Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Nature ; 561(7722): 189-194, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30209367

RESUMO

Multidrug-resistant bacteria are spreading at alarming rates, and despite extensive efforts no new class of antibiotic with activity against Gram-negative bacteria has been approved in over fifty years. Natural products and their derivatives have a key role in combating Gram-negative pathogens. Here we report chemical optimization of the arylomycins-a class of natural products with weak activity and limited spectrum-to obtain G0775, a molecule with potent, broad-spectrum activity against Gram-negative bacteria. G0775 inhibits the essential bacterial type I signal peptidase, a new antibiotic target, through an unprecedented molecular mechanism. It circumvents existing antibiotic resistance mechanisms and retains activity against contemporary multidrug-resistant Gram-negative clinical isolates in vitro and in several in vivo infection models. These findings demonstrate that optimized arylomycin analogues such as G0775 could translate into new therapies to address the growing threat of multidrug-resistant Gram-negative infections.


Assuntos
Antibacterianos/classificação , Antibacterianos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Peptídeos Cíclicos/farmacologia , Biocatálise/efeitos dos fármacos , Produtos Biológicos/classificação , Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/enzimologia , Bactérias Gram-Negativas/enzimologia , Bactérias Gram-Negativas/patogenicidade , Infecções por Bactérias Gram-Negativas/tratamento farmacológico , Infecções por Bactérias Gram-Negativas/microbiologia , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/patogenicidade , Lisina/metabolismo , Proteínas de Membrana/antagonistas & inibidores , Testes de Sensibilidade Microbiana , Peptídeos Cíclicos/química , Porinas , Ligação Proteica , Domínios Proteicos , Serina Endopeptidases , Especificidade por Substrato
2.
Anal Chem ; 94(2): 1230-1239, 2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-34990117

RESUMO

With recent advances and success in several drugs designed to treat acute and chronic diseases, targeted covalent inhibitors show a resurgence in drug discovery. As covalent inhibition is time-dependent, the preferred quantitative potency metric of irreversible inhibitors is the second-order rate constant kinact/Ki, rather than IC50. Here, we present the development of a mass spectrometry-based platform for rapid kinetic analysis of irreversible covalent inhibitors. Using a simple liquid handling robot for automated sample preparation and a solid-phase extraction-based RapidFire-MS system for rapid MS analysis, kinetic characterization of covalent inhibitors was performed in high throughput both by intact protein analysis and targeted multiple reaction monitoring (MRM). In addition, a bimolecular reaction model was applied to extract kinact/Ki in data fitting, providing tremendous flexibility in the experimental design to characterize covalent inhibitors with various properties. Using KRASG12C inhibitors as a test case, the platform was demonstrated to be effective for studying covalent inhibitors with a wide range of kinact/Ki values from single digit to 3 × 105 M-1 s-1.


Assuntos
Descoberta de Drogas , Proteínas Proto-Oncogênicas p21(ras) , Cinética
3.
Biochemistry ; 59(41): 3982-3992, 2020 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-32970425

RESUMO

The Ras-RAF-MEK-ERK signaling axis, commonly mutated in human cancers, is highly regulated to prevent aberrant signaling in healthy cells. One of the pathway modulators, 14-3-3, a constitutive dimer, induces RAF dimerization and activation by binding to a phosphorylated motif C-terminal to the RAF kinase domain. Recent work has suggested that a C-terminal "DTS" region in BRAF is necessary for this 14-3-3-mediated activation. We show that the catalytic activity and ATP binding affinity of the BRAF:14-3-3 complex is insensitive to the presence or absence of the DTS, while the ATP sites of both BRAF molecules are identical and available for binding. We also present a crystal structure of the apo BRAF:14-3-3 complex showing that the DTS is not required to attain the catalytically active conformation of BRAF. Rather, BRAF dimerization induced by 14-3-3 is the key step in activation, allowing the active BRAF:14-3-3 tetramer to achieve catalytic activity comparable to the constitutively active oncogenic BRAF V600E mutant.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas Proto-Oncogênicas B-raf/química , Proteínas Proto-Oncogênicas B-raf/metabolismo , Trifosfato de Adenosina/metabolismo , Catálise , Humanos , Ligação Proteica , Multimerização Proteica , Transdução de Sinais
4.
Nat Commun ; 15(1): 4733, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38830951

RESUMO

Polymyxins are gram-negative antibiotics that target lipid A, the conserved membrane anchor of lipopolysaccharide in the outer membrane. Despite their clinical importance, the molecular mechanisms underpinning polymyxin activity remain unresolved. Here, we use surface plasmon resonance to kinetically interrogate interactions between polymyxins and lipid A and derive a phenomenological model. Our analyses suggest a lipid A-catalyzed, three-state mechanism for polymyxins: transient binding, membrane insertion, and super-stoichiometric cluster accumulation with a long residence time. Accumulation also occurs for brevicidine, another lipid A-targeting antibacterial molecule. Lipid A modifications that impart polymyxin resistance and a non-bactericidal polymyxin derivative exhibit binding that does not evolve into long-lived species. We propose that transient binding to lipid A permeabilizes the outer membrane and cluster accumulation enables the bactericidal activity of polymyxins. These findings could establish a blueprint for discovery of lipid A-targeting antibiotics and provide a generalizable approach to study interactions with the gram-negative outer membrane.


Assuntos
Antibacterianos , Lipídeo A , Polimixina B , Ressonância de Plasmônio de Superfície , Polimixina B/farmacologia , Polimixina B/metabolismo , Lipídeo A/metabolismo , Lipídeo A/química , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/metabolismo , Testes de Sensibilidade Microbiana , Membrana Externa Bacteriana/metabolismo , Membrana Externa Bacteriana/efeitos dos fármacos , Cinética
5.
J Med Chem ; 67(11): 8585-8608, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38809766

RESUMO

The von Hippel-Lindau (VHL) protein plays a pivotal role in regulating the hypoxic stress response and has been extensively studied and utilized in the targeted protein degradation field, particularly in the context of bivalent degraders. In this study, we present a comprehensive peptidomimetic structure-activity relationship (SAR) approach, combined with cellular NanoBRET target engagement assays to enhance the existing VHL ligands. Through systematic modifications of the molecule, we identified the 1,2,3-triazole group as an optimal substitute of the left-hand side amide bond that yields 10-fold higher binding activity. Moreover, incorporating conformationally constrained alterations on the methylthiazole benzylamine moiety led to the development of highly potent VHL ligands with picomolar binding affinity and significantly improved oral bioavailability. We anticipate that our optimized VHL ligand, GNE7599, will serve as a valuable tool compound for investigating the VHL pathway and advancing the field of targeted protein degradation.


Assuntos
Disponibilidade Biológica , Peptidomiméticos , Proteína Supressora de Tumor Von Hippel-Lindau , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/química , Peptidomiméticos/química , Peptidomiméticos/farmacocinética , Peptidomiméticos/farmacologia , Humanos , Ligantes , Relação Estrutura-Atividade , Administração Oral , Animais
6.
Cell Chem Biol ; 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36773603

RESUMO

Targeted degradation of proteins by chimeric heterobifunctional degraders has emerged as a major drug discovery paradigm. Despite the increased interest in this approach, the criteria dictating target protein degradation by a degrader remain poorly understood, and potent target engagement by a degrader does not strongly correlate with target degradation. In this study, we present the biochemical characterization of an epidermal growth factor receptor (EGFR) degrader that potently binds both wild-type and mutant EGFR, but only degrades EGFR mutant variants. Mechanistic studies reveal that ternary complex half-life strongly correlates with processive ubiquitination with purified components and mutant-selective degradation in cells. We present cryoelectron microscopy and hydrogen-deuterium exchange mass spectroscopy data on wild-type and mutant EGFR ternary complexes, which demonstrate that potent target degradation can be achieved in the absence of stable compound-induced protein-protein interactions. These results highlight the importance of considering target conformation during degrader development as well as leveraging heterobifunctional ligand binding kinetics to achieve robust target degradation.

7.
Anal Biochem ; 421(2): 391-400, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22197421

RESUMO

A new method based on Taylor dispersion has been developed that enables an analyte gradient to be titrated over a ligand-coated surface for kinetic/affinity analysis of interactions from a minimal number of injections. Taylor dispersion injections generate concentration ranges in excess of four orders of magnitude and enable the analyte diffusion coefficient to be reliably estimated as a fitted parameter when fitting binding interaction models. A numerical model based on finite element analysis, Monte Carlo simulations, and statistical profiling were used to compare the Taylor dispersion method with standard fixed concentration injections in terms of parameter correlation, linearity of parameter error space, and global versus local model fitting. A dramatic decrease in parameter correlations was observed for TDi curves relative to curves from standard fixed concentration injections when surface saturation was achieved. In FCI the binding progress is recorded with respect to injection time, whereas in TDi the second time dependency encoded in the analyte gradient increases resolving power. This greatly lowers the dependence of all parameters on each other and on experimental interferences. When model parameters were fitted locally, the performance of TDis remained comparable to global model fitting, whereas fixed concentration binding response curves yielded unreliable parameter estimates.


Assuntos
Técnicas Biossensoriais , Modelos Teóricos , Cinética
8.
Anal Biochem ; 421(2): 401-10, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22197422

RESUMO

In label-free biomolecular interaction analysis, a standard injection provides an injection of uniform analyte concentration. An alternative approach exploiting Taylor dispersion produces a continuous analyte titration allowing a full analyte dose response to be recorded in a single injection. The enhanced biophysical characterization that is possible with this new technique is demonstrated using a commercially available surface plasmon resonance-based biosensor. A kinetic interaction model was fitted locally to Taylor dispersion curves for estimation of the analyte diffusion coefficient in addition to affinity/kinetic constants. Statistical confidence in the measured parameters from a single Taylor dispersion injection was comparable to that obtained for global analysis of multiple standard injections. The affinity constants for multisite interactions were resolved with acceptable confidence limits. Importantly, a single analyte injection could be treated as a high-resolution real-time affinity isotherm and was demonstrated using the complex two-site interaction of warfarin with human serum albumin. In all three model interactions tested, the kinetic/affinity constants compared favorably with those obtained from standard kinetic analysis and the estimates of analyte diffusion coefficients were in good agreement with the expected values.


Assuntos
Técnicas Biossensoriais , Difusão , Humanos , Cinética , Modelos Teóricos , Albumina Sérica/química , Varfarina/química
9.
Nat Biotechnol ; 40(5): 769-778, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34992247

RESUMO

Small molecules that stabilize inactive protein conformations are an underutilized strategy for drugging dynamic or otherwise intractable proteins. To facilitate the discovery and characterization of such inhibitors, we created a screening platform to identify conformation-locking antibodies for molecular probes (CLAMPs) that distinguish and induce rare protein conformational states. Applying the approach to KRAS, we discovered CLAMPs that recognize the open conformation of KRASG12C stabilized by covalent inhibitors. One CLAMP enables the visualization of KRASG12C covalent modification in vivo and can be used to investigate response heterogeneity to KRASG12C inhibitors in patient tumors. A second CLAMP enhances the affinity of weak ligands binding to the KRASG12C switch II region (SWII) by stabilizing a specific conformation of KRASG12C, thereby enabling the discovery of such ligands that could serve as leads for the development of drugs in a high-throughput screen. We show that combining the complementary properties of antibodies and small molecules facilitates the study and drugging of dynamic proteins.


Assuntos
Anticorpos , Neoplasias , Proteínas Proto-Oncogênicas p21(ras) , Anticorpos/química , Humanos , Ligantes , Mutação , Proteínas Proto-Oncogênicas p21(ras)/antagonistas & inibidores
10.
Sci Rep ; 11(1): 8301, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33859320

RESUMO

In vitro kinetic measurements allow mechanistic characterization of binding interactions and are particularly valuable throughout drug discovery, from confirmation of on-target binding in early discovery to fine-tuning of drug-binding properties in pre-clinical development. Early chemical matter often exhibits transient kinetics, which remain challenging to measure in a routine drug discovery setting. For example, characterization of irreversible inhibitors has classically relied on the alkylation rate constant, yet this metric fails to resolve its fundamental constituent rate constants, which drive reversible binding kinetics and affinity complex inactivation. In other cases, extremely rapid association processes, which can approach the diffusion limit, also remain challenging to measure. To address these limitations, a practical kinetic rebinding assay is introduced that may be applied for kinetic screening and characterization of compounds. The new capabilities afforded by this probe-based assay emerge from mixed-phase partitioning in a flow-injection configuration and have been implemented using label-free biosensing. A finite element analysis-based biosensor model, simulating inhibition of rebinding within a crowded hydrogel milieu, provided surrogate test data that enabled development and validation of an algebraic model for estimation of kinetic interaction constants. An experimental proof-of-principle demonstrating estimation of the association rate constant, decoupled from the dissociation process, provided further validation.


Assuntos
Técnicas Biossensoriais , Descoberta de Drogas/métodos , Alquilação , Análise de Elementos Finitos , Hidrogéis , Cinética
11.
Anal Biochem ; 407(2): 270-7, 2010 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-20800052

RESUMO

We have developed a novel analyte injection method for the SensíQ Pioneer surface plasmon resonance-based biosensor referred to as "FastStep." By merging buffer and sample streams immediately prior to the reaction flow cells, the instrument is capable of automatically generating a two- or threefold dilution series (of seven or five concentrations, respectively) from a single analyte sample. Using sucrose injections, we demonstrate that the production of each concentration within the step gradient is highly reproducible. For kinetic studies, we developed analysis software that utilizes the sucrose responses to automatically define the concentration of analyte at any point during the association phase. To validate this new approach, we compared the results of standard and FastStep injections for ADP binding to a target kinase and a panel of compounds binding to carbonic anhydrase II. Finally, we illustrate how FastStep can be used in a primary screening mode to obtain a full concentration series of each compound in a fragment library.


Assuntos
Técnicas Biossensoriais/métodos , Difosfato de Adenosina/química , Técnicas Biossensoriais/instrumentação , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Inibidores da Anidrase Carbônica/química , Cinética , Ligação Proteica , Sacarose/química , Sulfonamidas/química , Ressonância de Plasmônio de Superfície/métodos
12.
Nat Struct Mol Biol ; 27(2): 134-141, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31988522

RESUMO

The RAS-RAF-MEK-ERK signaling axis is frequently activated in human cancers. Physiological concentrations of ATP prevent formation of RAF kinase-domain (RAFKD) dimers that are critical for activity. Here we present a 2.9-Å-resolution crystal structure of human BRAFKD in complex with MEK and the ATP analog AMP-PCP, revealing interactions between BRAF and ATP that induce an inactive, monomeric conformation of BRAFKD. We also determine how 14-3-3 relieves the negative regulatory effect of ATP through a 2.5-Å-resolution crystal structure of the BRAFKD-14-3-3 complex, in which dimeric 14-3-3 enforces a dimeric BRAFKD assembly to increase BRAF activity. Our data suggest that most oncogenic BRAF mutations alter interactions with ATP and counteract the negative effects of ATP binding by lowering the threshold for RAF dimerization and pathway activation. Our study establishes a framework for rationalizing oncogenic BRAF mutations and provides new avenues for improved RAF-inhibitor discovery.


Assuntos
Proteínas 14-3-3/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas 14-3-3/química , Trifosfato de Adenosina/análogos & derivados , Proteínas Mutadas de Ataxia Telangiectasia/química , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Conformação Proteica , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf/química
13.
ACS Chem Biol ; 15(2): 425-436, 2020 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-31962046

RESUMO

Proprotein convertase subtilisin/kexin 9 (PCSK9) has become an important therapeutic target for lipid lowering, since it regulates low-density lipoprotein cholesterol (LDL-c) levels by binding to liver LDL receptors (LDLR) and effecting their intracellular degradation. However, the development of small molecule inhibitors is hampered by the lack of attractive PCSK9 target sites. We recently discovered helical peptides that are able to bind to a cryptic groove site on PCSK9, which is situated in proximity to the main LDLR binding site. Here, we designed potent bipartite PCSK9 inhibitors by appending organic moieties to a helical groove-binding peptide to reach a hydrophobic pocket in the proximal LDLR binding region. The ultimately designed 1-amino-4-phenylcyclohexane-1-carbonyl extension improved the peptide affinity by >100-fold, yielding organo-peptide antagonists that potently inhibited PCSK9 binding to LDLR and preserved cellular LDLR. These new bipartite antagonists have reduced mass and improved potency compared to the first-generation peptide antagonists, further validating the PCSK9 groove as a viable therapeutic target site.


Assuntos
Inibidores de PCSK9 , Peptídeos/farmacologia , Inibidores de Serina Proteinase/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Células Hep G2 , Humanos , Estrutura Molecular , Peptídeos/química , Peptídeos/metabolismo , Pró-Proteína Convertase 9/química , Pró-Proteína Convertase 9/metabolismo , Ligação Proteica , Inibidores de Serina Proteinase/química , Inibidores de Serina Proteinase/metabolismo
14.
Sci Rep ; 9(1): 18389, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31804511

RESUMO

Transient affinity binding interactions are central to life, composing the fundamental elements of biological networks including cell signaling, cell metabolism and gene regulation. Assigning a defined reaction mechanism to affinity binding interactions is critical to our understanding of the associated structure-function relationship, a cornerstone of biophysical characterization. Transient kinetics are currently measured using low throughput methods such as nuclear magnetic resonance, or stop-flow spectrometry-based techniques, which are not practical in many settings. In contrast, label-free biosensors measure reaction kinetics through direct binding, and with higher throughout, impacting life sciences with thousands of publications each year. Here we have developed a methodology enabling label-free biosensors to measure transient kinetic interactions towards providing a higher throughput approach suitable for mechanistic understanding of these processes. The methodology relies on hydrodynamic dispersion modeling of a smooth analyte gradient under conditions that maintain the quasi-steady-state boundary layer assumption. A transient peptide-protein interaction of relevance to drug discovery was analyzed thermodynamically using transition state theory and numerical simulations validated the approach over a wide range of operating conditions. The data establishes the technical feasibility of this approach to transient kinetic analyses supporting further development towards higher throughput applications in life science.


Assuntos
Técnicas Biossensoriais , Proteínas Ligantes de Maltose/química , Modelos Estatísticos , Peptídeos/química , Simulação por Computador , Humanos , Cinética , Ligação Proteica , Termodinâmica
15.
J Med Chem ; 61(12): 5154-5161, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29772180

RESUMO

Prolonged drug-target occupancy has become increasingly important in lead optimization, and biophysical assays that measure residence time are in high demand. Here we report a practical label-free assay methodology that provides kinetic and affinity measurements suitable for most target classes without long preincubations and over comparatively short sample contact times. The method, referred to as a "chaser" assay, has been applied to three sets of unrelated kinase/inhibitor panels in order to measure the residence times, where correlation with observed efficacy was suspected. A lower throughput chaser assay measured a residence time of 3.6 days ±3.4% (95% CI) and provided single digit pM sensitivity. A higher throughput chaser methodology enabled a maximum capacity of 108 compounds in duplicate/day with an upper residence time limit of 9 h given an assay dissociation time of 34 min.


Assuntos
Técnicas Biossensoriais/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , Compostos Azo/química , Técnicas Biossensoriais/instrumentação , Biotina/metabolismo , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos , Modelos Teóricos , Sondas Moleculares/química , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Estreptavidina/metabolismo , Relação Estrutura-Atividade , Fatores de Tempo
16.
Sci Signal ; 11(544)2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-30131368

RESUMO

Necroptosis, an inflammatory form of cell death, is initiated by the activation of receptor-interacting protein kinase 3 (RIPK3), which depends on its interaction with RIPK1. Although catalytically inactive, the RIPK3 mutant D161N still stimulates RIPK1-dependent apoptosis and embryonic lethality in RIPK3 D161N homozygous mice. Whereas the absence of RIPK1 rescues RIPK3 D161N homozygous mice, we report that the absence of RIPK1 leads to embryonic lethality in RIPK3 D161N heterozygous mice. This suggested that the kinase domain of RIPK3 had a noncatalytic function that was enhanced by a conformation induced by the D161N mutation. We found that the RIPK3 kinase domain homodimerized through a surface that is structurally similar to that of the RAF family members. Mutation of residues at the dimer interface impaired dimerization and necroptosis. Kinase domain dimerization stimulated the activation of RIPK3 through cis-autophosphorylation. This noncatalytic, allosteric activity was enhanced by certain kinase-deficient mutants of RIPK3, including D161N. Furthermore, apoptosis induced by certain RIPK3 inhibitors was also dependent on the kinase dimerization interface. Our studies reveal that the RIPK3 kinase domain exhibits catalytically independent function that is important for both RIPK3-dependent necroptosis and apoptosis.


Assuntos
Apoptose , Domínios Proteicos , Multimerização Proteica , Proteína Serina-Treonina Quinases de Interação com Receptores/química , Animais , Células Cultivadas , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Células HEK293 , Humanos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Necrose , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/deficiência , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA