RESUMO
Dynamic cellular processes such as differentiation are driven by changes in the abundances of transcription factors (TFs). However, despite years of studies, our knowledge about the protein copy number of TFs in the nucleus is limited. Here, by determining the absolute abundances of 103 TFs and co-factors during the course of human erythropoiesis, we provide a dynamic and quantitative scale for TFs in the nucleus. Furthermore, we establish the first gene regulatory network of cell fate commitment that integrates temporal protein stoichiometry data with mRNA measurements. The model revealed quantitative imbalances in TFs' cross-antagonistic relationships that underlie lineage determination. Finally, we made the surprising discovery that, in the nucleus, co-repressors are dramatically more abundant than co-activators at the protein level, but not at the RNA level, with profound implications for understanding transcriptional regulation. These analyses provide a unique quantitative framework to understand transcriptional regulation of cell differentiation in a dynamic context.
Assuntos
Eritropoese/genética , Redes Reguladoras de Genes/genética , Fatores de Transcrição/genética , Bases de Dados Factuais , Regulação da Expressão Gênica/genética , Hematopoese/genética , Humanos , Proteômica/métodos , Fatores de Transcrição/análise , Fatores de Transcrição/metabolismoRESUMO
BACKGROUND: Although the impact of surgery- and patient-dependent factors on surgical-site infections (SSIs) have been studied extensively, their influence on the microbial composition of SSI remains unexplored. The aim of this study was to identify patient-dependent predictors of the microbial composition of SSIs across different types of surgery. METHODS: This retrospective cohort study included 538 893 patients from the Swiss national infection surveillance programme. Multilabel classification methods, adaptive boosting and Gaussian Naive Bayes were employed to identify predictors of the microbial composition of SSIs using 20 features, including sex, age, BMI, duration of surgery, type of surgery, and surgical antimicrobial prophylaxis. RESULTS: Overall, SSIs were recorded in 18 642 patients (3.8%) and, of these, 10 632 had microbiological wound swabs available. The most common pathogens identified in SSIs were Enterobacterales (57%), Staphylococcus spp. (31%), and Enterococcus spp. (28%). Age (mean feature importance 0.260, 95% c.i. 0.209 to 0.309), BMI (0.224, 0.177 to 0.271), and duration of surgery (0.221, 0.180 to 0.269) were strong and independent predictors of the microbial composition of SSIs. Increasing age and duration of surgical procedure as well as decreasing BMI were associated with a shift from Staphylococcus spp. to Enterobacterales and Enterococcus spp. An online application of the machine learning model is available for validation in other healthcare systems. CONCLUSION: Age, BMI, and duration of surgery were key predictors of the microbial composition of SSI, irrespective of the type of surgery, demonstrating the relevance of patient-dependent factors to the pathogenesis of SSIs.
Local infections are a frequent problem after surgery. The risk factors for surgical infections have been identified, but it is unclear which factors predict the type of microorganisms found in such infections. The aim of the present study was to assess patient factors affecting the composition of microorganisms in surgical infections. Data from 538 893 patients were analysed using standard statistics and machine learning methods. The results showed that age, BMI, and the duration of surgery were important in determining the bacteria found in the surgical-site infections. With increasing age, longer operations, and lower BMI, more bacteria stemming from the intestine were found in the surgical site, as opposed to bacteria from the skin. This knowledge may help in developing more personalized treatments for patients undergoing surgery in the future.
Assuntos
Infecção da Ferida Cirúrgica , Humanos , Infecção da Ferida Cirúrgica/epidemiologia , Infecção da Ferida Cirúrgica/microbiologia , Masculino , Feminino , Estudos Retrospectivos , Pessoa de Meia-Idade , Idoso , Suíça/epidemiologia , Adulto , Fatores de Risco , Fatores Etários , Índice de Massa Corporal , Antibioticoprofilaxia , Duração da CirurgiaRESUMO
Understanding disease transmission in the workplace is essential for protecting workers. To model disease outbreaks, the small populations in many workplaces require that stochastic effects are considered, which results in higher uncertainty. The aim of this study was to quantify and interpret the uncertainty inherent in such circumstances. We assessed how uncertainty of an outbreak in workplaces depends on i) the infection dynamics in the community, ii) the workforce size, iii) spatial structure in the workplace, iv) heterogeneity in susceptibility of workers, and v) heterogeneity in infectiousness of workers. To address these questions, we developed a multiscale model: A deterministic model to predict community transmission, and a stochastic model to predict workplace transmission. We extended this basic workplace model to allow for spatial structure, and heterogeneity in susceptibility and infectiousness in workers. We found a non-monotonic relationship between the workplace transmission rate and the coefficient of variation (CV), which we use as a measure of uncertainty. Increasing community transmission, workforce size and heterogeneity in susceptibility decreased the CV. Conversely, increasing the level of spatial structure and heterogeneity in infectiousness increased the CV. However, when the model predicts bimodal distributions, for example when community transmission is low and workplace transmission is high, the CV fails to capture this uncertainty. Overall, our work informs modellers and policy makers on how model complexity impacts outbreak uncertainty. In particular: workforce size, community and workplace transmission, spatial structure and individual heterogeneity contribute in a specific and individual manner to the predicted workplace outbreak size distribution.
Assuntos
Doenças Transmissíveis , Modelos Biológicos , Humanos , Incerteza , Conceitos Matemáticos , Surtos de Doenças , Doenças Transmissíveis/epidemiologiaRESUMO
The larval stage of the helminthic cestode Echinococcus multilocularis can inflict tumor-like hepatic lesions that cause the parasitic disease alveolar echinococcosis in humans, with high mortality in untreated patients. Opportunistic properties of the disease have been established based on the increased incidence in immunocompromised patients and mouse models, indicating that an appropriate adaptive immune response is required for the control of the disease. However, cellular interactions and the kinetics of the local hepatic immune responses during the different stages of infection with E. multilocularis remain unknown. In a mouse model of oral infection that mimics the normal infection route in human patients, the networks of the hepatic immune response were assessed using single-cell RNA sequencing (scRNA-seq) of isolated hepatic CD3+ T cells at different infection stages. We observed an early and sustained significant increase in natural killer T (NKT) cells and regulatory T cells (Tregs). Early tumor necrosis factor (TNF)- and integrin-dependent interactions between these two cell types promote the formation of hepatic lesions. At late time points, downregulation of programmed cell death protein 1 (PD-1) and ectonucleoside triphosphate diphosphohydrolase 1 (ENTPD1)-dependent signaling suppress the resolution of parasite-induced pathology. The obtained data provide fresh insight into the adaptive immune responses and local regulatory pathways at different infection stages of E. multilocularis in mice.
Assuntos
Equinococose , Echinococcus multilocularis , Células T Matadoras Naturais , Linfócitos T Reguladores , Animais , Humanos , Fígado/fisiologia , CamundongosRESUMO
Protection of the healthcare workforce is of paramount importance for the care of patients in the setting of a pandemic such as coronavirus disease 2019 (COVID-19). Healthcare workers are at increased risk of becoming infected. The ideal organisational strategy to protect the workforce in a situation in which social distancing cannot be maintained remains to be determined. In this study, we have mathematically modelled strategies for the employment of the hospital workforce with the goal of simulating the health and productivity of the workers. The models were designed to determine if desynchronization of medical teams by dichotomizing the workers may protect the workforce. Our studies model workforce productivity and the efficiency of home office applied to the case of COVID-19. The results reveal that a desynchronization strategy in which two medical teams work alternating for 7 days increases the available workforce.
Assuntos
COVID-19 , Pandemias , Atenção à Saúde , Pessoal de Saúde , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Recursos HumanosRESUMO
MOTIVATION: In competitive endogenous RNA (ceRNA) networks, different mRNAs targeted by the same miRNA can 'cross-talk' by absorbing miRNAs and relieving repression on the other mRNAs. This creates correlations in mRNA expression even without direct interaction. Most previous theoretical study of cross-talk has focused on correlations in stochastic fluctuations of mRNAs around their steady state values. However, the experimentally known examples of cross-talk do not involve single-cell fluctuations, but rather bulk tissue-level changes between conditions, such as due to differentiation or disease. In our study, we quantify for the first time both fluctuational and cross-conditional cross-talk in chemical kinetic models of miRNA-mRNA interaction networks. We study the parameter regions under which these different types of cross-talk arise, and how they are affected by network structure. RESULTS: We find that while a network may support both fluctuational and cross-conditional cross-talk, the parameter regimes under which each type of cross-talk tends to emerge are rather different. Consistent with previous studies, fluctuational cross-talk occurs when miRNA and mRNA expression levels are 'balanced', whereas cross-conditional cross-talk tends to emerge when average miRNA levels are high and average mRNA levels are low. Conversely, cross-conditional miRNA cross-talk-a little-discussed phenomenon-is greatest when miRNA levels are low and mRNA levels are high. We show that the parameter ranges where cross-talk is maximized can, to some degree, be predicted based on network structure. Indeed, we find that the dominant effect of network structure on correlations happens through the effect of network structure on the overall balance between miRNA and mRNA expression. However, it is not the only effect, as we find that the density of connections between miRNAs and mRNAs in larger networks increases cross-talk without altering the expression balance. CONCLUSION: Our results deepen the theoretical understanding of cross-talk in ceRNA networks, and have implications for the experimental identification of ceRNA cross-talk phenomena. AVAILABILITY AND IMPLEMENTATION: Simulation software available upon request. CONTACT: tperkins@ohri.ca.
Assuntos
Redes Reguladoras de Genes , MicroRNAs , RNA Mensageiro , Receptor Cross-TalkRESUMO
The role of symmetric division in stem cell biology is ambiguous. It is necessary after injuries, but if symmetric divisions occur too often, the appearance of tumours is more likely. To explore the role of symmetric and asymmetric division in cell populations, we propose a mathematical model of competition of populations, in which the stem cell expansion is controlled by fully differentiated cells. We show that there is an optimal fraction of symmetric stem cell division, which maximises the long-term survival probability of the organism. Moreover, we show the optimal number of stem cells in a tissue, and we show that number has to be small enough to reduce the probability of the appearance of advantageous malignant cells, and large enough to assure that the population will not be suppressed by stochastic fluctuations.
Assuntos
Divisão Celular Assimétrica , Diferenciação Celular , Células-Tronco/citologia , Animais , Contagem de Células , Separação Celular , Sobrevivência Celular , Simulação por Computador , Humanos , Modelos Biológicos , Mutação/genética , Processos EstocásticosRESUMO
HIV-1 infected patients are effectively treated with highly active anti-retroviral therapy (HAART). Whilst HAART is successful in keeping the disease at bay with average levels of viral load well below the detection threshold of standard clinical assays, it fails to completely eradicate the infection, which persists due to the emergence of a latent reservoir with a half-life time of years and is immune to HAART. This implies that life-long administration of HAART is, at the moment, necessary for HIV-1-infected patients, which is prone to drug resistance and cumulative side effects as well as imposing a considerable financial burden on developing countries, those more afflicted by HIV, and public health systems. The development of therapies which specifically aim at the removal of this latent reservoir has become a focus of much research. A proposal for such therapy consists of elevating the rate of activation of the latently infected cells: by transferring cells from the latently infected reservoir to the active infected compartment, more cells are exposed to the anti-retroviral drugs thus increasing their effectiveness. In this paper, we present a stochastic model of the dynamics of the HIV-1 infection and study the effect of the rate of latently infected cell activation on the average extinction time of the infection. By analysing the model by means of an asymptotic approximation using the semi-classical quasi steady state approximation (QSS), we ascertain that this therapy reduces the average life-time of the infection by many orders of magnitudes. We test the accuracy of our asymptotic results by means of direct simulation of the stochastic process using a hybrid multi-scale Monte Carlo scheme.
Assuntos
Antirretrovirais/uso terapêutico , Terapia Antirretroviral de Alta Atividade/estatística & dados numéricos , Infecções por HIV/tratamento farmacológico , Modelos Biológicos , Erradicação de Doenças , HIV-1 , Meia-Vida , Humanos , Carga Viral , Latência ViralRESUMO
We propose a stochastic model of HIV-1 infection dynamics under HAART in order to analyse the origin and dynamics of the so-called viral blips, i.e. episodes of transient viremia that occur in the phase of where the disease remains in a latent state during which the viral load raises above the detection limit of standard clinical assays. Based on prior work in the subject, we consider an infection model in which latently infected cell compartment sustains a residual (latent) infection over long periods of time. Unlike previous models, we include the effects of inhomogeneities in cell and virus concentration in the blood stream. We further consider the effect of burst virion production. By comparing with the experimental results obtained during a study in which intensive sampling was carried out on HIV-1-infected patients undergoing HAART over a long period of time, we conclude that our model supports the hypothesis that viral blips are consistent with random fluctuations around the average viral load. We further observe that agreement between our simulation results and the blip statistics obtained in the aforementioned study improves when burst virion production is considered. We also study the effect of sample manipulation artifacts on the results produced by our model, in particular, that of the post-extraction handling time, i.e. the time elapsed between sample extraction and actual test. Our results support the notion that the statistics of viral blips can be critically affected by such artifacts.
Assuntos
Infecções por HIV/virologia , HIV-1/fisiologia , Modelos Biológicos , Simulação por Computador , Humanos , Análise Numérica Assistida por Computador , Processos Estocásticos , Vírion/fisiologiaRESUMO
Sepsis causes millions of deaths per year worldwide and is a current global health priority declared by the WHO. Sepsis-related deaths are a result of dysregulated inflammatory immune responses indicating the need to develop strategies to target inflammation. An important mediator of inflammation is extracellular adenosine triphosphate (ATP) that is released by inflamed host cells and tissues, and also by bacteria in a strain-specific and growth-dependent manner. Here, we investigated the mechanisms by which bacteria release ATP. Using genetic mutant strains of Escherichia coli (E. coli), we demonstrate that ATP release is dependent on ATP synthase within the inner bacterial membrane. In addition, impaired integrity of the outer bacterial membrane notably contributes to ATP release and is associated with bacterial death. In a mouse model of abdominal sepsis, local effects of bacterial ATP were analyzed using a transformed E. coli bearing an arabinose-inducible periplasmic apyrase hydrolyzing ATP to be released. Abrogating bacterial ATP release shows that bacterial ATP suppresses local immune responses, resulting in reduced neutrophil counts and impaired survival. In addition, bacterial ATP has systemic effects via its transport in outer membrane vesicles (OMV). ATP-loaded OMV are quickly distributed throughout the body and upregulated expression of genes activating degranulation in neutrophils, potentially contributing to the exacerbation of sepsis severity. This study reveals mechanisms of bacterial ATP release and its local and systemic roles in sepsis pathogenesis.
Sepsis is a severe condition often caused by the body's immune system overreacting to bacterial infections. This can lead to excessive inflammation which damages organs and requires urgent medical care. With sepsis claiming millions of lives each year, new and improved ways to treat this condition are urgently needed. One potential strategy for treating sepsis is to target the underlying mechanisms controlling inflammation. Inflamed and dying cells release molecules called ATP (the energy carrier of all living cells), which strongly influence the immune system, including during sepsis. In the early stages of an infection, ATP acts as a danger signal warning the body that something is wrong. However, over time, it can worsen infections by disturbing the immune response. Similar to human cells, bacteria release their own ATP, which can have different impacts depending on the type of bacteria and where they are located in the body. However, it is not well understood how bacterial ATP influences severe infections like sepsis. To investigate this question, Spari et al analysed how ATP is released from Escherichia coli, a type of bacteria that causes severe infections. This revealed that the bacteria secrete ATP directly in to their environment and via small membrane-bound structures called vesicles. Spari et al. then probed a mouse model of abdominal sepsis which had been infected with E. coli that release either normal or low levels of ATP. They found that the ATP released from E. coli impaired the mice's survival and lowered the number of neutrophils (immune cells which are important for defending against bacteria) at the site of the infection. The ATP secreted via vesicles also altered the role of neutrophils but in more distant regions, and it is possible that these changes may be contributing to the severity of sepsis. These findings provide a better understanding of how ATP released from bacteria impacts the immune system during sepsis. While further investigation is needed, these findings may offer new therapeutic targets for treating sepsis.
Assuntos
Trifosfato de Adenosina , Escherichia coli , Inflamação , Sepse , Animais , Trifosfato de Adenosina/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Sepse/microbiologia , Sepse/metabolismo , Camundongos , Inflamação/metabolismo , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL , Infecções por Escherichia coli/microbiologia , Infecções por Escherichia coli/imunologiaRESUMO
BACKGROUND: Noise in the operating room has been shown to distract the surgical team and to be associated with postoperative complications. It is, however, unclear whether complications after noisy operations are the result of objective or subjective surgical difficulty or the consequence of distraction of the operating room team by noise. METHODS: Noise level measurements were prospectively performed during operations in four Swiss hospitals. Objective difficulty for each operation was calculated based on surgical magnitude as suggested by the Physiological and Operative Severity Score for the enUmeration of Mortality and Morbidity (POSSUM), duration of operation and surgical approach. Subjective difficulty and distraction were evaluated by a questionnaire filled out by the operating room team members. Complications were assessed 30 days after surgery. Using regression analyses, the relationship between objective and subjective difficulty, distraction, intraoperative noise and postoperative complications was tested. RESULTS: Postoperative complications occurred after 121 (38%) of the 294 procedures included. Noise levels were significantly higher in operations that were objectively and subjectively more difficult (59.89 versus 58.35 dB(A), P < 0.001) and operations that resulted in postoperative complications (59.05 versus 58.77 dB(A), P = 0.004). Multivariable regression analyses revealed that subjective difficulty as reported by all members of the surgical team, but not distraction, was highly associated with noise and complications. Only objective surgical difficulty independently predicted noise and postoperative complications. CONCLUSION: Noise in the operating room is a surrogate of surgical difficulty and thereby predicts postoperative complications.
Assuntos
Ruído , Salas Cirúrgicas , Complicações Pós-Operatórias , Humanos , Estudos Prospectivos , Complicações Pós-Operatórias/etiologia , Complicações Pós-Operatórias/epidemiologia , Masculino , Feminino , Ruído/efeitos adversos , Pessoa de Meia-Idade , Suíça , Idoso , Inquéritos e Questionários , AdultoRESUMO
It is generally believed that environmental or cutaneous bacteria are the main origin of surgical infections. Therefore, measures to prevent postoperative infections focus on optimizing hygiene and improving asepsis and antisepsis. In a large cohort of patients with infections following major surgery, we identified that the causative bacteria are mainly of intestinal origin. Postoperative infections of intestinal origin were also found in mice undergoing partial hepatectomy. CCR6+ group 3 innate lymphoid cells (ILC3s) limited systemic bacterial spread. Such bulwark function against host invasion required the production of interleukin-22 (IL-22), which controlled the expression of antimicrobial peptides in hepatocytes, thereby limiting bacterial spread. Using genetic loss-of-function experiments and punctual depletion of ILCs, we demonstrate that the failure to restrict intestinal commensals by ILC3s results in impaired liver regeneration. Our data emphasize the importance of endogenous intestinal bacteria as a source for postoperative infection and indicate ILC3s as potential new targets.
Assuntos
Imunidade Inata , Linfócitos , Camundongos , Animais , Linfócitos/metabolismo , Regeneração Hepática , Interleucinas/metabolismo , Pele/metabolismoRESUMO
The LIM-domain protein Ajuba is associated with cell proliferation, a fundamental process of tissue regeneration and cancer. We report that in the liver, Ajuba expression is increased during regeneration and in tumour cells and tissues. Knockout of Ajuba using CRISPR/Cas9 is embryonic lethal in mice. shRNA targeting of Ajuba reduces cell proliferation, delays cell entry into S-phase, reduces cell survival and tumour growth in vivo and increases expression of the DNA damage marker γH2AX. Ajuba binding partners include proteins involved in DNA replication and damage, such as SKP2, MCM2, MCM7 and RPA70. Taken together, our data support that Ajuba promotes liver cell proliferation associated with development, regeneration and tumour growth and is involved in DNA replication and damage repair.
Assuntos
Dano ao DNA , Replicação do DNA , Proteínas com Domínio LIM , Fígado , Animais , Proliferação de Células/genética , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Fígado/citologia , Camundongos , Camundongos KnockoutRESUMO
Background & Aims: High-dose irradiation is an essential tool to help control the growth of hepatic tumors, but it can cause radiation-induced liver disease (RILD). This life-threatening complication manifests itself months following radiation therapy and is characterized by fibrosis of the pericentral sinusoids. In this study, we aimed to establish a mouse model of RILD to investigate the underlying mechanism of radiation-induced liver fibrosis. Methods: Using a small animal image-guided radiation therapy platform, an irradiation scheme delivering 50 Gy as a single dose to a focal point in mouse livers was designed. Tissues were analyzed 1 and 6 days, and 6 and 20 weeks post-irradiation. Irradiated livers were assessed by histology, immunohistochemistry, imaging mass cytometry and RNA sequencing. Mitochondrial function was assessed using high-resolution respirometry. Results: At 6 and 20 weeks post-irradiation, pericentral fibrosis was visible in highly irradiated areas together with immune cell infiltration and extravasation of red blood cells. RNA sequencing analysis showed gene signatures associated with acute DNA damage, p53 activation, senescence and its associated secretory phenotype and fibrosis. Moreover, gene profiles of mitochondrial damage and an increase in mitochondrial DNA heteroplasmy were detected. Respirometry measurements of hepatocytes in vitro confirmed irradiation-induced mitochondrial dysfunction. Finally, the highly irradiated fibrotic areas showed markers of reactive oxygen species such as decreased glutathione and increased lipid peroxides and a senescence-like phenotype. Conclusions: Based on our mouse model of RILD, we propose that irradiation-induced mitochondrial DNA instability contributes to the development of fibrosis via the generation of excessive reactive oxygen species, p53 pathway activation and a senescence-like phenotype. Lay summary: Irradiation is an efficient cancer therapy, however, its applicability to the liver is limited by life-threatening radiation-induced hepatic fibrosis. We have developed a new mouse model of radiation-induced liver fibrosis, that recapitulates the human disease. Our model highlights the role of mitochondrial DNA instability in the development of irradiation-induced liver fibrosis. This new model and subsequent findings will help increase our understanding of the hepatic reaction to irradiation and to find strategies that protect the liver, enabling the expanded use of radiotherapy to treat hepatic tumors.
RESUMO
The toll-like receptor 5 (TLR5) agonist, CBLB502/Entolimod, is a peptide derived from bacterial flagellin and has been shown to protect against radiation-induced tissue damage in animal models. Here we investigated the protective mechanism of CBLB502 in the liver using models of ischemia-reperfusion injury and concanavalin A (ConA) induced immuno-hepatitis. We report that pretreatment of mice with CBLB502 provoked a concomitant activation of NF-κB and STAT3 signaling in the liver and reduced hepatic damage in both models. To understand the underlying mechanism, we screened for cytokines in the serum of CBLB502 treated animals and detected high levels of IL-22. There was no transcriptional upregulation of IL-22 in the liver, rather it was found in extrahepatic tissues, mainly the colon, mesenteric lymph nodes (MLN), and spleen. RNA-seq analysis on isolated hepatocytes demonstrated that the concomitant activation of NF-κB signaling by CBLB502 and STAT3 signaling by IL-22 produced a synergistic cytoprotective transcriptional signature. In IL-22 knockout mice, the loss of IL-22 resulted in a decrease of hepatic STAT3 activation, a reduction in the cytoprotective signature, and a loss of hepatoprotection following ischemia-reperfusion-induced liver injury. Taken together, these findings suggest that CBLB502 protects the liver by increasing hepatocyte resistance to acute liver injury through the cooperation of TLR5-NF-κB and IL-22-STAT3 signaling pathways.
Assuntos
Hepatócitos/efeitos dos fármacos , Interleucinas/metabolismo , Fígado/lesões , Peptídeos/farmacologia , Receptor 5 Toll-Like/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Camundongos Endogâmicos C57BL , Protetores contra Radiação/farmacologia , Transdução de Sinais/efeitos dos fármacos , Interleucina 22RESUMO
BACKGROUND & AIMS: Tight junctions in the liver are essential to maintain the blood-biliary barrier, however, the functional contribution of individual tight junction proteins to barrier and metabolic homeostasis remains largely unexplored. Here, we describe the cell type-specific expression of tight junction genes in the murine liver, and explore the regulation and functional importance of the transmembrane protein claudin-3 in liver metabolism, barrier function, and cell proliferation. METHODS: The cell type-specific expression of hepatic tight junction genes is described using our mouse liver single-cell sequencing data set. Differential gene expression in Cldn3-/- and Cldn3+/+ livers was assessed in young and aged mice by RNA sequencing (RNA-seq), and hepatic tissue was analyzed for lipid content and bile acid composition. A surgical model of partial hepatectomy was used to induce liver cell proliferation. RESULTS: Claudin-3 is a highly expressed tight junction protein found in the liver and is expressed predominantly in hepatocytes and cholangiocytes. The histology of Cldn3-/- livers showed no overt phenotype, and the canalicular tight junctions appeared intact. Nevertheless, by RNA-seq we detected a down-regulation of metabolic pathways in the livers of Cldn3-/- young and aged mice, as well as a decrease in lipid content and a weakened biliary barrier for primary bile acids, such as taurocholic acid, taurochenodeoxycholic acid, and taurine-conjugated muricholic acid. Coinciding with defects in the biliary barrier and lower lipid metabolism, there was a diminished hepatocyte proliferative response in Cldn3-/- mice after partial hepatectomy. CONCLUSIONS: Our data show that, in the liver, claudin-3 is necessary to maintain metabolic homeostasis, retention of bile acids, and optimal hepatocyte proliferation during liver regeneration. The RNA-seq data set can be accessed at: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE159914.
Assuntos
Ductos Biliares/metabolismo , Claudina-3/deficiência , Fígado/metabolismo , Fígado/patologia , Envelhecimento/metabolismo , Animais , Proliferação de Células/genética , Claudina-3/metabolismo , Deleção de Genes , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Hepatectomia , Hepatócitos/metabolismo , Metabolismo dos Lipídeos/genética , Fígado/ultraestrutura , Regeneração Hepática , Camundongos Endogâmicos C57BL , Camundongos Knockout , Junções Íntimas/genética , Junções Íntimas/metabolismoRESUMO
Abdominal surgeries are lifesaving procedures but can be complicated by the formation of peritoneal adhesions, intra-abdominal scars that cause intestinal obstruction, pain, infertility, and significant health costs. Despite this burden, the mechanisms underlying adhesion formation remain unclear and no cure exists. Here, we show that contamination of gut microbes increases post-surgical adhesion formation. Using genetic lineage tracing we show that adhesion myofibroblasts arise from the mesothelium. This transformation is driven by epidermal growth factor receptor (EGFR) signaling. The EGFR ligands amphiregulin and heparin-binding epidermal growth factor, are sufficient to induce these changes. Correspondingly, EGFR inhibition leads to a significant reduction of adhesion formation in mice. Adhesions isolated from human patients are enriched in EGFR positive cells of mesothelial origin and human mesothelium shows an increase of mesothelial EGFR expression during bacterial peritonitis. In conclusion, bacterial contamination drives adhesion formation through mesothelial EGFR signaling. This mechanism may represent a therapeutic target for the prevention of adhesions after intra-abdominal surgery.
Assuntos
Epitélio/patologia , Receptores ErbB/metabolismo , Aderências Teciduais/metabolismo , Animais , Modelos Animais de Doenças , Receptores ErbB/genética , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Miofibroblastos , Peritônio , Peritonite/patologia , Aderências Teciduais/genética , Aderências Teciduais/patologiaRESUMO
Protecting healthcare professionals is crucial in maintaining a functioning healthcare system. The risk of infection and optimal preventive strategies for healthcare workers during the COVID-19 pandemic remain poorly understood. Here we report the results of a cohort study that included pre- and asymptomatic healthcare workers. A weekly testing regime has been performed in this cohort since the beginning of the COVID-19 pandemic to identify infected healthcare workers. Based on these observations we have developed a mathematical model of SARS-CoV-2 transmission that integrates the sources of infection from inside and outside the hospital. The data were used to study how regular testing and a desynchronisation protocol are effective in preventing transmission of COVID-19 infection at work, and compared both strategies in terms of workforce availability and cost-effectiveness. We showed that case incidence among healthcare workers is higher than would be explained solely by community infection. Furthermore, while testing and desynchronisation protocols are both effective in preventing nosocomial transmission, regular testing maintains work productivity with implementation costs.
Assuntos
Infecções Assintomáticas , Teste para COVID-19/métodos , COVID-19/diagnóstico , COVID-19/economia , Pessoal de Saúde , SARS-CoV-2 , Algoritmos , Análise Custo-Benefício , Infecção Hospitalar , Coleta de Dados , Atenção à Saúde , Hospitais , Humanos , Programas de Rastreamento/métodos , Modelos Teóricos , Exposição Ocupacional , Pandemias , Risco , Processos Estocásticos , Suíça/epidemiologiaRESUMO
Fibrosis is characterized by the excessive production of collagen and other extracellular matrix (ECM) components and represents a leading cause of morbidity and mortality worldwide. Previous studies of nonalcoholic steatohepatitis (NASH) with fibrosis were largely restricted to bulk transcriptome profiles. Thus, our understanding of this disease is limited by an incomplete characterization of liver cell types in general and hepatic stellate cells (HSCs) in particular, given that activated HSCs are the major hepatic fibrogenic cell population. To help fill this gap, we profiled 17,810 non-parenchymal cells derived from six healthy human livers. In conjunction with public single-cell data of fibrotic/cirrhotic human livers, these profiles enable the identification of potential intercellular signaling axes (e.g., ITGAV-LAMC1, TNFRSF11B-VWF and NOTCH2-DLL4) and master regulators (e.g., RUNX1 and CREB3L1) responsible for the activation of HSCs during fibrogenesis. Bulk RNA-seq data of NASH patient livers and rodent models for liver fibrosis of diverse etiologies allowed us to evaluate the translatability of candidate therapeutic targets for NASH-related fibrosis. We identified 61 liver fibrosis-associated genes (e.g., AEBP1, PRRX1 and LARP6) that may serve as a repertoire of translatable drug target candidates. Consistent with the above regulon results, gene regulatory network analysis allowed the identification of CREB3L1 as a master regulator of many of the 61 genes. Together, this study highlights potential cell-cell interactions and master regulators that underlie HSC activation and reveals genes that may represent prospective hallmark signatures for liver fibrosis.
Assuntos
Células Estreladas do Fígado , Hepatopatia Gordurosa não Alcoólica , Transcriptoma , Animais , Voluntários Saudáveis , Células Estreladas do Fígado/citologia , Células Estreladas do Fígado/metabolismo , Células Estreladas do Fígado/patologia , Humanos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ratos , Análise de Célula ÚnicaRESUMO
Quantitative changes in transcription factor (TF) abundance regulate dynamic cellular processes, including cell fate decisions. Protein copy number provides information about the relative stoichiometry of TFs that can be used to determine how quantitative changes in TF abundance influence gene regulatory networks. In this protocol, we describe a targeted selected reaction monitoring (SRM)-based mass-spectrometry method to systematically measure the absolute protein concentration of nuclear TFs as human hematopoietic stem and progenitor cells differentiate along the erythropoietic lineage. For complete details on the use and execution of this protocol, please refer to Gillespie et al. (2020).