Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Mem Inst Oswaldo Cruz ; 116: e200513, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33566952

RESUMO

BACKGROUND: Different strategies for improvement of malaria control and elimination are based on the blockage of malaria parasite transmission to the mosquito vector. These strategies include the drugs that target the plasmodial sexual stages in humans and the early developmental stages inside mosquitoes. OBJECTIVES: Here we tested Malaria Box compounds in order to evaluate their activity against male and female gametocytes in Plasmodium berghei, mosquito infection in P. vivax and ookinete formation in both species. METHODS/FINDINGS: The membrane feeding assay and the development of ookinetes by a 24 h ex vivo culture and the ookinete yield per 1000 erythrocytes were used to test transmission-blocking potential of the Malaria Box compounds in P. vivax. For P. berghei we used flow cytometry to evaluate male and female gametocyte time course and fluorescence microscopy to check the ookinete development. The two species used in this study showed similar results concerning the compounds' activity against gametocytes and ookinetes, which were different from those in P. falciparum. In addition, from the eight Malaria Box compounds tested in both species, compounds MMV665830, MMV665878 and MMV665941 were selected as a hit compounds due the high inhibition observed. CONCLUSION: Our results showed that P. berghei is suitable as an initial screening system to test compounds against P. vivax.


Assuntos
Malária Vivax/prevenção & controle , Mosquitos Vetores/parasitologia , Plasmodium berghei/efeitos dos fármacos , Plasmodium vivax/efeitos dos fármacos , Animais , Malária Vivax/tratamento farmacológico , Malária Vivax/transmissão
2.
Chemistry ; 25(1): 43-59, 2019 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-30095185

RESUMO

Maleimide chemistry stands out in the bioconjugation toolbox by virtue of its synthetic accessibility, excellent reactivity, and practicability. The second-generation of clinically approved antibody-drug conjugates (ADC) and much of the current ADC pipeline in clinical trials contain the maleimide linkage. However, thiosuccinimide linkages are now known to be less robust than once thought, and ergo, are correlated with suboptimal pharmacodynamics, pharmacokinetics, and safety profiles in some ADC constructs. Rational design of novel generations of maleimides and maleimide-type reagents have been reported to address the shortcomings of classical maleimides, allowing for the formation of robust bioconjugate linkages. This review highlights the main strategies for rational reagent design that have allowed irreversible bioconjugations in cysteines, reversible labelling strategies and disulfide re-bridging.


Assuntos
Imunoconjugados/química , Maleimidas/química , Anticorpos/química , Anticorpos/metabolismo , Humanos , Imunoconjugados/metabolismo , Maleimidas/metabolismo , Albumina Sérica/química , Albumina Sérica/metabolismo , Somatostatina/química , Somatostatina/metabolismo , Compostos de Sulfidrila/química
3.
BMC Cancer ; 17(1): 189, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288569

RESUMO

BACKGROUND: The inhibition of Delta-like 4 (Dll4)/Notch signaling has been shown to result in excessive, nonfunctional vessel proliferation and significant tumor growth suppression. However, safety concerns emerged with the identification of side effects resulting from chronic Dll4/Notch blockade. Alternatively, we explored the endothelial Dll4 overexpression using different mouse tumor models. METHODS: We used a transgenic mouse model of endothelial-specific Dll4 overexpression, previously produced. Growth kinetics and vascular histopathology of several types of solid tumors was evaluated, namely Lewis Lung Carcinoma xenografts, chemically-induced skin papillomas and RIP1-Tag2 insulinomas. RESULTS: We found that increased Dll4/Notch signaling reduces tumor growth by reducing vascular endothelial growth factor (VEGF)-induced endothelial proliferation, tumor vessel density and overall tumor blood supply. In addition, Dll4 overexpression consistently improved tumor vascular maturation and functionality, as indicated by increased vessel calibers, enhanced mural cell recruitment and increased network perfusion. Importantly, the tumor vessel normalization is not more effective than restricted vessel proliferation, but was found to prevent metastasis formation and allow for increased delivery to the tumor of concomitant chemotherapy, improving its efficacy. CONCLUSIONS: By reducing endothelial sensitivity to VEGF, these results imply that Dll4/Notch stimulation in tumor microenvironment could be beneficial to solid cancer patient treatment by reducing primary tumor size, improving tumor drug delivery and reducing metastization. Endothelial specific Dll4 overexpression thus appears as a promising anti-angiogenic modality that might improve cancer control.


Assuntos
Endotélio Vascular/metabolismo , Regulação Neoplásica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Neoplasias Experimentais/genética , Neovascularização Patológica/genética , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Linhagem Celular Tumoral , Modelos Animais de Doenças , Humanos , Insulinoma/irrigação sanguínea , Insulinoma/genética , Insulinoma/patologia , Masculino , Camundongos Transgênicos , Metástase Neoplásica , Neoplasias Experimentais/irrigação sanguínea , Neoplasias Experimentais/patologia , Carga Tumoral/genética
4.
BMC Cancer ; 17(1): 50, 2017 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-28086833

RESUMO

BACKGROUND: Delta like 4 (Dll4)/Notch signaling is a key regulator of tumor angiogenesis. Additionally, the role of Dll4 has been studied on tumor stem cells. However, as these cells are implicated in tumor angiogenesis, it is conceivable that the effect of Dll4 on these cells may be a consequence of its angiogenic function. Our aim was to evaluate the expression and dissect the functions of Dll4 in the Apc Min/+ model of colorectal cancer. METHODS: We evaluated the protein expression pattern of Dll4 and other Notch members in the Apc Min/+ tumors relatively to the normal gut and compared endothelial-specific with ubiquitous Dll4 knockout mice on an Apc Min/+ background. RESULTS: All Notch pathway members were present in the normal small and large intestine and in the adenomas of the same regions. Dll4, all Notch receptors and Hes1 expression seemed upregulated in the tumors, with some regional differences. The same members and Hes5, instead of Hes1, presented ectopic expression in the tumor parenchyma. Dll4 expression was most pronounced in the tumor cells but it was also present in the tumor blood vessels and in other stromal cells. Ubiquitous and endothelial-specific Dll4 deletion led to an equivalent reduction of tumor growth because of a similarly marked tumoral angiogenic phenotype promoting non-productive vasculature and consequently hypoxia and apoptosis. The ubiquitous Dll4 inhibition led to a stronger decrease of tumor multiplicity than the endothelial-specific deletion by further reducing tumor proliferation and tumor stem cell density through upregulation of the cyclin-dependent kinase inhibitors 1C and 1B and downregulation of Myc, Cyclin D1 and D2 independently of ß-catenin activation. This phenotype was associated to the observed increased epithelial differentiation deviated towards the secretory lineages by Atoh1 and Klf4 upregulation only in the ubiquitous Dll4 mutants. CONCLUSIONS: Dll4 seems to promote Apc Min/+ tumorigenesis through both angiogenic and non-angiogenic related mechanisms.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Proteínas de Ligação ao Cálcio , Proliferação de Células/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Fator 4 Semelhante a Kruppel , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais/fisiologia , beta Catenina/metabolismo
5.
Prostate ; 76(1): 80-96, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26419726

RESUMO

BACKGROUND: The Notch signaling pathway has been implicated in prostate development, maintenance and tumorigenesis by its key role in cell-fate determination, differentiation and proliferation. Therefore, we proposed to analyze Notch family members transcription and expression, including ligands (Dll1, 3, 4 and Jagged1 and 2), receptors (Notch1-4) and effectors (Hes1, 2, 5 and Hey1, 2, L), in both normal and tumor bearing mouse prostates to better understand the dynamics of Notch signaling in prostate tumorigenesis. METHODS: Wild type mice and transgenic adenocarcinoma of the mouse prostate model (TRAMP) mice were sacrificed at 18, 24 or 30 weeks of age and the prostates collected and processed for either whole prostate or prostate cell specific populations mRNA analysis and for protein expression analysis by immunohistochemistry and immunofluorescence. RESULTS: We observed that Dll1 and Dll4 are expressed in the luminal compartment of the mouse healthy prostate, whereas Jagged2 expression is restricted to the basal and stromal compartment. Additionally, Notch2 and Notch4 are normally expressed in the prostate luminal compartment while Notch2 and Notch3 are also expressed in the stromal layer of the healthy prostate. As prostate tumor development takes place, there is up-regulation of Notch components. Particularly, the prostate tumor lesions have increased expression of Jagged1 and 2, of Notch3 and of Hey1. We have also detected the presence of activated Notch3 in prostatic tumors that co-express Jagged1 and ultimately the Hey1 effector. CONCLUSIONS: Taken together our results point out the Notch axis Jagged1-2/Notch3/Hey1 to be important for prostate tumor development and worthy of additional functional studies and validation in human clinical disease.


Assuntos
Adenocarcinoma , Carcinogênese , Próstata , Neoplasias da Próstata , Receptores Notch/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Proteínas de Ligação ao Cálcio/metabolismo , Carcinogênese/metabolismo , Carcinogênese/patologia , Proteínas de Ciclo Celular/metabolismo , Modelos Animais de Doenças , Imuno-Histoquímica , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1 , Proteína Jagged-2 , Ligases/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptor Notch3 , Proteínas Serrate-Jagged , Transdução de Sinais , Regulação para Cima
6.
Development ; 140(8): 1720-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23533173

RESUMO

Arteriogenesis requires growth of pre-existing arteriolar collateral networks and determines clinical outcome in arterial occlusive diseases. Factors responsible for the development of arteriolar collateral networks are poorly understood. The Notch ligand Delta-like 4 (Dll4) promotes arterial differentiation and restricts vessel branching. We hypothesized that Dll4 may act as a genetic determinant of collateral arterial networks and functional recovery in stroke and hind limb ischemia models in mice. Genetic loss- and gain-of-function approaches in mice showed that Dll4-Notch signaling restricts pial collateral artery formation by modulating arterial branching morphogenesis during embryogenesis. Adult Dll4(+/-) mice showed increased pial collateral numbers, but stroke volume upon middle cerebral artery occlusion was not reduced compared with wild-type littermates. Likewise, Dll4(+/-) mice showed reduced blood flow conductance after femoral artery occlusion, and, despite markedly increased angiogenesis, tissue ischemia was more severe. In peripheral arteries, loss of Dll4 adversely affected excitation-contraction coupling in arterial smooth muscle in response to vasopressor agents and arterial vessel wall adaption in response to increases in blood flow, collectively contributing to reduced flow reserve. We conclude that Dll4-Notch signaling modulates native collateral formation by acting on vascular branching morphogenesis during embryogenesis. Dll4 furthermore affects tissue perfusion by acting on arterial function and structure. Loss of Dll4 stimulates collateral formation and angiogenesis, but in the context of ischemic diseases such beneficial effects are overruled by adverse functional changes, demonstrating that ischemic recovery is not solely determined by collateral number but rather by vessel functionality.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Isquemia/fisiopatologia , Proteínas de Membrana/metabolismo , Microvasos/embriologia , Morfogênese/fisiologia , Neovascularização Fisiológica/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Análise de Variância , Animais , Proteínas de Ligação ao Cálcio , Imuno-Histoquímica , Isquemia/metabolismo , Camundongos , Microvasos/fisiologia , Reação em Cadeia da Polimerase em Tempo Real , Fluxo Sanguíneo Regional/fisiologia , Microtomografia por Raio-X
7.
Arterioscler Thromb Vasc Biol ; 35(5): 1134-46, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25767274

RESUMO

OBJECTIVE: Notch signaling controls cardiovascular development and has been associated with several pathological conditions. Among its ligands, Jagged1 and Dll4 were shown to have opposing effects in developmental angiogenesis, but the underlying mechanism and the role of Jagged1/Notch signaling in adult angiogenesis remain incompletely understood. The current study addresses the importance of endothelial Jagged1-mediated Notch signaling in the context of adult physiological angiogenesis and the interactions of Jagged1 and Dll4 on angiogenic response and vascular maturation processes. APPROACH AND RESULTS: The role of endothelial Jagged1 in wound healing kinetics and angiogenesis was investigated with endothelial-specific Jag1 gain-of-function and loss-of-function mouse mutants (eJag1OE and eJag1cKO). To study the interactions between the 2 Notch ligands, genetic mouse models were combined with pharmacological inhibition of Dll4 or Jagged1, respectively. Jagged1 overexpression in endothelial cells increased vessel density, maturation, and perfusion, thus accelerating wound healing. The opposite effect was seen in eJag1cKO animals. Interestingly, Dll4 blockade in these animals led to an increase in vascular density but induced a greater decrease in perivascular cell coverage. However, Jagged1 inhibition in Dll4 gain-of-function (eDll4OE) mutants, with reduced angiogenesis, further diminished angiogenic growth and hampered perivascular cell coverage. Our findings suggest that as Dll4 blocks endothelial activation through Notch1 signaling, it also induces Jagged1 expression. Jagged1 then blocks Dll4 signaling through Notch1, allowing endothelial activation by vascular endothelial growth factor and endothelial layer growth. Jagged1 also initiates maturation of the newly formed vessels, possibly by binding and activating endothelial Notch4. Importantly, mice administered with a Notch4 agonistic antibody mimicked the mural cell phenotype of eJag1OE mutants without affecting angiogenic growth, which is thought to be Notch1 dependent. CONCLUSIONS: Endothelial Jagged1 is likely to operate downstream of Dll4/Notch1 signaling to activate Notch4 and regulate vascular maturation. Thus, Jagged1 not only counteracts Dll4/Notch in the endothelium but also generates a balance between angiogenic growth and maturation processes in vivo.


Assuntos
Moduladores da Angiogênese/farmacologia , Proteínas de Ligação ao Cálcio/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteínas de Membrana/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Proteínas Proto-Oncogênicas/metabolismo , Receptor Notch1/metabolismo , Receptores Notch/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Proteína Jagged-1 , Camundongos , Camundongos Knockout , Neovascularização Fisiológica/fisiologia , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Distribuição Aleatória , Receptor Notch1/antagonistas & inibidores , Receptor Notch4 , Receptores Notch/antagonistas & inibidores , Proteínas Serrate-Jagged , Transdução de Sinais
8.
BMC Cancer ; 15: 608, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26314892

RESUMO

BACKGROUND: In invasive malignancies, Dll4/Notch signaling inhibition enhances non-functional vessel proliferation and limits tumor growth by reducing its blood perfusion. METHODS: To assess the effects of targeted Dll4 allelic deletion in the incipient stages of tumor pathogenesis, we chemically induced skin papillomas in wild-type and Dll4 (+/-) littermates, and compared tumor growth, their histological features, vascularization and the expression of angiogenesis-related molecules. RESULTS: We observed that Dll4 down-regulation promotes productive angiogenesis, although with less mature vessels, in chemically-induced pre-cancerous skin papillomas stimulating their growth. The increase in endothelial activation was associated with an increase in the VEGFR2 to VEGFR1 ratio, which neutralized the tumor-suppressive effect of VEGFR-targeting sorafenib. Thus, in early papillomas, lower levels of Dll4 increase vascularization through raised VEGFR2 levels, enhancing sensitivity to endogenous levels of VEGF, promoting functional angiogenesis and tumor growth. CONCLUSION: Tumor promoting effect of low-dosage inhibition needs to be considered when implementing Dll4 targeting therapies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/fisiologia , Neovascularização Patológica/fisiopatologia , Papiloma/patologia , Neoplasias Cutâneas/patologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Antineoplásicos/uso terapêutico , Proteínas de Ligação ao Cálcio , Progressão da Doença , Regulação para Baixo/fisiologia , Deleção de Genes , Masculino , Camundongos , Niacinamida/análogos & derivados , Niacinamida/uso terapêutico , Papiloma/irrigação sanguínea , Papiloma/tratamento farmacológico , Compostos de Fenilureia/uso terapêutico , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/fisiologia , Neoplasias Cutâneas/irrigação sanguínea , Neoplasias Cutâneas/tratamento farmacológico , Sorafenibe , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/sangue
9.
J Org Chem ; 80(20): 10404-11, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26402221

RESUMO

The first general protocol for the preparation of symmetric triarylmethanes bearing secondary anilines by ytterbium-catalyzed Friedel-Crafts reaction of hetero(aryl) aldehydes and secondary anilines is reported. Mechanistic studies indicated that the iminium ion intermediate is the electrophilic partner. The reaction is greatly accelerated by high pressure (9 kbar) and showed a broad substrate scope on the hetero(aryl) aldehyde. The new triarylmethanes exhibited activity against HT-29 cancer cell lines, with the best result scoring an IC50 of 1.74 µM.

10.
Org Biomol Chem ; 12(46): 9324-8, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25322451

RESUMO

The selective ε-functionalization of 5-substituted furfurals via trienamine intermediates is reported herein. This methodology was successfully applied to several 5-substituted furfurals with different amines via formation of a trienamine through the furan ring. The rationalized reaction mechanism involves the addition of the trienamine intermediate to its corresponding iminium-ion producing new furan-containing scaffolds.


Assuntos
Aminas/química , Furaldeído/análogos & derivados , Furanos/química , Iminas/química , Catálise , Estrutura Molecular , Estereoisomerismo
11.
Org Biomol Chem ; 12(20): 3181-90, 2014 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-24723199

RESUMO

Folic acid targeting by functionalization of the terminal γ-carboxylic acid is one of the most important strategies to selectively deliver chemotherapeutics and dyes to cancer cells which overexpress folate receptors. However, conjugation of folic acid is limited by its unique solubility and by selectivity issues imposing the need for expensive preparative reverse-phase chromatographic purification to isolate γ-folate conjugates. Herein is provided a novel synthetic tool for the synthesis of new folic acid conjugates with excellent γ-purity based on strain-promoted alkyne-azide cycloadditions with a γ-folate-cyclooctyne conjugate 3. To demonstrate the potential of this methodology several new folate conjugates were synthesized with high γ-purity and without using any type of chromatographic purification by reacting conjugate 3 with several fluorescent probes, polymers and siliceous materials bearing azide. In addition, the cycloaddition reaction between conjugate 3 and an azido-derived fluorescent dye was successfully performed in cellular media leading to an increase of fluorescence in the cells which overexpress folate receptors (NCI-H460).


Assuntos
Química Click/métodos , Ácido Fólico/química , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Etanolamina/química , Células HEK293 , Humanos , Microscopia Confocal , Espectrometria de Fluorescência
12.
Life (Basel) ; 13(2)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36836861

RESUMO

Diabetes mellitus (DM) patients frequently develop diabetic foot ulcers (DFU) which are generally infected by a community of microorganisms, mainly Staphylococcus aureus and Pseudomonas aeruginosa. These bacteria exhibit a multi-drug resistance profile and biofilm-forming ability which represent a hurdle in the treatment of diabetic foot infections (DFI). We aimed to evaluate the potential of Nisin Z, an antimicrobial peptide (AMP), as an alternative treatment for severe DFI. Nisin Z shows antibacterial activity against Gram-positive and Gram-negative bacteria and an increased antibacterial effect against Gram-negatives when added to EDTA. As such, Minimum Inhibitory Concentration (MIC), Minimum Bactericidal Concentration (MBC), Minimum Biofilm Inhibitory Concentration (MBIC), and Minimum Biofilm Eradication Concentration (MBEC) were determined for Nisin Z, Nisin Z + EDTA (0.4%), and Nisin Z + EDTA incorporated into guar gum, in order to test its efficacy against S. aureus and P. aeruginosa isolated from the same DFU. Results showed that Nisin Z added to the chelation agent EDTA displayed higher antibacterial and bacteriostatic efficacy against mono and dual co-cultures of S. aureus and P. aeruginosa, and higher antibiofilm efficiency against monocultures. Nisin Z was moderately cytotoxic at 200 µg/mL. Prospect in vivo studies are needed to confirm the potential of Nisin Z supplemented with EDTA to be used as a complement to conventional antibiotic therapy for severe DFI.

13.
Front Cell Infect Microbiol ; 13: 1108366, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37143740

RESUMO

Methylene blue (MB) is an alternative for combating drug-resistant malaria parasites. Its transmission-blocking potential has been demonstrated in vivo in murine models, in vitro, and in clinical trials. MB shows high efficacy against Plasmodium vivax asexual stages; however, its efficacy in sexual stages is unknown. In this study, we evaluated the potential of MB against asexual and sexual forms of P. vivax isolated from the blood of patients residing in the Brazilian Amazon. An ex vivo schizont maturation assay, zygote to ookinete transformation assay, direct membrane feed assay (DMFA), and standard membrane feed assay (SMFA) using P. vivax gametocytes with MB exposure were performed. A cytotoxicity assay was also performed on freshly collected peripheral blood mononuclear cells (PBMCs) and the hepatocyte carcinoma cell line HepG2. MB inhibited the P. vivax schizont maturation and demonstrated an IC50 lower than that of chloroquine (control drug). In the sexual forms, the MB demonstrated a high level of inhibition in the transformation of the zygotes into ookinetes. In the DMFA, MB did not considerably affect the infection rate and showed low inhibition, but it demonstrated a slight decrease in the infection intensity in all tested concentrations. In contrast, in the SMFA, MB was able to completely block the transmission at the highest concentration (20 µM). MB demonstrated low cytotoxicity to fresh PBMCs but demonstrated higher cytotoxicity to the hepatocyte carcinoma cell line HepG2. These results show that MB may be a potential drug for vivax malaria treatment.


Assuntos
Carcinoma , Malária Vivax , Humanos , Animais , Camundongos , Plasmodium vivax , Azul de Metileno/farmacologia , Leucócitos Mononucleares , Malária Vivax/parasitologia , Plasmodium falciparum
14.
Biochem Biophys Res Commun ; 418(1): 173-9, 2012 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-22252294

RESUMO

Notch pathway regulates vessel development and maturation. Dll4, a high-affinity ligand for Notch, is expressed predominantly in the arterial endothelium and is induced by hypoxia among other factors. Inhibition of Dll4 has paradoxical effects of reducing the maturation and perfusion in newly forming vessels while increasing the density of vessels. We hypothesized that partial and/or intermittent inhibition of Dll4 may lead to increased vascular response and still allow vascular maturation to occur. Thus tissue perfusion can be restored rapidly, allowing quicker recovery from ischemia or tissue injury. Our studies in two different models (hindlimb ischemia and skin flap) show that inhibition of Dll4 at low dose allows faster recovery from vascular and tissue injury. This opens a new possibility for Dll4 blockade's therapeutic application in promoting recovery from vascular injury and restoring blood supply to ischemic tissues.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Isquemia/tratamento farmacológico , Proteínas de Membrana/antagonistas & inibidores , Receptores Notch/antagonistas & inibidores , Proteínas Recombinantes de Fusão/uso terapêutico , Animais , Vasos Sanguíneos/efeitos dos fármacos , Modelos Animais de Doenças , Imunofluorescência , Retalhos de Tecido Biológico/irrigação sanguínea , Membro Posterior/irrigação sanguínea , Camundongos , Camundongos Mutantes , Reperfusão , Transdução de Sinais/efeitos dos fármacos , Pele/irrigação sanguínea , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/biossíntese
16.
Methods Mol Biol ; 2472: 173-185, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35674900

RESUMO

The Notch signaling pathway is an important determinant of cell diversity and identity in most developing embryonic tissues. The pathway components are expressed dynamically, and their function is critical for embryonic survival.This protocol addresses the immunolocalization of Notch pathway components by confocal microscopy.


Assuntos
Blastocisto , Transdução de Sinais , Animais , Blastocisto/metabolismo , Camundongos , Receptores Notch/metabolismo
17.
Blood ; 112(5): 1720-9, 2008 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-18559979

RESUMO

The importance of Notch signaling pathway in the regulation of vascular development and angiogenesis is suggested by the expression of Notch receptors and ligands in vascular endothelial cells (ECs) and the observed vascular phenotypes in mutants of Notch receptors or ligands, especially Dll4. DLL4 is specifically expressed in arterial ECs during development, and haplo-insufficiency is embryonically lethal in mice. To address the role of Dll4 in vascular development, we produced mDll4 conditionally overexpressed transgenic mice that were crossed with constitutive recombinase cre lines. Double transgenic embryos displayed grossly enlarged dorsal aortae (DA) and died before embryonic day 10.5 (E10.5), showing a variable degree of premature arteriovenous fusion. Veins displayed ectopic expression of arterial markers. Other defects included reduced vascular sprouting, EC proliferation, and migration. mDll4 overexpression also inhibited VEGF signaling and increased fibronectin accumulation around the vessels. In vitro and in vivo studies of DLL4-FL (Dll4-full-length) in ECs recapitulate many of the mDll4 transgenics findings, including decreased tube formation, reduced vascular branching, fewer vessels, increased pericyte recruitment, and increased fibronectin expression. These results establish the role of Dll4 in arterial identity determination, and regulation of angiogenesis subject to dose and location.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Proteínas de Membrana/genética , Proteínas de Membrana/fisiologia , Neovascularização Fisiológica/genética , Neovascularização Fisiológica/fisiologia , Proteínas Adaptadoras de Transdução de Sinal , Animais , Artérias/anormalidades , Artérias/embriologia , Proteínas de Ligação ao Cálcio , Movimento Celular , Células Cultivadas , Perda do Embrião/genética , Desenvolvimento Embrionário/genética , Desenvolvimento Embrionário/fisiologia , Células Endoteliais/citologia , Células Endoteliais/fisiologia , Feminino , Coração Fetal/anormalidades , Coração Fetal/embriologia , Dosagem de Genes , Regulação da Expressão Gênica no Desenvolvimento , Idade Gestacional , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Masculino , Camundongos , Camundongos Transgênicos , Fenótipo , Gravidez , Receptores Notch/fisiologia , Transfecção , Veias/anormalidades , Veias/embriologia
18.
BMC Cancer ; 10: 641, 2010 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-21092311

RESUMO

BACKGROUND: Dll4/Notch and Ephrin-B2/EphB4 pathways play critical roles in tumor vessel development and maturation. This study evaluates the efficacy of the inhibition of both signaling pathways, alone and in combination, in reducing the growth of an autochthonous mouse tumor and assesses potential adverse effects. METHODS: We used the transgenic RIP1-Tag2 tumor model to study the effects of 1) inhibition of Dll4/Notch by either Dll4 allelic deletion or use of a soluble extracellular Dll4 (sDll4), 2) inhibition of Ephrin-B2/EphB4 signaling by a soluble extracellular EphB4 fused to albumin (sEphB4-Alb), and 3) inhibition of both pathways by sEphB4-Alb combined with either Dll4 allelic deletion or sDll4. To investigate adverse effects, we used inducible endothelial-specific Dll4 knock-out mice, treated with sEphB4-Alb, and carried out histopathological analysis. RESULTS: Dll4 allele deletion or soluble Dll4 treatment resulted in increased tumor vessel density, reduced mural cell recruitment and vessel perfusion which resulted in reduced tumor size. The soluble EphB4 instead reduced vessel density and vessel perfusion, leading to reduction of tumor size. Greater efficacy was observed when sEphB4-Alb was combined with either Dll4 allele deletion or sDll4 in regards to tumor size, vessel perfusion and mural cell recruitment. Induced endothelial specific Dll4 loss-of-function caused hepatic vascular alterations, which were prevented by concomitant sEphB4-Alb treatment. CONCLUSION: Combination targeting of Dll4/Notch and Ephrin-B2/EphB4 has potential for clinical investigation, providing cumulative efficacy and increased safety over Dll4/Notch inhibition alone.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Efrina-B2/metabolismo , Terapia Genética , Insulinoma/terapia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas de Membrana/metabolismo , Terapia de Alvo Molecular , Neovascularização Patológica/prevenção & controle , Neoplasias Pancreáticas/terapia , Receptor EphB4/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal , Inibidores da Angiogênese/administração & dosagem , Animais , Proteínas de Ligação ao Cálcio , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Insulinoma/irrigação sanguínea , Insulinoma/genética , Insulinoma/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/deficiência , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neoplasias Pancreáticas/irrigação sanguínea , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Recombinantes de Fusão/administração & dosagem , Fatores de Tempo , Carga Tumoral
19.
Cells ; 9(11)2020 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-33198378

RESUMO

The concept of tumor growth being angiogenesis dependent had its origin in the observations of Judah Folkman in 1969 of a retinoblastoma in a child. Tumor angiogenesis is initiated when endothelial cells (ECs) respond to local stimuli and migrate towards the growing mass, which results in the formation of tubular structures surrounded by perivascular support cells that transport blood to the inner tumor. In turn, the neo-vasculature supports tumor development and eventual metastasis. This process is highly regulated by several signaling pathways. Central to this process is the Notch signaling pathway. Beyond the role of Notch signaling in tumor angiogenesis, a major hallmark of cancer development, it has also been implicated in the regulation of tumor cell proliferation and survival, in epithelial-to-mesenchymal transition, invasion and metastasis and in the regulation of cancer stem cells, in a variety of hematologic and solid malignancies. There is increasing evidence for the tumor vasculature being important in roles other than those linked to blood perfusion. Namely, endothelial cells act on and influence neighboring tumor cells by use of angiocrine factors to generate a unique cellular microenvironment, thereby regulating tumor stem-like cells' homeostasis, modulating tumor progression, invasiveness, trafficking and metastasis. This review will focus on Notch signaling components that play a part in angiocrine signaling in a tumor setting.


Assuntos
Indutores da Angiogênese/metabolismo , Carcinogênese/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais , Animais , Carcinogênese/patologia , Humanos , Neoplasias/irrigação sanguínea , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo
20.
Antibiotics (Basel) ; 9(11)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172027

RESUMO

Staphylococcus aureus is the most prevalent pathogen in diabetic foot infections (DFIs). In addition to its ability to express several virulence factors, including the formation of recalcitrant biofilms, S. aureus is also becoming increasingly resistant to most antibiotics used in clinical practice. The search for alternative treatment strategies for DFI is urgently needed. Antimicrobial peptides (AMPs), namely, nisin, are emerging as potential new therapeutics for managing DFIs. Our team has developed a nisin-guar gum biogel to be applied to DFIs. In this study, to confirm its future in vivo applicability, we evaluated the influence of four storage temperatures (-20 °C, 4 °C, 22 °C, and 37 °C) during a 24 months storage period on its antimicrobial activity towards DFI S. aureus, and its cytotoxicity, to a human keratinocyte cell line. When stored at temperatures below 22 °C, the biogel antimicrobial activity was not significantly influenced by storage duration or temperature. Moreover, nisin incorporated within the guar gum biogel exhibited no significant levels of cytotoxicity on human keratinocyte cells, confirming its potential for DFIs therapeutics. In conclusion, results confirm that the nisin-biogel is a potential candidate to be used as an alternative or complement compound for conventional DFI therapeutics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA