Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Mol Pharm ; 20(11): 5247-5253, 2023 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-37782816

RESUMO

The integration of the lipid nanoparticle (LNP)-protein corona as a pioneering approach for the development of vaccines against the present and future SARS-CoV-2 variants of concern marks a significant shift in the field. This concept holds great promise, offering a universal platform that can be adaptable to combat future pandemics caused by unknown viruses. Understanding the complex interactions among the protein corona, LNPs, and receptors is crucial for harnessing its potential. This knowledge will allow optimal vaccine formulations and improve their effectiveness. Safety assessments are essential to ensure suitability for human use, compliance with regulatory standards, and rigorous quality control in manufacturing. This transformative workflow requires collaborative efforts, expanding our foundational knowledge and translating advancements from the laboratory to clinical reality. The LNP-protein corona approach represents a paradigmatic shift with far-reaching implications. Its principles and insights can be leveraged beyond specific applications against SARS-CoV-2, enabling a universal platform for addressing viral threats, cancer, and genetic diseases.


Assuntos
Coroa de Proteína , Vacinas , Humanos , Lipossomos , Pandemias/prevenção & controle
2.
J Nanobiotechnology ; 21(1): 267, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37568181

RESUMO

Graphene-based nanomaterials have attracted significant attention in the field of nanomedicine due to their unique atomic arrangement which allows for manifold applications. However, their inherent high hydrophobicity poses challenges in biological systems, thereby limiting their usage in biomedical areas. To address this limitation, one approach involves introducing oxygen functional groups on graphene surfaces, resulting in the formation of graphene oxide (GO). This modification enables improved dispersion, enhanced stability, reduced toxicity, and tunable surface properties. In this review, we aim to explore the interactions between GO and the biological fluids in the context of theranostics, shedding light on the formation of the "protein corona" (PC) i.e., the protein-enriched layer that formed around nanosystems when exposed to blood. The presence of the PC alters the surface properties and biological identity of GO, thus influencing its behavior and performance in various applications. By investigating this phenomenon, we gain insights into the bio-nano interactions that occur and their biological implications for different intents such as nucleic acid and drug delivery, active cell targeting, and modulation of cell signalling pathways. Additionally, we discuss diagnostic applications utilizing biocoronated GO and personalized PC analysis, with a particular focus on the detection of cancer biomarkers. By exploring these cutting-edge advancements, this comprehensive review provides valuable insights into the rapidly evolving field of GO-based nanomedicine for theranostic applications.


Assuntos
Grafite , Coroa de Proteína , Medicina de Precisão , Nanomedicina/métodos
3.
Nanomedicine ; 53: 102697, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37507061

RESUMO

PEGylated lipid nanoparticles (LNPs) are commonly used to deliver bioactive molecules, but the role of PEGylation in DNA-loaded LNP interactions at the cellular and subcellular levels remains poorly understood. In this study, we investigated the mechanism of action of DNA-loaded PEGylated LNPs using gene reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), and fluorescence confocal microscopy (FCS). We found that PEG has no significant impact on the size or nanostructure of DNA LNPs but reduces their zeta potential and interaction with anionic cell membranes. PEGylation increases the structural stability of LNPs and results in lower DNA unloading. FCS experiments revealed that PEGylated LNPs are internalized intact inside cells and largely shuttled to lysosomes, while unPEGylated LNPs undergo massive destabilization on the plasma membrane. These findings can inform the design, optimization, and validation of DNA-loaded LNPs for gene delivery and vaccine development.


Assuntos
Lipídeos , Nanopartículas , Lipídeos/química , Espalhamento a Baixo Ângulo , Difração de Raios X , Nanopartículas/química , DNA , Polietilenoglicóis/química , RNA Interferente Pequeno
4.
Int J Mol Sci ; 23(18)2022 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-36142503

RESUMO

In recent years nanotechnology has opened exciting opportunities in the struggle against cancer. In 2007 Dawson and coworkers demonstrated that nanomaterials exposed to biological fluids are coated with plasma proteins that form the so-called "protein corona". A few years later our joint research team made of physicists, chemists, biotechnologists, surgeons, oncologists, and bioinformaticians introduced the concept of "personalized protein corona" and demonstrated that it is unique for each human condition. This concept paved the way for the development of nano-enabled blood (NEB) tests for the diagnosis of pancreatic ductal adenocarcinoma (PDAC). These studies gave an impetus to serious work in the field that came to maturity in the late 2010s. In this special issue, we provide the reader with a comprehensive overview of the most significant discoveries of our research team in the field of PDAC detection. We focus on the main achievements with an emphasis on the fundamental aspects of this arena and how they shaped the integration of different scientific backgrounds towards the development of advanced diagnostic technologies. We conclude the review by outlining future perspectives and opportunities to transform the NEB tests into a reliable clinical diagnostic technology for early diagnosis, follow-up, and management of PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Coroa de Proteína , Carcinoma Ductal Pancreático/patologia , Detecção Precoce de Câncer , Humanos , Nanotecnologia , Hormônios Pancreáticos , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
5.
J Cell Physiol ; 234(6): 9378-9386, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30520022

RESUMO

Lung cancer (LC) is the most common type of cancer and the second cause of death worldwide in men and women after cardiovascular diseases. Non-small-cell lung cancer (NSCLC) is the most frequent type of LC occurring in 85% of cases. Developing new methods for early detection of NSCLC could substantially increase the chances of survival and, therefore, is an urgent task for current research. Nowadays, explosion in nanotechnology offers unprecedented opportunities for therapeutics and diagnosis applications. In this context, exploiting the bio-nano-interactions between nanoparticles (NPs) and biological fluids is an emerging field of research. Upon contact with biofluids, NPs are covered by a biomolecular coating referred to as "biomolecular corona" (BC). In this study, we exploited BC for discriminating between NSCLC patients and healthy volunteers. Blood samples from 10 NSCLC patients and 5 subjects without malignancy were allowed to interact with negatively charged lipid NPs, leading to the formation of a BC at the NP surface. After isolation, BCs were characterized by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE). We found that the BCs of NSCLC patients was significantly different from that of healthy individuals. Statistical analysis of SDS-PAGE results allowed discriminating between NSCLC cancer patients and healthy subjects with 80% specificity, 80% sensitivity and a total discriminate correctness rate of 80%. While the results of the present investigation cannot be conclusive due to the small size of the data set, we have shown that exploitation of the BC is a promising approach for the early diagnosis of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Detecção Precoce de Câncer , Neoplasias Pulmonares/diagnóstico , Nanopartículas/química , Proteínas Sanguíneas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/sangue , Difusão Dinâmica da Luz , Humanos , Hidrodinâmica , Lipossomos/química , Neoplasias Pulmonares/sangue , Análise de Componente Principal
6.
Biochem Biophys Res Commun ; 503(2): 508-512, 2018 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-29733845

RESUMO

Recent advances in biochemical and biophysical research have been achieved through the employment of microfluidic devices. Microfluidic mixing of therapeutic agents with biomaterials yields systems with finely tuned physical-chemical properties for applications in drug and gene delivery. Here, we investigate the role of preparation technology (microfluidic mixing vs. bulk self-assembly) on the transfection efficiency (TE) and cytotoxicity of multicomponent cationic liposome/DNA complexes (lipoplexes) in live Chinese hamster ovarian (CHO) cells. Decoupling TE and cytotoxicity allowed us to combine them in a unique coherent vision. While bulk self-assembly produces highly efficient and highly toxic MC lipoplexes, microfluidics manufacture leads to less efficient, but less cytotoxic complexes. This discrepancy is ascribed to two main factors controlling lipid-mediated cell transfection, i.e. the lipoplex concentration at the cell surface and the lipoplex arrangement at the nanoscale. Further research is required to optimize microfluidic manufacturing of lipoplexes to obtain highly efficient and not cytotoxic gene delivery systems.


Assuntos
DNA/administração & dosagem , Lipídeos/química , Lipossomos/química , Transfecção/métodos , Animais , Células CHO , Cátions/química , Cricetulus , DNA/química , DNA/genética , Desenho de Equipamento , Dispositivos Lab-On-A-Chip
7.
Biochim Biophys Acta ; 1858(2): 189-96, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26607013

RESUMO

Following systemic administration, liposomes are covered by a 'corona' of proteins, and preserving the surface functionality is challenging. Coating the liposome surface with polyethylene glycol (PEG) is the most widely used anti-opsonization strategy, but it cannot fully preclude protein adsorption. To date, protein binding has been studied following in vitro incubation to predict the fate of liposomes in vivo, while dynamic incubation mimicking in vivo conditions remains largely unexplored. The main aim of this investigation was to determine whether shear stress, produced by physiologically relevant dynamic flow, could influence the liposome-protein corona. The corona of circulating PEGylated liposome was thoroughly compared with that formed by incubation in vitro. Systematic comparison in terms of size, surface charge and quantitative composition was made by dynamic light scattering, microelectrophoresis and nano-liquid chromatography tandem mass spectrometry (nanoLC-MS/MS). Size of coronas formed under static vs. dynamic incubation did not appreciably differ from each other. On the other side, the corona of circulating liposomes was more negatively charged than its static counterpart. Of note, the variety of protein species in the corona formed in a dynamic flow was significantly wider. Collectively, these results demonstrated that the corona of circulating PEGylated liposomes can be considerably different from that formed in a static fluid. This seems to be a key factor to predict the biological activity of a liposomal formulation in a physiological environment.


Assuntos
Proteínas Sanguíneas/química , Lipossomos/química , Polietilenoglicóis/química , Animais , Humanos , Espectrometria de Massas
8.
Nanomedicine ; 13(2): 681-691, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27565691

RESUMO

To date, efficiency upon non-viral DNA delivery remains low and this implies the existence of unidentified transfection barriers. Here we explore the mechanisms of action of multicomponent (MC) cationic liposome/DNA complexes (lipoplexes) by a combination of reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), fluorescence activated cell sorting (FACS) analysis and laser scanning confocal microscopy (LSCM) in live cells. Lipofectamine - the gold standard among transfection reagents - was used as a reference. On the basis of our results, we suggest that an additional transfection barrier impairs transfection efficiency, that is: low lipoplex concentration at the cell surface. Based on the acquired knowledge we propose an optimized transfection protocol that allowed us to efficiently transfect DND41, JURKAT, MOLT3, P12-ICHIKAWA, ALL-SILL, TALL-1 human T-cell acute lymphoblastic leukemia (T-ALL) cell lines known to be difficult-to-transfect by using non-viral vectors and where LFN-based technologies fail to give satisfactory results.


Assuntos
Lipossomos , Transfecção , Animais , Linhagem Celular , DNA , Humanos , Lipídeos , Espalhamento a Baixo Ângulo , Difração de Raios X
9.
Biochem Biophys Res Commun ; 474(1): 8-14, 2016 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-27012199

RESUMO

Here we address the process of lipofection by quantifying the expression of a genetically-encoded fluorescent reporter at the single-cell level, and in real-time, by confocal imaging in live cells. The Lipofectamine gold-standard formulation is compared to the alternative promising DC-Chol/DOPE formulation. In both cases, we report that only dividing cells are able to produce a detectable amount of the fluorescent reporter protein. Notably, by measuring fluorescence over time in each pair of daughter cells, we find that Lipofectamine-based transfection statistically yields a remarkably higher degree of "symmetry" in protein expression between daughter cells as compared to DC-Chol/DOPE. A model is envisioned in which the degree of symmetry of protein expression is linked to the number of bioavailable DNA copies within the cell before nuclear breakdown. Reported results open new perspectives for the understanding of the lipofection mechanism and define a new experimental platform for the quantitative comparison of transfection reagents.


Assuntos
Perfilação da Expressão Gênica/métodos , Lipídeos/química , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos , Transfecção/métodos , Transgenes/genética , Animais , Células CHO , Sistemas Computacionais , Cricetulus , Genes Reporter/genética , Proteínas de Fluorescência Verde/genética , Imagem Molecular/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
10.
Langmuir ; 31(39): 10764-73, 2015 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-26378619

RESUMO

When injected in a biological milieu, a nanomaterial rapidly adsorbs biomolecules forming a biomolecular corona. The biomolecular corona changes the interfacial composition of a nanomaterial giving it a biological identity that determines the physiological response. Characterization of the biomolecular structure and composition has received increasing attention mostly due to its detrimental impact on the nanomaterial's metabolism in vivo. It is generally accepted that an opsonin-enriched biomolecular corona promotes immune system recognition and rapid clearance from circulation. Here we applied dynamic light scattering and nanoliquid chromatography tandem mass spectrometry to thoroughly characterize the biomolecular corona formed around lipid and silica nanoparticles (NPs). Incubation with human plasma resulted in the formation of NP-biomolecular coronas enriched with immunoglobulins, complement factors, and coagulation proteins that bind to surface receptors on immune cells and elicit phagocytosis. Conversely, we found that protein-coated NPs were protected from uptake by macrophage RAW 264.7 cells. This implies that the biomolecular corona formation provides a stealth effect on macrophage recognition. Our results suggest that correct prediction of the NP's fate in vivo will require more than just the knowledge of the biomolecular corona composition. Validation of efficient methods for mapping protein binding sites on the biomolecular corona of NPs is an urgent task for future research.


Assuntos
Macrófagos/metabolismo , Nanopartículas/metabolismo , Adulto , Animais , Linhagem Celular , Cromatografia Líquida , Endocitose , Humanos , Camundongos , Espectrometria de Massas em Tandem , Adulto Jovem
11.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339379

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) represents a neoplasm with an increasing incidence in both sexes [...].

12.
ACS Appl Bio Mater ; 7(6): 3746-3757, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38775109

RESUMO

The existing manufacturing protocols for CAR-T cell therapies pose notable challenges, particularly in attaining a transient transfection that endures for a significant duration. To address this gap, this study aims to formulate a transfection protocol utilizing multiple lipid-based nanoparticles (LNPs) administrations to enhance transfection efficiency (TE) to clinically relevant levels. By systematically fine-tuning and optimizing our transfection protocol through a series of iterative refinements, we have accomplished a remarkable one-order-of-magnitude augmentation in TE within the immortalized T-lymphocyte Jurkat cell line. This enhancement has been consistently observed over 2 weeks, and importantly, it has been achieved without any detrimental impact on cell viability. In the subsequent phase of our study, we aimed to optimize the gene delivery system by evaluating three lipid-based formulations tailored for DNA encapsulation using our refined protocol. These formulations encompassed two LNPs constructed from ionizable lipids and featuring systematic variations in lipid composition (iLNPs) and a cationic lipoplex (cLNP). Our findings showcased a notable standout among the three formulations, with cLNP emerging as a frontrunner for further refinement and integration into the production pipeline of CAR-T therapies. Consequently, cLNP was scrutinized for its potential to deliver CAR-encoding plasmid DNA to the HEK-293 cell line. Confocal microscopy experiments demonstrated its efficiency, revealing substantial internalization compared to iLNPs. By employing a recently developed confocal image analysis method, we substantiated that cellular entry of cLNP predominantly occurs through macropinocytosis. This mechanism leads to heightened intracellular endosomal escape and mitigates lysosomal accumulation. The successful expression of anti-CD19-CD28-CD3z, a CAR engineered to target CD19, a protein often expressed on the surface of B cells, was confirmed using a fluorescence-based assay. Overall, our results indicated the effectiveness of cLNP in gene delivery and suggested the potential of multiple administration transfection as a practical approach for refining T-cell engineering protocols in CAR therapies. Future investigations may focus on refining outcomes by adjusting transfection parameters like nucleic acid concentration, lipid-to-DNA ratio, and incubation time to achieve improved TE and increased gene expression levels.


Assuntos
Lipídeos , Teste de Materiais , Nanopartículas , Tamanho da Partícula , Transfecção , Humanos , Transfecção/métodos , Nanopartículas/química , Lipídeos/química , Células Jurkat , Materiais Biocompatíveis/química , Sobrevivência Celular/efeitos dos fármacos , DNA/administração & dosagem , DNA/química , Linfócitos T/metabolismo , Linfócitos T/citologia , Receptores de Antígenos Quiméricos/metabolismo
13.
Mol Ther Oncol ; 32(3): 200836, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39050990

RESUMO

The successful trajectory of liposome-encapsulated doxorubicin (e.g., Doxil, which has been approved by the U.S. Food and Drug Administration) as an anticancer nanodrug in clinical applications is contradicted by in vitro cell viability data that highlight its reduced efficacy in promoting cell death compared with non-encapsulated doxorubicin. No reports to date have provided a mechanistic explanation for this apparently discordant evidence. Taking advantage of doxorubicin intrinsic fluorescence and time-resolved optical microscopy, we analyze the uptake and intracellular processing of liposome-encapsulated doxorubicin (L-DOX) in several in vitro cellular models. Cell entry of L-DOX was found to lead to a rapid (seconds to minutes), energy- and temperature-independent release of crystallized doxorubicin nanorods into the cell cytoplasm, which then disassemble into a pool of fibril-shaped derivatives capable of crossing the cellular membrane while simultaneously releasing active drug monomers. Thus, a steady state is rapidly established in which the continuous supply of crystal nanorods from incoming liposomes is counteracted by a concentration-guided efflux in the extracellular medium of fibril-shaped derivatives and active drug monomers. These results demonstrate that liposome-mediated delivery is constitutively less efficient than isolated drug in establishing favorable conditions for drug retention in the cell. In addition to explaining previous contradictory evidence, present results impose careful rethinking of the synthetic identity of encapsulated anticancer drugs.

14.
Biochim Biophys Acta ; 1818(9): 2335-43, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22627109

RESUMO

Most lipid formulations require cholesterol for successful transfection, but the precise reason remains to be more clearly understood. Here, we have studied the effect of cholesterol on the transfection efficiency (TE) of lipoplexes in vitro. Addition of cholesterol to highly effective DC-Chol-DOPE/DNA lipoplexes increases TE, with 40 mol% cholesterol yielding about 10-fold improvement. The transfection mechanisms of cholesterol-containing lipoplexes have been investigated by combining dynamic light scattering, synchrotron small angle X-ray scattering, laser scanning confocal microscopy and transfection efficiency measurements. Our results revealed that cholesterol-containing lipoplexes enter the cells partially by membrane fusion and this mechanism accounts for efficient endosomal escape. We also found evidence that formulations with high cholesterol content are not specifically targeted to metabolic degradation. These studies will contribute to rationally design novel delivery systems with superior transfection efficiency.


Assuntos
Biofísica/métodos , Colesterol/química , Animais , Células CHO , Colesterol/análogos & derivados , Cricetinae , Endossomos/metabolismo , Lasers , Luz , Lipossomos/química , Microscopia Confocal/métodos , Nanoestruturas/química , Fosfatidiletanolaminas/química , Pinocitose , Espalhamento de Radiação , Espalhamento a Baixo Ângulo , Transfecção , Raios X
15.
Biomed Microdevices ; 15(2): 299-309, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23239124

RESUMO

Surfactant nanocarriers have received considerable attention in the last several years as interesting alternative to classic liposomes. Different pH-sensitive vesicular colloidal carriers based on Tween 20 derivatives, obtained after functionalization of the head groups of the surfactant with natural, or simply modified, amino acids, were proposed as drug nanocarriers. Dynamic light scattering, Small Angle X-ray Scattering, Trasmission Electron Microscopy and fluorescence studies were used for the physico-chemical characterization of vesicles and mean size, size distribution, zeta potential, vesicle morphology and bilayer properties were evaluated. The pH-sensitivity and the stability of formulations, in absence and in presence of foetal bovine serum, were also evaluated. Moreover, the contact between surfactant vesicles and liposomes designed to model the cellular membrane was investigated by fluorescence studies to preliminary explore the potential interaction between vesicle and cell membranes. Experimental findings showed that physico-chemical and technological features of pH-sensitive vesicles were influenced by the composition of the carriers. Furthermore, proposed carriers are able to interact with mimetic cell membrane and it is reasonable to attribute the observed differences in interaction to the architectural/structural properties of Tween 20 derivatives. The findings reported in this investigation showed that a deep and extensive physico-chemical characterization of the carrier is a fundamental step, according to the evidence that the knowledge of nanocarrier properties is necessary to translate its potentiality to in vitro/in vivo applications.


Assuntos
Materiais Biomiméticos/química , Membrana Celular/química , Concentração de Íons de Hidrogênio , Lipossomos/química , Nanocápsulas/química , Tensoativos/química , Teste de Materiais , Nanocápsulas/ultraestrutura , Fosfolipídeos/química
16.
Langmuir ; 29(21): 6485-94, 2013 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-23631648

RESUMO

When nanoparticles (NPs) enter a biological fluid (e.g., human plasma (HP)), proteins and other biomolecules adsorb on the surface leading to formation of a rich protein shell, referred to as "protein corona". This corona is dynamic in nature and its composition varies over time due to continuous protein association and dissociation events. Understanding the time evolution of the protein corona on the time-scales of a particle's lifetime in blood is fundamental to predict its fate in vivo. In this study, we used lipid NPs, the cationic lipid 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl] (DC-Chol) and the zwitterionic lipid dioleoylphosphatidylethanolamine (DOPE), that are among the most promising nanocarriers both in vitro and in vivo. Here, we investigated the time evolution of DC-Chol-DOPE NPs upon exposure to HP. On time scales between 1 and 60 minutes, nanoliquid tandem mass spectrometry revealed that the protein corona of DC-Chol-DOPE NPs is mainly constituted of apolipoproteins (Apo A-I, Apo C-II, Apo D, and Apo E are the most enriched). Since the total apolipoprotein content is relevant, we exploited the protein corona to target PC3 prostate carcinoma cell line that expresses high levels of scavenger receptor class B type 1 receptor, which mediates the bidirectional lipid transfer between low-density lipoproteins, high-density lipoproteins, and cells. Combining laser scanning confocal microscopy experiments with flow cytometry we demonstrated that DC-Chol-DOPE/HP complexes enter PC3 cells by a receptor-mediated endocytosis mechanism.


Assuntos
Proteínas Sanguíneas/química , Sistemas de Liberação de Medicamentos , Lipídeos/química , Nanopartículas/química , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Tamanho da Partícula , Propriedades de Superfície , Fatores de Tempo
17.
Anal Bioanal Chem ; 405(2-3): 635-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22274284

RESUMO

A shotgun proteomics approach was used to compare human plasma protein binding capability with cationic liposomes, DNA-cationic lipid complexes (lipoplexes), and lipid-polycation-DNA (LPD) complexes. Nano-high-performance liquid chromatography coupled with a high-resolution LTQ Orbitrap XL mass spectrometer was used to characterize and compare their protein corona. Spectral counting and area under curve methods were used to perform label-free quantification. Substantial qualitative and quantitative differences were found among proteins bound to the three different systems investigated. Protein variety found on lipoplexes and LPD complexes was richer than that found on cationic liposomes. There were also significant differences between the amounts of protein. Such results could help in the design of gene-delivery systems, because some proteins could be more selectively bound rather than others, and their bio-distribution could be driven in vivo for more efficient and effective gene therapy.


Assuntos
Proteínas Sanguíneas/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Nanopartículas/química , Proteômica/métodos , DNA/química , Humanos , Lipossomos/química , Ligação Proteica
18.
ACS Pharmacol Transl Sci ; 6(11): 1561-1573, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37974625

RESUMO

Lipid nanoparticles (LNPs) have shown remarkable success in delivering genetic materials like COVID-19 LNP vaccines, such as mRNA-1273/SpikeVax by Moderna and BNT162b2/Comirnaty by BioNTech/Pfizer, as well as siRNA for rare inherited diseases, such as Onpattro from Alnylam Pharmaceuticals. These LNPs are advantageous since they minimize side effects, target specific cells, and regulate payload delivery. There has been a surge of interest in these particles due to their success stories; however, we still do not know much about how they work. This perspective will recapitulate the evolution of lipid-based gene delivery, starting with Felgner's pioneering 1987 PNAS paper, which introduced the initial DNA-transfection method utilizing a synthetic cationic lipid. Our journey takes us to the early 2020s, a time when advancements in bionano interactions enabled us to create biomimetic lipoplexes characterized by a remarkable ability to evade capture by immune cells in vivo. Through this overview, we propose leveraging previous achievements to assist us in formulating improved research goals when optimizing LNPs for medical conditions such as infectious diseases, cancer, and heritable disorders.

19.
Cancers (Basel) ; 15(11)2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37296945

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal disease, for which mortality closely parallels incidence. So far, the available techniques for PDAC detection are either too invasive or not sensitive enough. To overcome this limitation, here we present a multiplexed point-of-care test that provides a "risk score" for each subject under investigation, by combining systemic inflammatory response biomarkers, standard laboratory tests, and the most recent nanoparticle-enabled blood (NEB) tests. The former parameters are routinely evaluated in clinical practice, whereas NEB tests have been recently proven as promising tools to assist in PDAC diagnosis. Our results revealed that PDAC patients and healthy subjects can be distinguished accurately (i.e., 88.9% specificity, 93.6% sensitivity) by the presented multiplexed point-of-care test, in a quick, non-invasive, and highly cost-efficient way. Furthermore, the test allows for the definition of a "risk threshold", which can help clinicians to trace the optimal diagnostic and therapeutic care pathway for each patient. For these reasons, we envision that this work may accelerate progress in the early detection of PDAC and contribute to the design of screening programs for high-risk populations.

20.
Toxicol In Vitro ; 91: 105632, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37329963

RESUMO

Plastic pollution poses a significant threat to both ecosystems and human health, as fragments of microscale size are daily inhaled and ingested. Such tiny specks are defined as microplastics (MPs), and although their presence as environmental contaminants is ubiquitous in the world, their possible effects at biological and physiological levels are still not clear. To explore the potential impacts of MP exposure, we produced and characterized polyethylene terephthalate (PET) micro-fragments, then administered them to living cells. PET is widely employed in the production of plastic bottles, and thus represents a potential source of environmental MPs. However, its potential effects on public health are hardly investigated, as the current bio-medical research on MPs mainly utilizes different models, such as polystyrene particles. This study employed cell viability assays and Western blot analysis to demonstrate cell-dependent and dose-dependent cytotoxic effects of PET MPs, as well as a significant impact on HER-2-driven signaling pathways. Our findings provide insight into the biological effects of MP exposure, particularly for a widely used but poorly investigated material such as PET.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Microplásticos/toxicidade , Plásticos/toxicidade , Polietilenotereftalatos/toxicidade , Ecossistema , Poliestirenos/toxicidade , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA