS) to obtain information on antimicrobial resistance (AMR) genes and other genetic factors. Twenty-two different serotypes were identified using WGS, the most prevalent of which were Hato (28/102, 27.5%) and Derby (23/102, 22.5%). All strains analyzed possessed at least one and up to nine AMR genes, with the most prevalent being the non-functional aac(6')-Iaa gene, followed by aph(6)-Id. Multi-drug resistance was found genotypically in 36.2% of the isolates for different classes of antibiotics, such as fosfomycin and ß-lactams, among others. Plasmids were identified in 43.1% of isolates (44/102), and 25 plasmids were confirmed to carry AMR genes. The results show that chicken can be considered as a reservoir of antibiotic-resistant Salmonella strains. Due to the prevalence of these drug-resistant pathogens and the potential for foodborne illnesses, poultry processing and cooking should be performed with attention to prescribed safe handling methods to avoid cross-contamination with chicken products.

18.
Sci Rep ; 12(1): 12501, 2022 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-35864202

RESUMO

The synthetic lethal association between BRCA deficiency and poly (ADP-ribose) polymerase (PARP) inhibition supports PARP inhibitor (PARPi) clinical efficacy in BRCA-mutated tumors. PARPis also demonstrate activity in non-BRCA mutated tumors presumably through induction of PARP1-DNA trapping. Despite pronounced clinical response, therapeutic resistance to PARPis inevitably develops. An abundance of knowledge has been built around resistance mechanisms in BRCA-mutated tumors, however, parallel understanding in non-BRCA mutated settings remains insufficient. In this study, we find a strong correlation between the epithelial-mesenchymal transition (EMT) signature and resistance to a clinical PARPi, Talazoparib, in non-BRCA mutated tumor cells. Genetic profiling demonstrates that SNAI2, a master EMT transcription factor, is transcriptionally induced by Talazoparib treatment or PARP1 depletion and this induction is partially responsible for the emerging resistance. Mechanistically, we find that the PARP1 protein directly binds to SNAI2 gene promoter and suppresses its transcription. Talazoparib treatment or PARP1 depletion lifts PARP1-mediated suppression and increases chromatin accessibility around SNAI2 promoters, thus driving SNAI2 transcription and drug resistance. We also find that depletion of the chromatin remodeler CHD1L suppresses SNAI2 expression and reverts acquired resistance to Talazoparib. The PARP1/CHD1L/SNAI2 transcription axis might be therapeutically targeted to re-sensitize Talazoparib in non-BRCA mutated tumors.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Cromatina , DNA Helicases/genética , Proteínas de Ligação a DNA/genética , Humanos , Neoplasias/genética , Ftalazinas/farmacologia , Ftalazinas/uso terapêutico , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Poli(ADP-Ribose) Polimerases/genética , Fatores de Transcrição da Família Snail/genética
19.
Mol Cancer Ther ; 21(1): 3-15, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34737197

RESUMO

Protein arginine methyltransferase 5 (PRMT5) overexpression in hematologic and solid tumors methylates arginine residues on cellular proteins involved in important cancer functions including cell-cycle regulation, mRNA splicing, cell differentiation, cell signaling, and apoptosis. PRMT5 methyltransferase function has been linked with high rates of tumor cell proliferation and decreased overall survival, and PRMT5 inhibitors are currently being explored as an approach for targeting cancer-specific dependencies due to PRMT5 catalytic function. Here, we describe the discovery of potent and selective S-adenosylmethionine (SAM) competitive PRMT5 inhibitors, with in vitro and in vivo characterization of clinical candidate PF-06939999. Acquired resistance mechanisms were explored through the development of drug resistant cell lines. Our data highlight compound-specific resistance mutations in the PRMT5 enzyme that demonstrate structural constraints in the cofactor binding site that prevent emergence of complete resistance to SAM site inhibitors. PRMT5 inhibition by PF-06939999 treatment reduced proliferation of non-small cell lung cancer (NSCLC) cells, with dose-dependent decreases in symmetric dimethyl arginine (SDMA) levels and changes in alternative splicing of numerous pre-mRNAs. Drug sensitivity to PF-06939999 in NSCLC cells associates with cancer pathways including MYC, cell cycle and spliceosome, and with mutations in splicing factors such as RBM10. Translation of efficacy in mouse tumor xenograft models with splicing mutations provides rationale for therapeutic use of PF-06939999 in the treatment of splicing dysregulated NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Proteína-Arginina N-Metiltransferases/antagonistas & inibidores , S-Adenosilmetionina/metabolismo , Animais , Apoptose , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Resistência a Medicamentos , Feminino , Humanos , Neoplasias Pulmonares/patologia , Camundongos
20.
Dev Biol ; 344(2): 621-36, 2010 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-20501334

RESUMO

Little is known about the molecular mechanisms by which STAT proteins promote tumorigenesis. Drosophila is an ideal system for investigating this issue, as there is a single STAT (Stat92E), and its hyperactivation causes overgrowths resembling human tumors. Here we report the first identification of a dominant-active Stat92E protein, Stat92E(DeltaNDeltaC), which lacks both N- and C-termini. Mis-expression of Stat92E(DeltaNDeltaC)in vivo causes melanotic tumors, while in vitro it transactivates a Stat92E-luciferase reporter in the absence of stimulation. These gain-of-function phenotypes require phosphorylation of Y(711) and dimer formation with full-length Stat92E. Furthermore, a single point mutation, an R(442P) substitution in the DNA-binding domain, abolishes Stat92E function. Recombinant Stat92E(R442P) translocates to the nucleus following activation but fails to function in all assays tested. Interestingly, R(442) is conserved in most STATs in higher organisms, suggesting conservation of function. Modeling of Stat92E indicates that R(442) may contact the minor groove of DNA via invariant TC bases in the consensus binding element bound by all STAT proteins. We conclude that the N- and C- termini function unexpectedly in negatively regulating Stat92E activity, possibly by decreasing dimer dephosphorylation or increasing stability of DNA interaction, and that Stat92E(R442) has a nuclear function by altering dimer:DNA binding.


Assuntos
Drosophila/metabolismo , Transativadores/genética , Transativadores/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Animais , Drosophila/genética , Fosforilação , Proteínas/genética , Proteínas/metabolismo , Transativadores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA