Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37054711

RESUMO

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Assuntos
Proteínas de Drosophila , Doenças do Sistema Nervoso , Adulto , Animais , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação/genética , RNA Mensageiro
2.
Genome Res ; 27(8): 1323-1335, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28630177

RESUMO

While next-generation sequencing has accelerated the discovery of human disease genes, progress has been largely limited to the "low hanging fruit" of mutations with obvious exonic coding or canonical splice site impact. In contrast, the lack of high-throughput, unbiased approaches for functional assessment of most noncoding variants has bottlenecked gene discovery. We report the integration of transcriptome sequencing (RNA-seq), which surveys all mRNAs to reveal functional impacts of variants at the transcription level, into the gene discovery framework for a unique human disease, microcephaly-micromelia syndrome (MMS). MMS is an autosomal recessive condition described thus far in only a single First Nations population and causes intrauterine growth restriction, severe microcephaly, craniofacial anomalies, skeletal dysplasia, and neonatal lethality. Linkage analysis of affected families, including a very large pedigree, identified a single locus on Chromosome 21 linked to the disease (LOD > 9). Comprehensive genome sequencing did not reveal any pathogenic coding or canonical splicing mutations within the linkage region but identified several nonconserved noncoding variants. RNA-seq analysis detected aberrant splicing in DONSON due to one of these noncoding variants, showing a causative role for DONSON disruption in MMS. We show that DONSON is expressed in progenitor cells of embryonic human brain and other proliferating tissues, is co-expressed with components of the DNA replication machinery, and that Donson is essential for early embryonic development in mice as well, suggesting an essential conserved role for DONSON in the cell cycle. Our results demonstrate the utility of integrating transcriptomics into the study of human genetic disease when DNA sequencing alone is not sufficient to reveal the underlying pathogenic mutation.


Assuntos
Proteínas de Ciclo Celular/genética , Replicação do DNA , Microcefalia/genética , Microcefalia/patologia , Mutação , Proteínas Nucleares/genética , Osteocondrodisplasias/genética , Osteocondrodisplasias/patologia , Transcriptoma , Animais , Mapeamento Cromossômico , Feminino , Ligação Genética , Instabilidade Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Camundongos , Camundongos Knockout , Microcefalia/etiologia , Osteocondrodisplasias/etiologia , Linhagem , Gravidez , Splicing de RNA , Análise de Sequência de RNA , Sequenciamento Completo do Genoma
3.
Genet Med ; 22(6): 1040-1050, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32103185

RESUMO

PURPOSE: The exocyst complex is a conserved protein complex that mediates fusion of intracellular vesicles to the plasma membrane and is implicated in processes including cell polarity, cell migration, ciliogenesis, cytokinesis, autophagy, and fusion of secretory vesicles. The essential role of these genes in human genetic disorders, however, is unknown. METHODS: We performed homozygosity mapping and exome sequencing of consanguineous families with recessively inherited brain development disorders. We modeled an EXOC7 splice variant in vitro and examined EXOC7 messenger RNA (mRNA) expression in developing mouse and human cortex. We modeled exoc7 loss-of-function in a zebrafish knockout. RESULTS: We report variants in exocyst complex members, EXOC7 and EXOC8, in a novel disorder of cerebral cortex development. In EXOC7, we identified four independent partial loss-of-function (LOF) variants in a recessively inherited disorder characterized by brain atrophy, seizures, and developmental delay, and in severe cases, microcephaly and infantile death. In EXOC8, we found a homozygous truncating variant in a family with a similar clinical disorder. We modeled exoc7 deficiency in zebrafish and found the absence of exoc7 causes microcephaly. CONCLUSION: Our results highlight the essential role of the exocyst pathway in normal cortical development and how its perturbation causes complex brain disorders.


Assuntos
Encefalopatias , Microcefalia , Animais , Proliferação de Células/genética , Homozigoto , Humanos , Camundongos , Microcefalia/genética , Peixe-Zebra/genética
4.
Am J Med Genet A ; 182(3): 441-445, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31846209

RESUMO

Kabuki syndrome is a rare, multi-systemic disorder of chromatin regulation due to mutations in either KMT2D or KDM6A that encode a H3K4 methyltransferase and an H3K27 demethylase, respectively. The associated clinical phenotype is a direct result of temporal and spatial changes in gene expression in various tissues including the brain. Although mild to moderate intellectual disability is frequently recognized in individuals with Kabuki syndrome, the identification of brain anomalies, mostly involving the hippocampus and related structures remains an exception. Recently, the first two cases with alobar holoprosencephaly and mutations in KMT2D have been reported in the medical literature. We identified a de novo, pathogenic KMT2D variant (c.6295C > T; p.R2099X) using trio whole-exome sequencing in a 2-year-old female with lobar holoprosencephaly, microcephaly and cranio-facial features of Kabuki syndrome. This report expands the spectrum of brain anomalies associated with Kabuki syndrome underscoring the important role of histone modification for early brain development.


Assuntos
Anormalidades Múltiplas/genética , Proteínas de Ligação a DNA/genética , Face/anormalidades , Doenças Hematológicas/genética , Holoprosencefalia/genética , Deficiência Intelectual/genética , Proteínas de Neoplasias/genética , Doenças Vestibulares/genética , Anormalidades Múltiplas/diagnóstico , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/patologia , Pré-Escolar , Face/diagnóstico por imagem , Face/patologia , Feminino , Doenças Hematológicas/diagnóstico , Doenças Hematológicas/diagnóstico por imagem , Doenças Hematológicas/patologia , Holoprosencefalia/diagnóstico , Holoprosencefalia/diagnóstico por imagem , Holoprosencefalia/patologia , Humanos , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/diagnóstico por imagem , Deficiência Intelectual/patologia , Mutação/genética , Fenótipo , Doenças Vestibulares/diagnóstico , Doenças Vestibulares/diagnóstico por imagem , Doenças Vestibulares/patologia , Sequenciamento do Exoma
5.
Proc Natl Acad Sci U S A ; 113(38): E5598-607, 2016 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-27601654

RESUMO

Mutations that cause neurological phenotypes are highly informative with regard to mechanisms governing human brain function and disease. We report autosomal recessive mutations in the enzyme glutamate pyruvate transaminase 2 (GPT2) in large kindreds initially ascertained for intellectual and developmental disability (IDD). GPT2 [also known as alanine transaminase 2 (ALT2)] is one of two related transaminases that catalyze the reversible addition of an amino group from glutamate to pyruvate, yielding alanine and α-ketoglutarate. In addition to IDD, all affected individuals show postnatal microcephaly and ∼80% of those followed over time show progressive motor symptoms, a spastic paraplegia. Homozygous nonsense p.Arg404* and missense p.Pro272Leu mutations are shown biochemically to be loss of function. The GPT2 gene demonstrates increasing expression in brain in the early postnatal period, and GPT2 protein localizes to mitochondria. Akin to the human phenotype, Gpt2-null mice exhibit reduced brain growth. Through metabolomics and direct isotope tracing experiments, we find a number of metabolic abnormalities associated with loss of Gpt2. These include defects in amino acid metabolism such as low alanine levels and elevated essential amino acids. Also, we find defects in anaplerosis, the metabolic process involved in replenishing TCA cycle intermediates. Finally, mutant brains demonstrate misregulated metabolites in pathways implicated in neuroprotective mechanisms previously associated with neurodegenerative disorders. Overall, our data reveal an important role for the GPT2 enzyme in mitochondrial metabolism with relevance to developmental as well as potentially to neurodegenerative mechanisms.


Assuntos
Encéfalo/crescimento & desenvolvimento , Mitocôndrias/enzimologia , Doenças do Sistema Nervoso/genética , Transaminases/genética , Sequência de Aminoácidos/genética , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Ciclo do Ácido Cítrico/genética , Homozigoto , Humanos , Ácidos Cetoglutáricos/metabolismo , Camundongos , Mitocôndrias/patologia , Mutação de Sentido Incorreto , Doenças do Sistema Nervoso/patologia , Fenótipo , Ácido Pirúvico/metabolismo , Transaminases/metabolismo
6.
Am J Hum Genet ; 96(5): 709-19, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25865492

RESUMO

Despite recent advances in understanding the genetic bases of microcephaly, a large number of cases of microcephaly remain unexplained, suggesting that many microcephaly syndromes and associated genes have yet to be identified. Here, we report mutations in PYCR2, which encodes an enzyme in the proline biosynthesis pathway, as the cause of a unique syndrome characterized by postnatal microcephaly, hypomyelination, and reduced cerebral white-matter volume. Linkage mapping and whole-exome sequencing identified homozygous mutations (c.355C>T [p.Arg119Cys] and c.751C>T [p.Arg251Cys]) in PYCR2 in the affected individuals of two consanguineous families. A lymphoblastoid cell line from one affected individual showed a strong reduction in the amount of PYCR2. When mutant cDNAs were transfected into HEK293FT cells, both variant proteins retained normal mitochondrial localization but had lower amounts than the wild-type protein, suggesting that the variant proteins were less stable. A PYCR2-deficient HEK293FT cell line generated by genome editing with the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 system showed that PYCR2 loss of function led to decreased mitochondrial membrane potential and increased susceptibility to apoptosis under oxidative stress. Morpholino-based knockdown of a zebrafish PYCR2 ortholog, pycr1b, recapitulated the human microcephaly phenotype, which was rescued by wild-type human PYCR2 mRNA, but not by mutant mRNAs, further supporting the pathogenicity of the identified variants. Hypomyelination and the absence of lax, wrinkly skin distinguishes this condition from that caused by previously reported mutations in the gene encoding PYCR2's isozyme, PYCR1, suggesting a unique and indispensable role for PYCR2 in the human CNS during development.


Assuntos
Sistemas de Transporte de Aminoácidos Acídicos/deficiência , Antiporters/deficiência , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/genética , Microcefalia/genética , Doenças Mitocondriais/genética , Transtornos Psicomotores/genética , Pirrolina Carboxilato Redutases/genética , Sistemas de Transporte de Aminoácidos Acídicos/genética , Antiporters/genética , Feminino , Genótipo , Doenças Desmielinizantes Hereditárias do Sistema Nervoso Central/patologia , Homozigoto , Humanos , Masculino , Microcefalia/patologia , Doenças Mitocondriais/patologia , Mutação , Fenótipo , Transtornos Psicomotores/patologia , delta-1-Pirrolina-5-Carboxilato Redutase
7.
Euro Surveill ; 23(45)2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30424827

RESUMO

BackgroundNorth-eastern Brazil was the region most affected by the outbreak of congenital Zika syndrome that followed the 2015 Zika virus (ZIKV) epidemics, with thousands of suspected microcephaly cases reported to the health authorities, mostly between late 2015 and early 2016. Aim: To describe clinical and epidemiological aspects of the outbreak of congenital brain abnormalities (CBAs) and to evaluate the accuracy of different head circumference screening criteria in predicting CBAs.MethodBetween April 2015 and July 2016, the Centers for Information and Epidemiologic Surveillance of Salvador, Brazil investigated the reported cases suspected of microcephaly and, based on intracranial imaging studies, confirmed or excluded a diagnosis of CBA. Sensitivity, specificity and positive and negative predictive values of different head circumference screening criteria in predicting CBAs were calculated.ResultsOf the 365 investigated cases, 166 (45.5%) had confirmed CBAs. The most common findings were intracranial calcifications and ventriculomegaly in 143 (86.1%) and 111 (66.9%) of the 166 CBA cases, respectively. Prevalence of CBAs peaked in December 2015 (2.24 cases/100 live births). Cases of CBAs were significantly more likely to have been born preterm and to mothers who had clinical manifestations of arboviral infection during pregnancy. None of the head circumference screening criteria performed optimally in predicting CBAs.ConclusionThis study highlights the magnitude of neurological consequences of the ZIKV epidemic and the limitations of head circumference in accurately identifying children with CBA. Gestational symptoms compatible with ZIKV infection should be combined with imaging studies for efficient detection of suspect CBAs during ZIKV epidemics.


Assuntos
Encéfalo/anormalidades , Encéfalo/diagnóstico por imagem , Surtos de Doenças/estatística & dados numéricos , Notificação de Abuso , Microcefalia/virologia , Complicações Infecciosas na Gravidez/virologia , Infecção por Zika virus/congênito , Zika virus/isolamento & purificação , Anormalidades Múltiplas/etiologia , Encéfalo/virologia , Brasil/epidemiologia , Calcinose/diagnóstico por imagem , Epidemias , Feminino , Idade Gestacional , Humanos , Hidrocefalia/diagnóstico por imagem , Hidrocefalia/epidemiologia , Lactente , Recém-Nascido , Microcefalia/diagnóstico por imagem , Mães , Neuroimagem , Gravidez , Complicações Infecciosas na Gravidez/epidemiologia , Prevalência , Infecção por Zika virus/epidemiologia
8.
Am J Med Genet B Neuropsychiatr Genet ; 177(8): 736-745, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30421579

RESUMO

Protein homeostasis is tightly regulated by the ubiquitin proteasome pathway. Disruption of this pathway gives rise to a host of neurological disorders. Through whole exome sequencing (WES) in families with neurodevelopmental disorders, we identified mutations in PSMD12, a core component of the proteasome, underlying a neurodevelopmental disorder with intellectual disability (ID) and features of autism spectrum disorder (ASD). We performed WES on six affected siblings from a multiplex family with ID and autistic features, the affected father, and two unaffected mothers, and a trio from a simplex family with one affected child with ID and periventricular nodular heterotopia. We identified an inherited heterozygous nonsense mutation in PSMD12 (NM_002816: c.367C>T: p.R123X) in the multiplex family and a de novo nonsense mutation in the same gene (NM_002816: c.601C>T: p.R201X) in the simplex family. PSMD12 encodes a non-ATPase regulatory subunit of the 26S proteasome. We confirm the association of PSMD12 with ID, present the first cases of inherited PSMD12 mutation, and demonstrate the heterogeneity of phenotypes associated with PSMD12 mutations.


Assuntos
Deficiência Intelectual/genética , Complexo de Endopeptidases do Proteassoma/genética , Adolescente , Adulto , Transtorno do Espectro Autista/genética , Transtorno Autístico/genética , Criança , Pré-Escolar , Família , Feminino , Predisposição Genética para Doença , Haploinsuficiência/genética , Humanos , Masculino , Mutação , Transtornos do Neurodesenvolvimento/genética , Linhagem , Complexo de Endopeptidases do Proteassoma/metabolismo , Irmãos , Sequenciamento do Exoma
9.
Hum Mutat ; 38(10): 1348-1354, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28493438

RESUMO

Aminoacyl-transfer RNA (tRNA) synthetases ligate amino acids to specific tRNAs and are essential for protein synthesis. Although alanyl-tRNA synthetase (AARS) is a synthetase implicated in a wide range of neurological disorders from Charcot-Marie-Tooth disease to infantile epileptic encephalopathy, there have been limited data on their pathogenesis. Here, we report loss-of-function mutations in AARS in two siblings with progressive microcephaly with hypomyelination, intractable epilepsy, and spasticity. Whole-exome sequencing identified that the affected individuals were compound heterozygous for mutations in AARS gene, c.2067dupC (p.Tyr690Leufs*3) and c.2738G>A (p.Gly913Asp). A lymphoblastoid cell line developed from one of the affected individuals showed a strong reduction in AARS abundance. The mutations decrease aminoacylation efficiency by 70%-90%. The p.Tyr690Leufs*3 mutation also abolished editing activity required for hydrolyzing misacylated tRNAs, thereby increasing errors during aminoacylation. Our study has extended potential mechanisms underlying AARS-related disorders to include destabilization of the protein, aminoacylation dysfunction, and defective editing activity.


Assuntos
Alanina-tRNA Ligase/genética , Síndrome de Lennox-Gastaut/genética , Microcefalia/genética , Espasmos Infantis/genética , Paraplegia Espástica Hereditária/genética , Sequência de Aminoácidos/genética , Aminoacilação/genética , Doença de Charcot-Marie-Tooth/genética , Doença de Charcot-Marie-Tooth/patologia , Pré-Escolar , Eletroencefalografia , Feminino , Humanos , Lactente , Síndrome de Lennox-Gastaut/complicações , Síndrome de Lennox-Gastaut/diagnóstico , Síndrome de Lennox-Gastaut/patologia , Microcefalia/diagnóstico por imagem , Microcefalia/patologia , Mutação/genética , Biossíntese de Proteínas/genética , Irmãos , Espasmos Infantis/complicações , Espasmos Infantis/diagnóstico por imagem , Espasmos Infantis/patologia , Paraplegia Espástica Hereditária/complicações , Paraplegia Espástica Hereditária/patologia , Sequenciamento do Exoma
10.
Am J Hum Genet ; 94(4): 547-58, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24656866

RESUMO

Progressive microcephaly is a heterogeneous condition with causes including mutations in genes encoding regulators of neuronal survival. Here, we report the identification of mutations in QARS (encoding glutaminyl-tRNA synthetase [QARS]) as the causative variants in two unrelated families affected by progressive microcephaly, severe seizures in infancy, atrophy of the cerebral cortex and cerebellar vermis, and mild atrophy of the cerebellar hemispheres. Whole-exome sequencing of individuals from each family independently identified compound-heterozygous mutations in QARS as the only candidate causative variants. QARS was highly expressed in the developing fetal human cerebral cortex in many cell types. The four QARS mutations altered highly conserved amino acids, and the aminoacylation activity of QARS was significantly impaired in mutant cell lines. Variants p.Gly45Val and p.Tyr57His were located in the N-terminal domain required for QARS interaction with proteins in the multisynthetase complex and potentially with glutamine tRNA, and recombinant QARS proteins bearing either substitution showed an over 10-fold reduction in aminoacylation activity. Conversely, variants p.Arg403Trp and p.Arg515Trp, each occurring in a different family, were located in the catalytic core and completely disrupted QARS aminoacylation activity in vitro. Furthermore, p.Arg403Trp and p.Arg515Trp rendered QARS less soluble, and p.Arg403Trp disrupted QARS-RARS (arginyl-tRNA synthetase 1) interaction. In zebrafish, homozygous qars loss of function caused decreased brain and eye size and extensive cell death in the brain. Our results highlight the importance of QARS during brain development and that epilepsy due to impairment of QARS activity is unusually severe in comparison to other aminoacyl-tRNA synthetase disorders.


Assuntos
Aminoacil-tRNA Sintetases/genética , Encefalopatias/genética , Predisposição Genética para Doença , Microcefalia/genética , Mutação , Convulsões/genética , Aminoacilação , Animais , Pré-Escolar , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Microcefalia/patologia , Linhagem , Peixe-Zebra
11.
Hum Mol Genet ; 23(13): 3456-66, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501276

RESUMO

Whereas many genes associated with intellectual disability (ID) encode synaptic proteins, transcriptional defects leading to ID are less well understood. We studied a large, consanguineous pedigree of Arab origin with seven members affected with ID and mild dysmorphic features. Homozygosity mapping and linkage analysis identified a candidate region on chromosome 17 with a maximum multipoint logarithm of odds score of 6.01. Targeted high-throughput sequencing of the exons in the candidate region identified a homozygous 4-bp deletion (c.169_172delCACT) in the METTL23 (methyltransferase like 23) gene, which is predicted to result in a frameshift and premature truncation (p.His57Valfs*11). Overexpressed METTL23 protein localized to both nucleus and cytoplasm, and physically interacted with GABPA (GA-binding protein transcription factor, alpha subunit). GABP, of which GABPA is a component, is known to regulate the expression of genes such as THPO (thrombopoietin) and ATP5B (ATP synthase, H+ transporting, mitochondrial F1 complex, beta polypeptide) and is implicated in a wide variety of important cellular functions. Overexpression of METTL23 resulted in increased transcriptional activity at the THPO promoter, whereas knockdown of METTL23 with siRNA resulted in decreased expression of ATP5B, thus revealing the importance of METTL23 as a regulator of GABPA function. The METTL23 mutation highlights a new transcriptional pathway underlying human intellectual function.


Assuntos
Metilases de Modificação do DNA/metabolismo , Fator de Transcrição de Proteínas de Ligação GA/metabolismo , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Metilases de Modificação do DNA/genética , Feminino , Fator de Transcrição de Proteínas de Ligação GA/genética , Genótipo , Humanos , Imunoprecipitação , Masculino , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Polimorfismo de Nucleotídeo Único/genética , Ligação Proteica , RNA Interferente Pequeno , Trombopoetina/genética , Trombopoetina/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
Am J Med Genet A ; 170A(2): 435-440, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26463574

RESUMO

Exome sequencing identified homozygous loss-of-function variants in DIAPH1 (c.2769delT; p.F923fs and c.3145C>T; p.R1049X) in four affected individuals from two unrelated consanguineous families. The affected individuals in our report were diagnosed with postnatal microcephaly, early-onset epilepsy, severe vision impairment, and pulmonary symptoms including bronchiectasis and recurrent respiratory infections. A heterozygous DIAPH1 mutation was originally reported in one family with autosomal dominant deafness. Recently, however, a homozygous nonsense DIAPH1 mutation (c.2332C4T; p.Q778X) was reported in five siblings in a single family affected by microcephaly, blindness, early onset seizures, developmental delay, and bronchiectasis. The role of DIAPH1 was supported using parametric linkage analysis, RNA and protein studies in their patients' cell lines and further studies in human neural progenitors cells and a diap1 knockout mouse. In this report, the proband was initially brought to medical attention for profound metopic synostosis. Additional concerns arose when his head circumference did not increase after surgical release at 5 months of age and he was diagnosed with microcephaly and epilepsy at 6 months of age. Clinical exome analysis identified a homozygous DIAPH1 mutation. Another homozygous DIAPH1 mutation was identified in the research exome analysis of a second family with three siblings presenting with a similar phenotype. Importantly, no hearing impairment is reported in the homozygous affected individuals or in the heterozygous carrier parents in any of the families demonstrating the autosomal recessive microcephaly phenotype. These additional families provide further evidence of the likely causal relationship between DIAPH1 mutations and a neurodevelopmental disorder.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Cegueira/genética , Microcefalia/genética , Mutação/genética , Convulsões/genética , Adulto , Idade de Início , Animais , Cegueira/patologia , Exoma/genética , Feminino , Forminas , Humanos , Lactente , Recém-Nascido , Masculino , Camundongos , Camundongos Knockout , Microcefalia/patologia , Pessoa de Meia-Idade , Linhagem , Fenótipo , Prognóstico , Convulsões/patologia
14.
Am J Hum Genet ; 88(5): 536-47, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21529751

RESUMO

Genes disrupted in human microcephaly (meaning "small brain") define key regulators of neural progenitor proliferation and cell-fate specification. In comparison, genes mutated in human lissencephaly (lissos means smooth and cephalos means brain) highlight critical regulators of neuronal migration. Here, we report two families with extreme microcephaly and grossly simplified cortical gyral structure, a condition referred to as microlissencephaly, and show that they carry homozygous frameshift mutations in NDE1, which encodes a multidomain protein that localizes to the centrosome and mitotic spindle poles. Both human mutations in NDE1 truncate the C-terminal NDE1domains, which are essential for interactions with cytoplasmic dynein and thus for regulation of cytoskeletal dynamics in mitosis and for cell-cycle-dependent phosphorylation of NDE1 by Cdk1. We show that the patient NDE1 proteins are unstable, cannot bind cytoplasmic dynein, and do not localize properly to the centrosome. Additionally, we show that CDK1 phosphorylation at T246, which is within the C-terminal region disrupted by the mutations, is required for cell-cycle progression from the G2 to the M phase. The role of NDE1 in cell-cycle progression probably contributes to the profound neuronal proliferation defects evident in Nde1-null mice and patients with NDE1 mutations, demonstrating the essential role of NDE1 in human cerebral cortical neurogenesis.


Assuntos
Mutação da Fase de Leitura , Lisencefalia/genética , Microcefalia/genética , Proteínas Associadas aos Microtúbulos/genética , Animais , Proteína Quinase CDC2/metabolismo , Diferenciação Celular , Linhagem Celular , Movimento Celular , Centrossomo/metabolismo , Córtex Cerebral/embriologia , Córtex Cerebral/crescimento & desenvolvimento , Criança , Pré-Escolar , Feminino , Ligação Genética , Homozigoto , Humanos , Lactente , Masculino , Camundongos , Camundongos Knockout , Neurônios/citologia , Fosforilação , Estabilidade Proteica , Fuso Acromático/metabolismo , Transfecção
15.
Cogn Behav Neurol ; 27(3): 160-5, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25237747

RESUMO

We report the neuropsychological profile of a 4-year-old boy with the rare 18p deletion syndrome. We used a battery of standardized tests to assess his development in intellect, language, visuomotor integration, academic readiness, socialization, and emotional and behavioral health. The results showed borderline intellectual function except for low average nonverbal reasoning skills. He had stronger receptive than expressive language skills, although both were well below his age group. He had impaired visuomotor integration and pre-academic skills such as letter identification. Emotional and behavioral findings indicated mild aggressiveness, anxiety, low frustration tolerance, and executive function weaknesses, especially at home. Interestingly, he showed social strengths, responding to joint attention and sharing enjoyment with his examiner. With its assessment of development in many domains, this case report is among the first to characterize the neuropsychological and psychiatric function of a young child with 18p deletion syndrome. We discuss the implications of our findings for clinical practice.


Assuntos
Comportamento Infantil , Transtornos Cromossômicos/psicologia , Deficiências do Desenvolvimento/genética , Emoções , Desempenho Psicomotor , Socialização , Atenção , Pré-Escolar , Deleção Cromossômica , Transtornos Cromossômicos/fisiopatologia , Cromossomos Humanos Par 18 , Cognição , Deficiências do Desenvolvimento/fisiopatologia , Deficiências do Desenvolvimento/psicologia , Função Executiva , Família , Humanos , Idioma , Masculino , Destreza Motora , Testes Neuropsicológicos , Fala
16.
Hum Mutat ; 34(3): 498-505, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23255084

RESUMO

We have recently shown that the hemorrhagic destruction of the brain, subependymal, calcification, and congenital cataracts is caused by biallelic mutations in the gene encoding junctional adhesion molecule 3 (JAM3) protein. Affected members from three new families underwent detailed clinical examination including imaging of the brain. Affected individuals presented with a distinctive phenotype comprising hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. All patients had a catastrophic clinical course resulting in death. Sequencing the coding exons of JAM3 revealed three novel homozygous mutations: c.2T>G (p.M1R), c.346G>A (p.E116K), and c.656G>A (p.C219Y). The p.M1R mutation affects the start codon and therefore is predicted to impair protein synthesis. Cellular studies showed that the p.C219Y mutation resulted in a significant retention of the mutated protein in the endoplasmic reticulum, suggesting a trafficking defect. The p.E116K mutant traffics normally to the plasma membrane as the wild-type and may have lost its function due to the lack of interaction with an interacting partner. Our data further support the importance of JAM3 in the development and function of the vascular system and the brain.


Assuntos
Encéfalo/patologia , Calcinose/genética , Catarata/congênito , Catarata/genética , Moléculas de Adesão Celular/genética , Hemorragia Cerebral/genética , Austrália , Moléculas de Adesão Celular/deficiência , Éxons , Feminino , Células HeLa , Homozigoto , Humanos , Recém-Nascido , Unidades de Terapia Intensiva Neonatal , Masculino , Microscopia Confocal , Mutação de Sentido Incorreto , Linhagem , Fenótipo , Análise de Sequência de DNA , Espanha , Turquia , Emirados Árabes Unidos
17.
Am J Hum Genet ; 87(6): 882-9, 2010 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-21109224

RESUMO

The tight junction, or zonula occludens, is a specialized cell-cell junction that regulates epithelial and endothelial permeability, and it is an essential component of the blood-brain barrier in the cerebrovascular endothelium. In addition to functioning as a diffusion barrier, tight junctions are also involved in signal transduction. In this study, we identified a homozygous mutation in the tight-junction protein gene JAM3 in a large consanguineous family from the United Arab Emirates. Some members of this family had a rare autosomal-recessive syndrome characterized by severe hemorrhagic destruction of the brain, subependymal calcification, and congenital cataracts. Their clinical presentation overlaps with some reported cases of pseudo-TORCH syndrome as well as with cases involving mutations in occludin, another component of the tight-junction complex. However, massive intracranial hemorrhage distinguishes these patients from others. Homozygosity mapping identified the disease locus in this family on chromosome 11q25 with a maximum multipoint LOD score of 6.15. Sequence analysis of genes in the candidate interval uncovered a mutation in the canonical splice-donor site of intron 5 of JAM3. RT-PCR analysis of a patient lymphoblast cell line confirmed abnormal splicing, leading to a frameshift mutation with early termination. JAM3 is known to be present in vascular endothelium, although its roles in cerebral vasculature have not been implicated. Our results suggest that JAM3 is essential for maintaining the integrity of the cerebrovascular endothelium as well as for normal lens development in humans.


Assuntos
Calcinose/genética , Catarata/congênito , Moléculas de Adesão Celular/genética , Hemorragia Cerebral/genética , Epêndima/patologia , Homozigoto , Mutação , Junções Íntimas/metabolismo , Catarata/genética , Criança , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Linhagem
18.
iScience ; 26(7): 106909, 2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37332674

RESUMO

Characterizing perturbation of molecular pathways in congenital Zika virus (ZIKV) infection is critical for improved therapeutic approaches. Leveraging integrative systems biology, proteomics, and RNA-seq, we analyzed embryonic brain tissues from an immunocompetent, wild-type congenital ZIKV infection mouse model. ZIKV induced a robust immune response accompanied by the downregulation of critical neurodevelopmental gene programs. We identified a negative correlation between ZIKV polyprotein abundance and host cell cycle-inducing proteins. We further captured the downregulation of genes/proteins, many of which are known to be causative for human microcephaly, including Eomesodermin/T-box Brain Protein 2 (EOMES/TBR2) and Neuronal Differentiation 2 (NEUROD2). Disturbances of distinct molecular pathways in neural progenitors and post-mitotic neurons may contribute to complex brain phenotype of congenital ZIKV infection. Overall, this report on protein- and transcript-level dynamics enhances understanding of the ZIKV immunopathological landscape through characterization of fetal immune response in the developing brain.

19.
JAMA Neurol ; 80(9): 980-988, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37486637

RESUMO

Importance: Polymicrogyria is the most commonly diagnosed cortical malformation and is associated with neurodevelopmental sequelae including epilepsy, motor abnormalities, and cognitive deficits. Polymicrogyria frequently co-occurs with other brain malformations or as part of syndromic diseases. Past studies of polymicrogyria have defined heterogeneous genetic and nongenetic causes but have explained only a small fraction of cases. Objective: To survey germline genetic causes of polymicrogyria in a large cohort and to consider novel polymicrogyria gene associations. Design, Setting, and Participants: This genetic association study analyzed panel sequencing and exome sequencing of accrued DNA samples from a retrospective cohort of families with members with polymicrogyria. Samples were accrued over more than 20 years (1994 to 2020), and sequencing occurred in 2 stages: panel sequencing (June 2015 to January 2016) and whole-exome sequencing (September 2019 to March 2020). Individuals seen at multiple clinical sites for neurological complaints found to have polymicrogyria on neuroimaging, then referred to the research team by evaluating clinicians, were included in the study. Targeted next-generation sequencing and/or exome sequencing were performed on probands (and available parents and siblings) from 284 families with individuals who had isolated polymicrogyria or polymicrogyria as part of a clinical syndrome and no genetic diagnosis at time of referral from clinic, with sequencing from 275 families passing quality control. Main Outcomes and Measures: The number of families in whom genetic sequencing yielded a molecular diagnosis that explained the polymicrogyria in the family. Secondarily, the relative frequency of different genetic causes of polymicrogyria and whether specific genetic causes were associated with co-occurring head size changes were also analyzed. Results: In 32.7% (90 of 275) of polymicrogyria-affected families, genetic variants were identified that provided satisfactory molecular explanations. Known genes most frequently implicated by polymicrogyria-associated variants in this cohort were PIK3R2, TUBB2B, COL4A1, and SCN3A. Six candidate novel polymicrogyria genes were identified or confirmed: de novo missense variants in PANX1, QRICH1, and SCN2A and compound heterozygous variants in TMEM161B, KIF26A, and MAN2C1, each with consistent genotype-phenotype relationships in multiple families. Conclusions and Relevance: This study's findings reveal a higher than previously recognized rate of identifiable genetic causes, specifically of channelopathies, in individuals with polymicrogyria and support the utility of exome sequencing for families affected with polymicrogyria.


Assuntos
Polimicrogiria , Humanos , Polimicrogiria/diagnóstico por imagem , Polimicrogiria/genética , Sequenciamento do Exoma , Estudos Retrospectivos , Mutação de Sentido Incorreto , Irmãos , Proteínas do Tecido Nervoso/genética , Conexinas/genética
20.
Am J Hum Genet ; 85(6): 897-902, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20004763

RESUMO

Although autosomal genes are increasingly recognized as important causes of intellectual disability, very few of them are known. We identified a genetic locus for autosomal-recessive nonsyndromic intellectual disability associated with variable postnatal microcephaly through homozygosity mapping of a consanguineous Israeli Arab family. Sequence analysis of genes in the candidate interval identified a nonsense nucleotide change in the gene that encodes TRAPPC9 (trafficking protein particle complex 9, also known as NIBP), which has been implicated in NF-kappaB activation and possibly in intracellular protein trafficking. TRAPPC9 is highly expressed in the postmitotic neurons of the cerebral cortex, and MRI analysis of affected patients shows defects in axonal connectivity. This suggests essential roles of TRAPPC9 in human brain development, possibly through its effect on NF-kappaB activation and protein trafficking in the postmitotic neurons of the cerebral cortex.


Assuntos
Proteínas de Transporte/genética , Proteínas de Transporte/fisiologia , Deficiência Intelectual/genética , Microcefalia/genética , Mutação , Animais , Encéfalo/metabolismo , Mapeamento Cromossômico , Consanguinidade , Regulação da Expressão Gênica no Desenvolvimento , Genes Recessivos , Homozigoto , Humanos , Peptídeos e Proteínas de Sinalização Intercelular , Imageamento por Ressonância Magnética/métodos , Camundongos , Mitose , NF-kappa B/genética , Neurônios/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA