Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 144, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35610571

RESUMO

BACKGROUND: Although urinary tract infections (UTIs) are extremely common, isolation of causative uropathogens is not always routinely performed, with antibiotics frequently prescribed empirically. This study determined the susceptibility of urinary isolates from two Health and Social Care Trusts (HSCTs) in Northern Ireland to a range of antibiotics commonly used in the treatment of UTIs. Furthermore, we determined if detection of trimethoprim resistance genes (dfrA) could be used as a potential biomarker for rapid detection of phenotypic trimethoprim resistance in urinary pathogens and from urine without culture. METHODS: Susceptibility of E. coli and Klebsiella spp. isolates (n = 124) to trimethoprim, amoxicillin, ceftazidime, ciprofloxacin, co-amoxiclav and nitrofurantoin in addition to susceptibility of Proteus mirabilis (n = 61) and Staphylococcus saprophyticus (n = 17) to trimethoprim was determined by ETEST® and interpreted according to EUCAST breakpoints. PCR was used to detect dfrA genes in bacterial isolates (n = 202) and urine samples(n = 94). RESULTS: Resistance to trimethoprim was observed in 37/124 (29.8%) E. coli and Klebsiella spp. isolates with an MIC90 > 32 mg/L. DfrA genes were detected in 29/37 (78.4%) trimethoprim-resistant isolates. Detection of dfrA was highly sensitive (93.6%) and specific (91.4%) in predicting phenotypic trimethoprim resistance among E. coli and Klebsiella spp. isolates. The dfrA genes analysed were detected using a culture-independent PCR method in 16/94 (17%) urine samples. Phenotypic trimethoprim resistance was apparent in isolates cultured from 15/16 (94%) dfrA-positive urine samples. There was a significant association (P < 0.0001) between the presence of dfrA and trimethoprim resistance in urine samples containing Gram-negative bacteria (Sensitivity = 75%; Specificity = 96.9%; PPV = 93.8%; NPV = 86.1%). CONCLUSIONS: This study demonstrates that molecular detection of dfrA genes is a good indicator of trimethoprim resistance without the need for culture and susceptibility testing.


Assuntos
Antibacterianos , Infecções Urinárias , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Trimetoprima/farmacologia , Resistência a Trimetoprima/genética , Infecções Urinárias/microbiologia
2.
Compr Rev Food Sci Food Saf ; 17(2): 334-351, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33350081

RESUMO

African traditional beverages are widely consumed food-grade liquids processed from single or mixed grains (mostly cereals) by simple food processing techniques, of which fermentation tops the list. These beverages are very diverse in composition and nutritional value and are specific to different cultures and countries. The grains from which home-processed traditional beverages are made across Africa are often heavily contaminated with multiple mycotoxins due to poor agricultural, handling, and storage practices that characterize the region. In the literature, there are many reports on the spectrum and quantities of mycotoxins in crops utilized in traditional beverage processing, however, few studies have analyzed mycotoxins in the beverages themselves. The available reports on mycotoxins in African traditional beverages are mainly centered on the finished products with little information on the process chain (raw material to final product), fate of the different mycotoxins during processing, and exposure estimates for consumers. Regulations targeting these local beverages are not in place despite the heavy occurrence of mycotoxins in their raw materials and the high consumption levels of the products in many homes. This paper therefore comprehensively discusses for the 1st time the available data on the wide variety of African traditional beverages, the mycotoxins that contaminate the beverages and their raw materials, exposure estimates, and possible consequent effects. Mycotoxin control options and future directions for mycotoxin research in beverage production are also highlighted.

3.
Heliyon ; 10(16): e36347, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39253262

RESUMO

Sesame (Sesamum indicum) is an oilseed crop which is increasingly recognised as a functional food by consumers due to its nutritional and nutraceutical components. Consequently, global demand for sesame has increased significantly over the last three decades. Sesame is an important export crop in producing countries, contributing to their socio-economic development. However, in recent years, major foodborne incidents have been associated with imported sesame seeds and products made with these seeds. Foodborne hazards are a potential risk to consumer health and hinder international trade due to border rejections and increased import controls. An insight into the routes of contamination of these hazards across the value chain and factors affecting persistence may lead to more focused intervention and prevention strategies. It was observed that Salmonella is a significant microbial hazard in imported sesame seeds and has been associated with several global outbreaks. Sesame is mainly cultivated in the tropical and subtropical regions of Africa and Asia by smallholder farmers. Agricultural and manufacturing practices during harvesting, storage, and processing before export may allow for the contamination of sesame seeds with Salmonella. However, only a few studies collect data on the microbiological quality of sesame across the value chain in producing countries. In addition, the presence of mycotoxins and pesticides above regulatory limits in sesame seeds is a growing concern. Eliminating foodborne hazards in the sesame value chain requires urgent attention from researchers, producers, processors, and regulators and suggestions for improving the safety of these foods are discussed.

4.
Access Microbiol ; 5(12)2023.
Artigo em Inglês | MEDLINE | ID: mdl-38188238

RESUMO

Microbial contamination of medical devices during pilot production can be a significant barrier as the laboratory environment is a source of contamination. There is limited information on microbial contaminants in laser laboratories and environments involved in the pilot production of medical devices. This study aimed to determine the bioburden and microbial contaminants present in three laser laboratories - an ISO class 7 clean room, a pilot line facility and a standard laser laboratory. Microbiological air sampling was by passive air sampling using settle plates and the identity of isolates was confirmed by DNA sequencing. Particulate matter was analysed using a portable optical particle counter. Twenty bacterial and 16 fungal genera were isolated, with the genera Staphylococcus and Micrococcus being predominant. Most isolates are associated with skin, mouth, or upper respiratory tract. There was no significant correlation between microbial count and PM2.5 concentration in the three laboratories. There were low levels but diverse microbial population in the laser-processing environments. Pathogenic bacteria such as Acinetobacter baumannii and Candida parapsilosis were isolated in those environments. These results provide data that will be useful for developing a contamination control plan for controlling microbial contamination and facilitating advanced manufacturing of laser-based pilot production of medical devices.

5.
Int J Food Microbiol ; 365: 109555, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35101713

RESUMO

Atypical enteropathogenic E. coli (aEPEC) strains are emerging pathogens responsible for fatal diarrhoea in humans worldwide. The purpose of this study was to investigate genetic diversity, virulence and antimicrobial resistance profiles of aEPEC O177 strains isolated from faeces of cattle reared in intensive and extensive production systems in South Africa. A total of 96 multidrug resistant (MDR) aEPEC O177 isolates were typed using enterobacterial repetitive intergenic consensus (ERIC) and random amplified polymorphism DNA (RAPD) typing. The resistome, virulome and mobilome of two aEPEC O177 isolates were investigated using WGS analysis. The ERIC typing was efficient and reproducible with a discriminatory index of 0.95. RAPD typing had poor reproducibility with satisfactory discriminatory power of 0.859. The dendrograms constructed based on ERIC and RAPD banding patterns produced 9 and 8 clusters, respectively, which indicate genetic variation among E. coli O177 isolates. WGS analysis revealed that CF-154-A and CF-335-B) isolates belonged to the O177 serotype with H7 and H21, respectively. Both isolates harboured several virulome genes such as intimin (eaeA), haemolysin (hlyA and hlyE), translocated iron receptor (tir), Type III secretion system (eprH, gspL and prgH), bssR and bssS. However, genes encoding shiga toxins were not found in either isolate. Antibiotic resistance genes such as ampC, tet, ermB, sul2, strB AcrD, aph(6)-Ic, aph(6)-Ib, aph(3″)-I, ant (3″)-1a AcrA and acrE were found in the E. coli O177 strains. Furthermore, genome annotation results indicated that both isolates carried plasmids, insertion sequences, prophages and cluster of regularly interspaced short palindromic repeats (CRISPR) type I. Based on in silico multi locus typing (MLST) analysis, the two isolates were assigned to different sequence types (CF-154-A, ST-1308 and CF-335-B, ST-58). Whole genome multi locus typing tree showed that our isolates clustered with E. coli O177:H21 (reference), suggesting the close genomic relatedness among the strains. Overall, these findings showed that cattle carry genetically diverse E. coli O177 strains, which harbour a repertoire of virulome, resistome and mobilome genes. This highlights a need for multidrug resistant E. coli O177 strain surveillance in cattle.


Assuntos
Farmacorresistência Bacteriana Múltipla , Escherichia coli Enteropatogênica , Inocuidade dos Alimentos , Genoma Bacteriano , Animais , Antibacterianos/farmacologia , Bovinos , Escherichia coli Enteropatogênica/genética , Proteínas de Escherichia coli/genética , Variação Genética , Tipagem de Sequências Multilocus , Saúde Pública , Técnica de Amplificação ao Acaso de DNA Polimórfico , Reprodutibilidade dos Testes , Sequenciamento Completo do Genoma
6.
Mycotoxin Res ; 35(2): 149-155, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30484071

RESUMO

Mycotoxins are toxic secondary fungal metabolites that can negatively affect animal productivity when ingested through feed. In order to assess mycotoxin contamination of poultry feed and feed ingredients vis-a-vis source tracking of feed contamination in Nigeria, 102 samples of feed (n = 30) and feed ingredients (n = 72) were collected from in-house mills of poultry farms across 12 states of Nigeria and analyzed for multiple mycotoxins using LC/MS-MS. One hundred and forty microbial metabolites were detected in the feed and feed ingredients. The most frequent mycotoxin in the feed was fumonisin B1, occurring in 97% of the samples at mean concentration of 1014 µg kg-1. AFB1 occurred in 83% of the feed samples at mean concentration of 74 µg kg-1 and in all feed ingredients except fish meal and other cereals (millet and rice). Feed samples analyzed in this study were contaminated with at least four mycotoxins: aflatoxins and fumonisin co-occurring in 80% of the samples. Peanut cake and maize contributed the most to the levels of aflatoxin and fumonisin, respectively, in the feed. Consequently, there is a need to explore other cereal- and protein-based ingredients for compounding feeds in order to reduce the risk associated with high mycotoxin (e.g. aflatoxin) intake in poultry.


Assuntos
Ração Animal/análise , Contaminação de Alimentos/análise , Micotoxinas/análise , Venenos/análise , Animais , Cromatografia Líquida , Nigéria , Aves Domésticas , Espectrometria de Massas em Tandem
7.
Front Microbiol ; 9: 1340, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29997584

RESUMO

Escherichia coli is commonly viewed as a gastrointestinal commensal or pathogen although an increasing body of evidence suggests that it can persist in non-host environments as well. Curli are a major component of biofilm in many enteric bacteria including E. coli and are important for adherence to different biotic and abiotic surfaces. In this study we investigated curli production in a unique collection of soil-persistent E. coli isolates and examined the role of curli formation in environmental persistence. Although most soil-persistent E. coli were curli-positive, 10% of isolates were curli-negative (17 out of 170). Curli-producing E. coli (COB583, COB585, and BW25113) displayed significantly more attachment to quartz sand than the curli-negative strains. Long-term soil survival experiments indicated that curli production was not required for long-term survival in live soil (over 110 days), as a curli-negative mutant BW25113ΔcsgB had similar survival compared to wild type BW25113. Mutations in two genes associated with c-di-GMP metabolism, dgcE and pdeR, correlated with loss of curli in eight soil-persistent strains, although this did not significantly impair their survival in soil compared to curli-positive strains. Overall, the data indicate that curli-deficient and biofilm-defective strains, that also have a defect in attachment to quartz sand, are able to reside in soil for long periods of time thus pointing to the possibility that niches may exist in the soil that can support long-term survival independently of biofilm formation.

8.
Int J Food Microbiol ; 258: 73-80, 2017 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-28759798

RESUMO

The microbiological safety of spontaneously fermented foods is not always guaranteed due to the undefined fermenting microbial consortium and processing materials. In this study, two commonly consumed traditional condiments (iru and ogiri) and their respective raw seeds (locust bean and melon) purchased from markets in south-western Nigeria were assessed for bacterial diversity and mycotoxin contamination using 16S rRNA gene sequencing and liquid chromatography tandem mass spectrometry (LC-MS/MS), respectively. Two hundred isolates obtained from the raw seeds and condiments clustered into 10 operational taxonomic units (OTUs) and spanned 3 phyla, 10 genera, 14 species and 2 sub-species. Bacillus (25%) and Staphylococcus (23.5%) dominated other genera. Potentially pathogenic species such as Alcaligenes faecalis, Bacillus anthracis, Proteus mirabilis and Staphylococcus sciuri subsp. sciuri occurred in the samples, suggesting poor hygienic practice during production and/or handling of the condiments. A total of 48 microbial metabolites including 7 mycotoxins [3-nitropropionic acid, aflatoxin B1 (AFB1), AFB2, beauvericin, citrinin, ochratoxin A and sterigmatocystin] were quantified in the food samples. Melon and ogiri had detectable aflatoxin levels whereas locust bean and iru did not; the overall mycotoxin levels in the food samples were low. There is a need to educate processors/vendors of these condiments on good hygienic and processing practices.


Assuntos
Acacia/microbiologia , Cucurbitaceae/microbiologia , Alimentos Fermentados/microbiologia , Micotoxinas/análise , Sementes/microbiologia , Acacia/química , Alcaligenes faecalis/isolamento & purificação , Animais , Bacillus/isolamento & purificação , Condimentos/microbiologia , Cucurbitaceae/química , Fermentação , Inocuidade dos Alimentos , Nigéria , Proteus mirabilis/isolamento & purificação , RNA Ribossômico 16S/genética , Sementes/química , Staphylococcus/isolamento & purificação , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA