Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Biol Evol ; 39(1)2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34613411

RESUMO

Endosymbiosis, the establishment of a former free-living prokaryotic or eukaryotic cell as an organelle inside a host cell, can dramatically alter the genomic architecture of the endosymbiont. Plastids or chloroplasts, the light-harvesting organelle of photosynthetic eukaryotes, are excellent models to study this phenomenon because plastid origin has occurred multiple times in evolution. Here, we investigate the genomic signature of molecular processes acting through secondary plastid endosymbiosis-the origination of a new plastid from a free-living eukaryotic alga. We used phylogenetic comparative methods to study gene loss and changes in selective regimes on plastid genomes, focusing on green algae that have given rise to three independent lineages with secondary plastids (euglenophytes, chlorarachniophytes, and Lepidodinium). Our results show an overall increase in gene loss associated with secondary endosymbiosis, but this loss is tightly constrained by the retention of genes essential for plastid function. The data show that secondary plastids have experienced temporary relaxation of purifying selection during secondary endosymbiosis. However, this process is tightly constrained, with selection relaxed only relative to the background in primary plastids. Purifying selection remains strong in absolute terms even during the endosymbiosis events. Selection intensity rebounds to pre-endosymbiosis levels following endosymbiosis events, demonstrating the changes in selection efficiency during different origin phases of secondary plastids. Independent endosymbiosis events in the euglenophytes, chlorarachniophytes, and Lepidodinium differ in their degree of relaxation of selection, highlighting the different evolutionary contexts of these events. This study reveals the selection-drift interplay during secondary endosymbiosis and evolutionary parallels during organellogenesis.


Assuntos
Dinoflagellida , Genomas de Plastídeos , Dinoflagellida/genética , Genoma , Filogenia , Plastídeos/genética , Simbiose/genética
2.
New Phytol ; 233(5): 2144-2154, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34923642

RESUMO

The genomic diversity underpinning high ecological and species diversity in the green algae (Chlorophyta) remains little known. Here, we aimed to track genome evolution in the Chlorophyta, focusing on loss and gain of homologous genes, and lineage-specific innovations of the core Chlorophyta. We generated a high-quality nuclear genome for pedinophyte YPF701, a sister lineage to others in the core Chlorophyta and incorporated this genome in a comparative analysis with 25 other genomes from diverse Viridiplantae taxa. The nuclear genome of pedinophyte YPF701 has an intermediate size and gene number between those of most prasinophytes and the remainder of the core Chlorophyta. Our results suggest positive selection for genome streamlining in the Pedinophyceae, independent from genome minimisation observed among prasinophyte lineages. Genome expansion was predicted along the branch leading to the UTC clade (classes Ulvophyceae, Trebouxiophyceae and Chlorophyceae) after divergence from their last common ancestor with pedinophytes, with genomic novelty implicated in a range of basic biological functions. Results emphasise multiple independent signals of genome minimisation within the Chlorophyta, as well as the genomic novelty arising before diversification in the UTC clade, which may underpin the success of this species-rich clade in a diversity of habitats.


Assuntos
Clorófitas , Núcleo Celular/genética , Clorófitas/genética , Evolução Molecular , Genoma , Genômica , Filogenia
3.
Structure ; 12(11): 1989-99, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15530363

RESUMO

Accurate prediction of location of cavities and surface grooves in proteins is important, as these are potential sites for ligand binding. Several currently available programs for cavity detection are unable to detect cavities near the surface or surface grooves. In the present study, an optimized molecular dynamics based procedure is described for detection and quantification of interior cavities as well as surface pockets. This is based on the observation that the mobility of water in such pockets is significantly lower than that of bulk water. The algorithm efficiently detects surface grooves that are sites of protein-ligand and protein-protein interaction. The algorithm was also used to substantially improve the performance of an automated docking procedure for docking monomers of nonobligate protein-protein complexes. In addition, it was applied to predict key residues involved in the binding of the E. coli toxin CcdB with its inhibitor. Predictions were subsequently validated by mutagenesis experiments.


Assuntos
Proteínas de Escherichia coli/metabolismo , Algoritmos , Sítios de Ligação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Ligantes , Modelos Moleculares , Mutagênese , Ligação Proteica
4.
Biochem Biophys Res Commun ; 315(4): 1097-103, 2004 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-14985126

RESUMO

We studied the correlations between amino acid composition and mononucleotide and dinucleotide frequencies in 115 bacterial genomes of varying G+C content. Observed amino acid frequencies were compared with those expected from the actual mononucleotide and dinucleotide frequencies. Both mononucleotide and dinucleotide frequencies correlate well with the amino acid frequency, with dinucleotide frequencies doing so better. Despite the strong correlations, some of the observed amino acid frequencies, in particular for Arg, Val, Asp, Glu, Ser, and Cys, were consistently different from predicted values in all genomes. We suggest that this variation from predicted values is a consequence of selection pressure at the level of amino acids, while the close correspondence to the predictions in residues such as Thr, Phe, Lys, and Asn arises only from mutation and selection pressure at the level of the nucleic acid sequences.


Assuntos
Aminoácidos/genética , Bactérias/genética , Genes Bacterianos/genética , Nucleotídeos/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Bactérias/metabolismo , Composição de Bases , Códon/genética , Bases de Dados Genéticas , Sequência Rica em GC , Genoma Bacteriano , Nucleotídeos/metabolismo , Sensibilidade e Especificidade , Estatística como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA