Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Struct Biol ; 211(1): 107511, 2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311461

RESUMO

Most of eukaryotic cellular DNA is packed in nucleosome core particles (NCPs), in which the DNA (DNANCP) is wrapped around histones. The influence of this organization on the intrinsic local dynamics of DNA is largely unknown, in particular because capturing such information from experiments remains notoriously challenging. Given the importance of dynamical properties in DNA functions, we addressed this issue using CHARMM36 MD simulations of a nucleosome containing the NCP positioning 601 sequence and four related free dodecamers. Comparison between DNANCP and free DNA reveals a limited impact of the dense DNA-histone interface on correlated motions of dinucleotide constituents and on fluctuations of inter base pair parameters. A characteristic feature intimately associated with the DNANCP super-helical path is a set of structural periodicities that includes a marked alternation of regions enriched in backbone BI and BII conformers. This observation led to uncover a convincing correspondence between the sequence effect on BI/BII propensities in both DNANCP and free DNA, strengthening the idea that the histone preference for particular DNA sequences relies on those intrinsic structural properties. These results offer for the first time a detailed view of the DNA dynamical behavior within NCP. They show in particular that the DNANCP dynamics is substantial enough to preserve the ability to structurally adjust to external proteins, for instance remodelers. Also, fresh structural arguments highlight the relevance of relationships between DNA sequence and structural properties for NCP formation. Overall, our work offers a more rational framework to approach the functional, biological roles of NCP.


Assuntos
DNA/ultraestrutura , Histonas/ultraestrutura , Conformação de Ácido Nucleico , Nucleossomos/ultraestrutura , Sequência de Bases/genética , Cristalografia por Raios X , DNA/genética , Histonas/genética , Substâncias Macromoleculares/química , Substâncias Macromoleculares/ultraestrutura , Modelos Moleculares , Nucleossomos/genética
2.
Nucleic Acids Res ; 44(7): 3432-47, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-26883628

RESUMO

Experimental characterization of the structural couplings in free B-DNA in solution has been elusive, because of subtle effects that are challenging to tackle. Here, the exploitation of the NMR measurements collected on four dodecamers containing a substantial set of dinucleotide sequences provides new, consistent correlations revealing the DNA intrinsic mechanics. The difference between two successive residual dipolar couplings (ΔRDCs) involving C6/8-H6/8, C3'-H3' and C4'-H4' vectors are correlated to the(31)P chemical shifts (δP), which reflect the populations of the BI and BII backbone states. The δPs are also correlated to the internucleotide distances (Dinter) involving H6/8, H2' and H2″ protons. Calculations of NMR quantities on high resolution X-ray structures and controlled models of DNA enable to interpret these couplings: the studied ΔRDCs depend mostly on roll, while Dinterare mainly sensitive to twist or slide. Overall, these relations demonstrate how δP measurements inform on key inter base parameters, in addition to probe the BI↔BII backbone equilibrium, and shed new light into coordinated motions of phosphate groups and bases in free B-DNA in solution. Inspection of the 5' and 3' ends of the dodecamers also supplies new information on the fraying events, otherwise neglected.


Assuntos
DNA de Forma B/química , Desoxirribonucleotídeos/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico
3.
PLoS Comput Biol ; 11(12): e1004631, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26657165

RESUMO

The accurate prediction of the structure and dynamics of DNA remains a major challenge in computational biology due to the dearth of precise experimental information on DNA free in solution and limitations in the DNA force-fields underpinning the simulations. A new generation of force-fields has been developed to better represent the sequence-dependent B-DNA intrinsic mechanics, in particular with respect to the BI ↔ BII backbone equilibrium, which is essential to understand the B-DNA properties. Here, the performance of MD simulations with the newly updated force-fields Parmbsc0εζOLI and CHARMM36 was tested against a large ensemble of recent NMR data collected on four DNA dodecamers involved in nucleosome positioning. We find impressive progress towards a coherent, realistic representation of B-DNA in solution, despite residual shortcomings. This improved representation allows new and deeper interpretation of the experimental observables, including regarding the behavior of facing phosphate groups in complementary dinucleotides, and their modulation by the sequence. It also provides the opportunity to extensively revisit and refine the coupling between backbone states and inter base pair parameters, which emerges as a common theme across all the complementary dinucleotides. In sum, the global agreement between simulations and experiment reveals new aspects of intrinsic DNA mechanics, a key component of DNA-protein recognition.


Assuntos
Modelos Químicos , Simulação de Dinâmica Molecular , Conformação de Ácido Nucleico , Análise de Sequência de Proteína/métodos , Sequência de Bases , Dados de Sequência Molecular , Relação Estrutura-Atividade
4.
Nucleic Acids Res ; 41(Web Server issue): W373-8, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23761450

RESUMO

Protein structures are an ensemble of atoms determined experimentally mostly by X-ray crystallography or Nuclear Magnetic Resonance. Studying 3D protein structures is a key point for better understanding protein function at a molecular level. We propose a set of accurate tools, for analysing protein structures, based on the reliable method of Voronoi-Laguerre tessellations. The Voronoi Laguerre Delaunay Protein web server (VLDPws) computes the Laguerre tessellation on a whole given system first embedded in solvent. Through this fine description, VLDPws gives the following data: (i) Amino acid volumes evaluated with high precision, as confirmed by good correlations with experimental data. (ii) A novel definition of inter-residue contacts within the given protein. (iii) A measure of the residue exposure to solvent that significantly improves the standard notion of accessibility in some cases. At present, no equivalent web server is available. VLDPws provides output in two complementary forms: direct visualization of the Laguerre tessellation, mostly its polygonal molecular surfaces; files of volumes; and areas, contacts and similar data for each residue and each atom. These files are available for download for further analysis. VLDPws can be accessed at http://www.dsimb.inserm.fr/dsimb_tools/vldp.


Assuntos
Conformação Proteica , Software , Aminoácidos/química , Internet , Modelos Moleculares , Proteínas/química
5.
Nucleic Acids Res ; 38(3): 1034-47, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19920127

RESUMO

B-DNA flexibility, crucial for DNA-protein recognition, is sequence dependent. Free DNA in solution would in principle be the best reference state to uncover the relation between base sequences and their intrinsic flexibility; however, this has long been hampered by a lack of suitable experimental data. We investigated this relationship by compiling and analyzing a large dataset of NMR (31)P chemical shifts in solution. These measurements reflect the BI <--> BII equilibrium in DNA, intimately correlated to helicoidal descriptors of the curvature, winding and groove dimensions. Comparing the ten complementary DNA dinucleotide steps indicates that some steps are much more flexible than others. This malleability is primarily controlled at the dinucleotide level, modulated by the tetranucleotide environment. Our analyses provide an experimental scale called TRX that quantifies the intrinsic flexibility of the ten dinucleotide steps in terms of Twist, Roll, and X-disp (base pair displacement). Applying the TRX scale to DNA sequences optimized for nucleosome formation reveals a 10 base-pair periodic alternation of stiff and flexible regions. Thus, DNA flexibility captured by the TRX scale is relevant to nucleosome formation, suggesting that this scale may be of general interest to better understand protein-DNA recognition.


Assuntos
DNA/química , Sequência de Bases , Proteínas de Ligação a DNA/química , Histonas/química , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação de Ácido Nucleico , Nucleotídeos/química , Fosfatos/química
6.
J Chem Inf Model ; 51(2): 493-507, 2011 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-21226523

RESUMO

The 3D structure of a protein is the main physical support of a protein's biological function; 3D protein folds are primarily maintained through interactions between amino acids. Inter-residue contacts are essential for the stability of protein folds. Therefore, many methodologies in the fields of structure analysis, structure prediction, and structure-function relationships are based on residue contacts. The present study provides a comparative analysis of two approaches for determining contacts: the classical distance-threshold method and an application of Laguerre, or weighted Voronoi tessellation. First, we examined mean contact distributions and their dependence on residue volumes, accessibility and hydrophobicity. In general, the different methods gave concordant results, although the method based on Cα distances showed significant discrepancies with the all-atom tessellation method. We also analyzed preferential contacts between all amino acid species and studied the influence of protein chain length, the proximity of the residues along the sequence, and the secondary structure environment. Interestingly, the discrepancies between methods were occasionally large enough to substantially change the relative preferences of some contacts. Finally, a case study on disulfide bridges demonstrated the importance of the structural environment in determining contacts from tessellation. In conclusion, the tessellation method is more accurate because of its fine adaptation to local protein topology, with far-reaching implications for most contact-based prediction methods of protein folding.


Assuntos
Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Dissulfetos/química , Interações Hidrofóbicas e Hidrofílicas , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Estrutura Secundária de Proteína
7.
J Chem Inf Model ; 50(5): 947-60, 2010 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-20392096

RESUMO

Amino acids control the protein folding process and maintain its functional fold. This study underlines the interest of the Laguerre tessellation to determine relevant amino acid volumes in proteins. Previous studies used a limited number of proteins and only buried residues. The present computations improve the method and results on three main points: (i) a large, high-quality updated and refined data bank of proteins is used; (ii) all residues are taken into account, including those at the protein surface, thanks to (iii) the addition of a realistic solvent. The new values of the average and standard deviation of amino acid volumes show significant corrections with respect to previous studies. Another issue of the method is the polyhedral protein/water interface area (PIA) which quantifies the exposure of atoms or residues to the solvent. We propose this PIA as a new, parameter-free, alternative for measuring accessibility. The comparison with NACCESS is satisfactory; however, the methods disagree in pointing out buried residues: where NACCESS evaluates to zero, the exposure given by PIA ranges from 0 to 20%. Variations of average residue volumes have been analyzed under several conditions, e.g., how they depend on protein size and on secondary structure environments. As it is based on strong mathematical grounds and on numerous high-quality protein structures, our work gives a reliable methodology and up-to-date values of amino acid volumes and surface accessibility.


Assuntos
Aminoácidos/química , Proteínas/química , Bases de Dados de Proteínas , Modelos Moleculares , Dobramento de Proteína , Estrutura Secundária de Proteína
8.
J Mol Biol ; 431(10): 1966-1980, 2019 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-30876916

RESUMO

A comprehensive view of all the structural aspects related to NCp7 is essential to understand how this protein, crucial in many steps of the HIV-1 cycle, binds and anneals nucleic acids (NAs), mainly thanks to two zinc fingers, ZF1 and ZF2. Here, we inspected the structural properties of the available experimental models of NCp7 bound to either DNA or RNA molecules, or free of ligand. Our analyses included the characterization of the relative positioning of ZF1 and ZF2, accessibility measurements and the exhaustive, quantitative mapping of the contacts between amino acids and nucleotides by a recent tessellation method, VLDM. This approach unveiled the intimate connection between NA binding process and the conformations explored by the free protein. It also provided new insights into the functional specializations of ZF1 and ZF2. The larger accessibility of ZF2 in free NCp7 and the consistency of the ZF2/NA interface in different models and conditions give ZF2 the lead of the binding process. ZF1 contributes to stabilize the complexes through various organizations of the ZF1/NA interface. This work outcome is a global binding scheme of NCp7 to DNA and RNA, and an example of how protein-NA complexes are stabilized.


Assuntos
HIV-1/metabolismo , Ácidos Nucleicos/metabolismo , Produtos do Gene gag do Vírus da Imunodeficiência Humana/metabolismo , Sítios de Ligação , Infecções por HIV/virologia , HIV-1/química , Humanos , Modelos Moleculares , Ácidos Nucleicos/química , Ligação Proteica , Conformação Proteica , Produtos do Gene gag do Vírus da Imunodeficiência Humana/química
9.
Sci Rep ; 8(1): 13540, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202114

RESUMO

Given the tight relation between protein structure and function, we present a set of methods to analyze protein topology, implemented in the VLDP program, relying on Laguerre space partitions built from series of molecular dynamics snapshots. The Laguerre partition specifies inter-atomic contacts, formalized in graphs. The deduced properties are the existence and count of water aggregates, possible passage ways and constrictions, the structure, connectivity, stability and depth of the water network. As a test-case, the membrane protein FepA is investigated in its full environment, yielding a more precise description of the protein surface. Inside FepA, the solvent splits into isolated clusters and an intricate network connecting both sides of the lipid bilayer. The network is dynamic, connections set on and off, occasionally substantially relocating traversing paths. Subtle differences are detected between two forms of FepA, ligand-free and complexed with its natural iron carrier, the enterobactin. The complexed form has more constricted and more centered openings in the upper part whereas, in the lower part, constriction is released: two main channels between the plug and barrel lead directly to the periplasm. Reliability, precision and the variety of topological features are the main interest of the method.


Assuntos
Proteínas da Membrana Bacteriana Externa/química , Proteínas de Transporte/química , Simulação de Dinâmica Molecular , Estrutura Secundária de Proteína , Receptores de Superfície Celular/química , Enterobactina/química , Estabilidade Proteica , Relação Estrutura-Atividade , Água/química
10.
J Chem Theory Comput ; 14(2): 1045-1058, 2018 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-29262675

RESUMO

The nucleosome is the fundamental unit of eukaryotic genome packaging in the chromatin. In this complex, the DNA wraps around eight histone proteins to form a superhelical double helix. The resulting bending, stronger than anything observed in free DNA, raises the question of how such a distortion is stabilized by the proteic and solvent environments. In this work, the DNA-histone interface in solution was exhaustively analyzed from nucleosome structures generated by molecular dynamics. An original Voronoi tessellation technique, measuring the topology of interacting elements without any empirical or subjective adjustment, was used to characterize the interface in terms of contact area and occurrence. Our results revealed an interface more robust than previously known, combining extensive, long-lived nonelectrostatic and electrostatic interactions between DNA and both structured and unstructured histone regions. Cation accumulation makes the proximity of juxtaposed DNA gyres in the superhelix possible by shielding the strong electrostatic repulsion of the charged phosphate groups. Overall, this study provides new insights on the nucleosome cohesion, explaining how DNA distortions can be maintained in a nucleoprotein complex.


Assuntos
DNA/química , Histonas/química , Simulação de Dinâmica Molecular , Nucleossomos/química , Soluções , Eletricidade Estática
11.
PLoS One ; 5(12): e15931, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21209967

RESUMO

BACKGROUND: The B-DNA major and minor groove dimensions are crucial for DNA-protein interactions. It has long been thought that the groove dimensions depend on the DNA sequence, however this relationship has remained elusive. Here, our aim is to elucidate how the DNA sequence intrinsically shapes the grooves. METHODOLOGY/PRINCIPAL FINDINGS: The present study is based on the analysis of datasets of free and protein-bound DNA crystal structures, and from a compilation of NMR (31)P chemical shifts measured on free DNA in solution on a broad range of representative sequences. The (31)P chemical shifts can be interpreted in terms of the BI↔BII backbone conformations and dynamics. The grooves width and depth of free and protein-bound DNA are found to be clearly related to the BI/BII backbone conformational states. The DNA propensity to undergo BI↔BII backbone transitions is highly sequence-dependent and can be quantified at the dinucleotide level. This dual relationship, between DNA sequence and backbone behavior on one hand, and backbone behavior and groove dimensions on the other hand, allows to decipher the link between DNA sequence and groove dimensions. It also firmly establishes that proteins take advantage of the intrinsic DNA groove properties. CONCLUSIONS/SIGNIFICANCE: The study provides a general framework explaining how the DNA sequence shapes the groove dimensions in free and protein-bound DNA, with far-reaching implications for DNA-protein indirect readout in both specific and non specific interactions.


Assuntos
DNA/química , Algoritmos , Biologia Computacional/métodos , Cristalografia por Raios X/métodos , DNA/genética , Espectroscopia de Ressonância Magnética/métodos , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Conformação de Ácido Nucleico , Nucleotídeos/química , Isótopos de Fósforo/química , Ligação Proteica , Conformação Proteica , Proteínas/química
12.
J Mol Biol ; 382(4): 956-70, 2008 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-18680751

RESUMO

Understanding the recognition of DNA sequences by proteins requires an accurate description of the structural dynamics of free DNA, especially regarding indirect readout. This involves subtle sequence-dependent effects that are difficult to characterize in solution. To progress in this area, we applied NMR and extensive simulations to a DNA sequence relevant to the Jun-Fos system. The backbone and base behaviors demonstrate that unrestrained simulations with major force fields (Parm98, Parmbsc0, and CHARMM27) are not reliable enough for in silico predictions of detailed DNA structures. More realistic structures required molecular dynamics simulations supplemented by NMR restraints. A new methodological element involved restraints inferred from the phosphate chemical shifts and from the phosphate dynamics. This provided a detailed and dynamic view of the intrinsic properties of the free DNA sequence that can be related to its recognition, by comparison with a relevant DNA-protein complex. We show how to exploit the relationship between phosphate motions and helicoidal descriptors for structure determination toward an accurate description of DNA structures and dynamics in solution.


Assuntos
DNA/química , Modelos Moleculares , Conformação de Ácido Nucleico , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-fos/química , Proteínas Proto-Oncogênicas c-jun/química , Soluções/química , Sequência de Bases , Simulação por Computador , Cristalografia por Raios X , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-jun/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA