Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Hum Mutat ; 43(4): 487-498, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35077597

RESUMO

A proper interaction between muscle-derived collagen XXV and its motor neuron-derived receptors protein tyrosine phosphatases σ and δ (PTP σ/δ) is indispensable for intramuscular motor innervation. Despite this, thus far, pathogenic recessive variants in the COL25A1 gene had only been detected in a few patients with isolated ocular congenital cranial dysinnervation disorders. Here we describe five patients from three unrelated families with recessive missense and splice site COL25A1 variants presenting with a recognizable phenotype characterized by arthrogryposis multiplex congenita with or without an ocular congenital cranial dysinnervation disorder phenotype. The clinical features of the older patients remained stable over time, without central nervous system involvement. This study extends the phenotypic and genotypic spectrum of COL25A1 related conditions, and further adds to our knowledge of the complex process of intramuscular motor innervation. Our observations indicate a role for collagen XXV in regulating the appropriate innervation not only of extraocular muscles, but also of bulbar, axial, and limb muscles in the human.


Assuntos
Artrogripose , Artrogripose/diagnóstico , Artrogripose/genética , Face , Humanos , Músculo Esquelético , Mutação , Fenótipo
2.
Hum Mutat ; 43(6): 717-733, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35178824

RESUMO

Rare disease patients are more likely to receive a rapid molecular diagnosis nowadays thanks to the wide adoption of next-generation sequencing. However, many cases remain undiagnosed even after exome or genome analysis, because the methods used missed the molecular cause in a known gene, or a novel causative gene could not be identified and/or confirmed. To address these challenges, the RD-Connect Genome-Phenome Analysis Platform (GPAP) facilitates the collation, discovery, sharing, and analysis of standardized genome-phenome data within a collaborative environment. Authorized clinicians and researchers submit pseudonymised phenotypic profiles encoded using the Human Phenotype Ontology, and raw genomic data which is processed through a standardized pipeline. After an optional embargo period, the data are shared with other platform users, with the objective that similar cases in the system and queries from peers may help diagnose the case. Additionally, the platform enables bidirectional discovery of similar cases in other databases from the Matchmaker Exchange network. To facilitate genome-phenome analysis and interpretation by clinical researchers, the RD-Connect GPAP provides a powerful user-friendly interface and leverages tens of information sources. As a result, the resource has already helped diagnose hundreds of rare disease patients and discover new disease causing genes.


Assuntos
Genômica , Doenças Raras , Exoma , Estudos de Associação Genética , Genômica/métodos , Humanos , Fenótipo , Doenças Raras/diagnóstico , Doenças Raras/genética
3.
Neuropathol Appl Neurobiol ; 48(2): e12771, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34648194

RESUMO

AIMS: TRAPPC11, a subunit of the transport protein particle (TRAPP) complex, is important for complex integrity and anterograde membrane transport from the endoplasmic reticulum (ER) to the ER-Golgi intermediate compartment. Several individuals with TRAPPC11 mutations have been reported with muscle weakness and other features including brain, liver, skeletal and eye involvement. A detailed analysis of brain and muscle pathology will further our understanding of the presentation and aetiology of TRAPPC11 disease. METHODS: We describe five cases of early-onset TRAPPC11-related muscular dystrophy with a systematic review of muscle pathology in all five individuals, post-mortem brain pathology findings in one and membrane trafficking assays in another. RESULTS: All affected individuals presented in infancy with muscle weakness, motor delay and elevated serum creatine kinase (CK). Additional features included cataracts, liver disease, intellectual disability, cardiomyopathy, movement disorder and structural brain abnormalities. Muscle pathology in all five revealed dystrophic changes, universal hypoglycosylation of alpha-dystroglycan and variably reduced dystrophin-associated complex proteins. Membrane trafficking assays showed defective Golgi trafficking in one individual. Neuropathological examination of one individual revealed cerebellar atrophy, granule cell hypoplasia, Purkinje cell (PC) loss, degeneration and dendrite dystrophy, reduced alpha-dystroglycan (IIH6) expression in PC and dentate neurones and absence of neuronal migration defects. CONCLUSIONS: This report suggests that recessive mutations in TRAPPC11 are linked to muscular dystrophies with hypoglycosylation of alpha-dystroglycan. The structural cerebellar involvement that we document for the first time resembles the neuropathology reported in N-linked congenital disorders of glycosylation (CDG) such as PMM2-CDG, suggesting defects in multiple glycosylation pathways in this condition.


Assuntos
Encéfalo/metabolismo , Distroglicanas/metabolismo , Músculo Esquelético/metabolismo , Distrofias Musculares/genética , Proteínas de Transporte Vesicular/genética , Pré-Escolar , Feminino , Glicosilação , Humanos , Lactente , Fígado/metabolismo , Masculino , Distrofias Musculares/metabolismo , Mutação , Proteínas de Transporte Vesicular/metabolismo
4.
Hum Mol Genet ; 27(24): 4263-4272, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30215711

RESUMO

Congenital myopathies are typically characterised by early onset hypotonia, weakness and hallmark features on biopsy. Despite the rapid pace of gene discovery, ∼50% of patients with a congenital myopathy remain without a genetic diagnosis following screening of known disease genes. We performed exome sequencing on two consanguineous probands diagnosed with a congenital myopathy and muscle biopsy showing selective atrophy/hypotrophy or absence of type II myofibres. We identified variants in the gene (MYL1) encoding the skeletal muscle fast-twitch specific myosin essential light chain (ELC) in both probands. A homozygous essential splice acceptor variant (c.479-2A > G, predicted to result in skipping of exon 5 was identified in Proband 1, and a homozygous missense substitution (c.488T>G, p.(Met163Arg)) was identified in Proband 2. Protein modelling of the p.(Met163Arg) substitution predicted it might impede intermolecular interactions that facilitate binding to the IQ domain of myosin heavy chain, thus likely impacting on the structure and functioning of the myosin motor. MYL1 was markedly reduced in skeletal muscle from both probands, suggesting that the missense substitution likely results in an unstable protein. Knock down of myl1 in zebrafish resulted in abnormal morphology, disrupted muscle structure and impaired touch-evoked escape responses, thus confirming that skeletal muscle fast-twitch specific myosin ELC is critical for myofibre development and function. Our data implicate MYL1 as a crucial protein for adequate skeletal muscle function and that MYL1 deficiency is associated with severe congenital myopathy.


Assuntos
Músculo Esquelético/fisiopatologia , Cadeias Leves de Miosina/genética , Miotonia Congênita/genética , Alelos , Animais , Consanguinidade , Modelos Animais de Doenças , Exoma/genética , Homozigoto , Humanos , Masculino , Músculo Esquelético/metabolismo , Mutação , Cadeias Pesadas de Miosina/genética , Miotonia Congênita/fisiopatologia , Linhagem , Peixe-Zebra/genética
5.
Am J Hum Genet ; 99(5): 1163-1171, 2016 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-27745838

RESUMO

The expressivity of Mendelian diseases can be influenced by factors independent from the pathogenic mutation: in Duchenne muscular dystrophy (DMD), for instance, age at loss of ambulation (LoA) varies between individuals whose DMD mutations all abolish dystrophin expression. This suggests the existence of trans-acting variants in modifier genes. Common single nucleotide polymorphisms (SNPs) in candidate genes (SPP1, encoding osteopontin, and LTBP4, encoding latent transforming growth factor ß [TGFß]-binding protein 4) have been established as DMD modifiers. We performed a genome-wide association study of age at LoA in a sub-cohort of European or European American ancestry (n = 109) from the Cooperative International Research Group Duchenne Natural History Study (CINRG-DNHS). We focused on protein-altering variants (Exome Chip) and included glucocorticoid treatment as a covariate. As expected, due to the small population size, no SNPs displayed an exome-wide significant p value (< 1.8 × 10-6). Subsequently, we prioritized 438 SNPs in the vicinities of 384 genes implicated in DMD-related pathways, i.e., the nuclear-factor-κB and TGFß pathways. The minor allele at rs1883832, in the 5'-untranslated region of CD40, was associated with earlier LoA (p = 3.5 × 10-5). This allele diminishes the expression of CD40, a co-stimulatory molecule for T cell polarization. We validated this association in multiple independent DMD cohorts (United Dystrophinopathy Project, Bio-NMD, and Padova, total n = 660), establishing this locus as a DMD modifier. This finding points to cell-mediated immunity as a relevant pathogenetic mechanism and potential therapeutic target in DMD.


Assuntos
Antígenos CD40/genética , Distrofia Muscular de Duchenne/genética , NF-kappa B/genética , Polimorfismo de Nucleotídeo Único , Fator de Crescimento Transformador beta/genética , Adolescente , Alelos , Antígenos CD40/metabolismo , Estudos de Casos e Controles , Criança , Distrofina/genética , Distrofina/metabolismo , Éxons , Genes Modificadores , Estudo de Associação Genômica Ampla , Glucocorticoides/farmacologia , Humanos , Proteínas de Ligação a TGF-beta Latente/genética , Proteínas de Ligação a TGF-beta Latente/metabolismo , Mutação , NF-kappa B/metabolismo , Osteopontina/genética , Osteopontina/metabolismo , Fator de Crescimento Transformador beta/metabolismo , População Branca/genética
6.
Hum Mutat ; 39(12): 1980-1994, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30168660

RESUMO

SH3 and cysteine-rich domain-containing protein 3 (STAC3) is an essential component of the skeletal muscle excitation-contraction coupling (ECC) machinery, though its role and function are not yet completely understood. Here, we report 18 patients carrying a homozygous p.(Trp284Ser) STAC3 variant in addition to a patient compound heterozygous for the p.(Trp284Ser) and a novel splice site change (c.997-1G > T). Clinical severity ranged from prenatal onset with severe features at birth, to a milder and slowly progressive congenital myopathy phenotype. A malignant hyperthermia (MH)-like reaction had occurred in several patients. The functional analysis demonstrated impaired ECC. In particular, KCl-induced membrane depolarization resulted in significantly reduced sarcoplasmic reticulum Ca2+ release. Co-immunoprecipitation of STAC3 with CaV 1.1 in patients and control muscle samples showed that the protein interaction between STAC3 and CaV 1.1 was not significantly affected by the STAC3 variants. This study demonstrates that STAC3 gene analysis should be included in the diagnostic work up of patients of any ethnicity presenting with congenital myopathy, in particular if a history of MH-like episodes is reported. While the precise pathomechanism remains to be elucidated, our functional characterization of STAC3 variants revealed that defective ECC is not a result of CaV 1.1 sarcolemma mislocalization or impaired STAC3-CaV 1.1 interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Substituição de Aminoácidos , Hipertermia Maligna/genética , Miotonia Congênita/genética , Proteínas Adaptadoras de Transdução de Sinal/química , Adolescente , Cálcio/metabolismo , Criança , Pré-Escolar , Acoplamento Excitação-Contração , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Masculino , Hipertermia Maligna/etiologia , Hipertermia Maligna/metabolismo , Miotonia Congênita/complicações , Miotonia Congênita/metabolismo , Linhagem , Fenótipo , Ligação Proteica , Transporte Proteico , Retículo Sarcoplasmático/metabolismo , Índice de Gravidade de Doença , Sequenciamento do Exoma , Adulto Jovem
7.
J Cell Sci ; 129(8): 1671-84, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26945058

RESUMO

Collagen VI myopathies are genetic disorders caused by mutations in collagen 6 A1, A2 and A3 genes, ranging from the severe Ullrich congenital muscular dystrophy to the milder Bethlem myopathy, which is recapitulated by collagen-VI-null (Col6a1(-/-)) mice. Abnormalities in mitochondria and autophagic pathway have been proposed as pathogenic causes of collagen VI myopathies, but the link between collagen VI defects and these metabolic circuits remains unknown. To unravel the expression profiling perturbation in muscles with collagen VI myopathies, we performed a deep RNA profiling in both Col6a1(-/-)mice and patients with collagen VI pathology. The interactome map identified common pathways suggesting a previously undetected connection between circadian genes and collagen VI pathology. Intriguingly, Bmal1(-/-)(also known as Arntl) mice, a well-characterized model displaying arrhythmic circadian rhythms, showed profound deregulation of the collagen VI pathway and of autophagy-related genes. The involvement of circadian rhythms in collagen VI myopathies is new and links autophagy and mitochondrial abnormalities. It also opens new avenues for therapies of hereditary myopathies to modulate the molecular clock or potential gene-environment interactions that might modify muscle damage pathogenesis.


Assuntos
Fatores de Transcrição ARNTL/genética , Relógios Circadianos/fisiologia , Colágeno Tipo VI/genética , Contratura/genética , Mitocôndrias/fisiologia , Distrofias Musculares/congênito , Mutação/genética , Esclerose/genética , Animais , Autofagia/genética , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Análise em Microsséries , Distrofias Musculares/genética , RNA/análise
8.
Hum Mutat ; 38(8): 970-977, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28544275

RESUMO

We report here the first families carrying recessive variants in the MSTO1 gene: compound heterozygous mutations were identified in two sisters and in an unrelated singleton case, who presented a multisystem complex phenotype mainly characterized by myopathy and cerebellar ataxia. Human MSTO1 is a poorly studied protein, suggested to have mitochondrial localization and to regulate morphology and distribution of mitochondria. As for other mutations affecting genes involved in mitochondrial dynamics, no biochemical defects typical of mitochondrial disorders were reported. Studies in patients' fibroblasts revealed that MSTO1 protein levels were strongly reduced, the mitochondrial network was fragmented, and the fusion events among mitochondria were decreased, confirming the deleterious effect of the identified variants and the role of MSTO1 in modulating mitochondrial dynamics. We also found that MSTO1 is mainly a cytosolic protein. These findings indicate recessive mutations in MSTO1 as a new cause for inherited neuromuscular disorders with multisystem features.


Assuntos
Ataxia/genética , Proteínas de Ciclo Celular/genética , Proteínas do Citoesqueleto/genética , Dinâmica Mitocondrial/fisiologia , Doenças Musculares/genética , Mutação/genética , Ataxia/etiologia , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Dinâmica Mitocondrial/genética , Doenças Musculares/etiologia
9.
Acta Neuropathol ; 133(4): 517-533, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28012042

RESUMO

Muscle contraction upon nerve stimulation relies on excitation-contraction coupling (ECC) to promote the rapid and generalized release of calcium within myofibers. In skeletal muscle, ECC is performed by the direct coupling of a voltage-gated L-type Ca2+ channel (dihydropyridine receptor; DHPR) located on the T-tubule with a Ca2+ release channel (ryanodine receptor; RYR1) on the sarcoplasmic reticulum (SR) component of the triad. Here, we characterize a novel class of congenital myopathy at the morphological, molecular, and functional levels. We describe a cohort of 11 patients from 7 families presenting with perinatal hypotonia, severe axial and generalized weakness. Ophthalmoplegia is present in four patients. The analysis of muscle biopsies demonstrated a characteristic intermyofibrillar network due to SR dilatation, internal nuclei, and areas of myofibrillar disorganization in some samples. Exome sequencing revealed ten recessive or dominant mutations in CACNA1S (Cav1.1), the pore-forming subunit of DHPR in skeletal muscle. Both recessive and dominant mutations correlated with a consistent phenotype, a decrease in protein level, and with a major impairment of Ca2+ release induced by depolarization in cultured myotubes. While dominant CACNA1S mutations were previously linked to malignant hyperthermia susceptibility or hypokalemic periodic paralysis, our findings strengthen the importance of DHPR for perinatal muscle function in human. These data also highlight CACNA1S and ECC as therapeutic targets for the development of treatments that may be facilitated by the previous knowledge accumulated on DHPR.


Assuntos
Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Miotonia Congênita/genética , Miotonia Congênita/metabolismo , Adolescente , Adulto , Cálcio/metabolismo , Canais de Cálcio Tipo L , Células Cultivadas , Criança , Estudos de Coortes , Família , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Células Musculares/metabolismo , Células Musculares/patologia , Músculo Esquelético/diagnóstico por imagem , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Mutação , Miotonia Congênita/diagnóstico por imagem , Miotonia Congênita/patologia , Fenótipo , Homologia de Sequência de Aminoácidos , Adulto Jovem
10.
Brain ; 139(Pt 3): 674-91, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26700687

RESUMO

Congenital myopathies are a clinically and genetically heterogeneous group of muscle disorders characterized by congenital or early-onset hypotonia and muscle weakness, and specific pathological features on muscle biopsy. The phenotype ranges from foetal akinesia resulting in in utero or neonatal mortality, to milder disorders that are not life-limiting. Over the past decade, more than 20 new congenital myopathy genes have been identified. Most encode proteins involved in muscle contraction; however, mutations in ion channel-encoding genes are increasingly being recognized as a cause of this group of disorders. SCN4A encodes the α-subunit of the skeletal muscle voltage-gated sodium channel (Nav1.4). This channel is essential for the generation and propagation of the muscle action potential crucial to muscle contraction. Dominant SCN4A gain-of-function mutations are a well-established cause of myotonia and periodic paralysis. Using whole exome sequencing, we identified homozygous or compound heterozygous SCN4A mutations in a cohort of 11 individuals from six unrelated kindreds with congenital myopathy. Affected members developed in utero- or neonatal-onset muscle weakness of variable severity. In seven cases, severe muscle weakness resulted in death during the third trimester or shortly after birth. The remaining four cases had marked congenital or neonatal-onset hypotonia and weakness associated with mild-to-moderate facial and neck weakness, significant neonatal-onset respiratory and swallowing difficulties and childhood-onset spinal deformities. All four surviving cohort members experienced clinical improvement in the first decade of life. Muscle biopsies showed myopathic features including fibre size variability, presence of fibrofatty tissue of varying severity, without specific structural abnormalities. Electrophysiology suggested a myopathic process, without myotonia. In vitro functional assessment in HEK293 cells of the impact of the identified SCN4A mutations showed loss-of-function of the mutant Nav1.4 channels. All, apart from one, of the mutations either caused fully non-functional channels, or resulted in a reduced channel activity. Each of the affected cases carried at least one full loss-of-function mutation. In five out of six families, a second loss-of-function mutation was present on the trans allele. These functional results provide convincing evidence for the pathogenicity of the identified mutations and suggest that different degrees of loss-of-function in mutant Nav1.4 channels are associated with attenuation of the skeletal muscle action potential amplitude to a level insufficient to support normal muscle function. The results demonstrate that recessive loss-of-function SCN4A mutations should be considered in patients with a congenital myopathy.


Assuntos
Hipocinesia/diagnóstico , Hipocinesia/genética , Mutação/genética , Miopatias Congênitas Estruturais/diagnóstico , Miopatias Congênitas Estruturais/genética , Canal de Sódio Disparado por Voltagem NAV1.4/genética , Adolescente , Adulto , Animais , Criança , Pré-Escolar , Feminino , Células HEK293 , Humanos , Recém-Nascido , Masculino , Linhagem , Índice de Gravidade de Doença , Xenopus laevis
11.
J Clin Invest ; 134(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38950322

RESUMO

Cytoplasmic and nuclear iron-sulfur (Fe-S) enzymes that are essential for genome maintenance and replication depend on the cytoplasmic Fe-S assembly (CIA) machinery for cluster acquisition. The core of the CIA machinery consists of a complex of CIAO1, MMS19 and FAM96B. The physiological consequences of loss of function in the components of the CIA pathway have thus far remained uncharacterized. Our study revealed that patients with biallelic loss of function in CIAO1 developed proximal and axial muscle weakness, fluctuating creatine kinase elevation, and respiratory insufficiency. In addition, they presented with CNS symptoms including learning difficulties and neurobehavioral comorbidities, along with iron deposition in deep brain nuclei, mild normocytic to macrocytic anemia, and gastrointestinal symptoms. Mutational analysis revealed reduced stability of the variants compared with WT CIAO1. Functional assays demonstrated failure of the variants identified in patients to recruit Fe-S recipient proteins, resulting in compromised activities of DNA helicases, polymerases, and repair enzymes that rely on the CIA complex to acquire their Fe-S cofactors. Lentivirus-mediated restoration of CIAO1 expression reversed all patient-derived cellular abnormalities. Our study identifies CIAO1 as a human disease gene and provides insights into the broader implications of the cytosolic Fe-S assembly pathway in human health and disease.


Assuntos
Proteínas Ferro-Enxofre , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Masculino , Feminino , Doenças Neuromusculares/genética , Doenças Neuromusculares/enzimologia , Doenças Neuromusculares/metabolismo , Doenças Neuromusculares/patologia , Criança , Núcleo Celular/metabolismo , Núcleo Celular/enzimologia , Núcleo Celular/genética , Citoplasma/metabolismo , Citoplasma/enzimologia , Metalochaperonas
12.
Nat Genet ; 56(3): 395-407, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38429495

RESUMO

In digenic inheritance, pathogenic variants in two genes must be inherited together to cause disease. Only very few examples of digenic inheritance have been described in the neuromuscular disease field. Here we show that predicted deleterious variants in SRPK3, encoding the X-linked serine/argenine protein kinase 3, lead to a progressive early onset skeletal muscle myopathy only when in combination with heterozygous variants in the TTN gene. The co-occurrence of predicted deleterious SRPK3/TTN variants was not seen among 76,702 healthy male individuals, and statistical modeling strongly supported digenic inheritance as the best-fitting model. Furthermore, double-mutant zebrafish (srpk3-/-; ttn.1+/-) replicated the myopathic phenotype and showed myofibrillar disorganization. Transcriptome data suggest that the interaction of srpk3 and ttn.1 in zebrafish occurs at a post-transcriptional level. We propose that digenic inheritance of deleterious changes impacting both the protein kinase SRPK3 and the giant muscle protein titin causes a skeletal myopathy and might serve as a model for other genetic diseases.


Assuntos
Doenças Musculares , Peixe-Zebra , Animais , Humanos , Masculino , Conectina/genética , Conectina/metabolismo , Músculo Esquelético , Doenças Musculares/genética , Doenças Musculares/metabolismo , Doenças Musculares/patologia , Mutação , Peixe-Zebra/genética
13.
medRxiv ; 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38746462

RESUMO

Solve-RD is a pan-European rare disease (RD) research program that aims to identify disease-causing genetic variants in previously undiagnosed RD families. We utilised 10-fold coverage HiFi long-read sequencing (LRS) for detecting causative structural variants (SVs), single nucleotide variants (SNVs), insertion-deletions (InDels), and short tandem repeat (STR) expansions in extensively studied RD families without clear molecular diagnoses. Our cohort includes 293 individuals from 114 genetically undiagnosed RD families selected by European Rare Disease Network (ERN) experts. Of these, 21 families were affected by so-called 'unsolvable' syndromes for which genetic causes remain unknown, and 93 families with at least one individual affected by a rare neurological, neuromuscular, or epilepsy disorder without genetic diagnosis despite extensive prior testing. Clinical interpretation and orthogonal validation of variants in known disease genes yielded thirteen novel genetic diagnoses due to de novo and rare inherited SNVs, InDels, SVs, and STR expansions. In an additional four families, we identified a candidate disease-causing SV affecting several genes including an MCF2 / FGF13 fusion and PSMA3 deletion. However, no common genetic cause was identified in any of the 'unsolvable' syndromes. Taken together, we found (likely) disease-causing genetic variants in 13.0% of previously unsolved families and additional candidate disease-causing SVs in another 4.3% of these families. In conclusion, our results demonstrate the added value of HiFi long-read genome sequencing in undiagnosed rare diseases.

14.
medRxiv ; 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38196629

RESUMO

Cytoplasmic and nuclear iron-sulfur enzymes that are essential for genome maintenance and replication depend on the cytoplasmic iron-sulfur assembly (CIA) machinery for cluster acquisition. Here we report that patients with biallelic loss of function in CIAO1 , a key CIA component, develop proximal and axial muscle weakness, fluctuating creatine kinase elevation and respiratory insufficiency. In addition, they present with CNS symptoms including learning difficulties and neurobehavioral comorbidities, along with iron deposition in deep brain nuclei, macrocytic anemia and gastrointestinal symptoms. Mutational analysis and functional assays revealed reduced stability of the variants compared to wild-type CIAO1. Loss of CIAO1 impaired DNA helicases, polymerases and repair enzymes which rely on the CIA complex to acquire their Fe-S cofactors, with lentiviral restoration reversing all patient-derived cellular abnormalities. Our study identifies CIAO1 as a novel human disease gene and provides insights into the broader implications of the iron-sulfur assembly pathway in human health and disease.

15.
Ann Clin Transl Neurol ; 9(7): 1011-1026, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35584175

RESUMO

OBJECTIVE: Spinal muscular atrophy (SMA) is a common genetic cause of infant mortality. Nusinersen treatment ameliorates the clinical outcome of SMA, however, some patients respond well, while others have limited response. We investigated microRNAs in blood samples from SMA patients and their response to nusinersen treatment evaluating the potential of circulating microRNAs as biomarkers for SMA. METHODS: In a discovery cohort study, microRNA next-generation sequencing was performed in blood samples from SMA patients (SMA type 2, n = 10; SMA type 3, n = 10) and controls (n = 7). The dysregulated microRNAs were further analysed in the therapeutic response cohort comprised of SMA type 1 patients (n = 22) who had received nusinersen treatment, at three time points along the treatment course (baseline, 2 and 6 months of treatment). The levels of the studied microRNAs were correlated to the SMA clinical outcome measures. RESULTS: In the discovery cohort, 69 microRNAs were dysregulated between SMA patients and controls. In the therapeutic response cohort, the baseline plasma levels of miR-107, miR-142-5p, miR-335-5p, miR-423-3p, miR-660-5p, miR-378a-3p and miR-23a-3p were associated with the 2 and 6 months response to nusinersen treatment. Furthermore, the levels of miR-107, miR-142-5p, miR-335-5p, miR-423-3p, miR-660-5p and miR-378-3p at 2 months of treatment were associated with the response after 6 months of nusinersen treatment. INTERPRETATION: Blood microRNAs could be used as biomarkers to indicate SMA patients' response to nusinersen and to monitor the efficacy of the therapeutic intervention. In addition, some of these microRNAs provide insight into processes involved in SMA that could be exploited as novel therapeutic targets.


Assuntos
MicroRNAs , Atrofia Muscular Espinal , Oligonucleotídeos , Biomarcadores/sangue , Estudos de Coortes , Humanos , Lactente , MicroRNAs/sangue , MicroRNAs/genética , Atrofia Muscular Espinal/sangue , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Oligonucleotídeos/sangue , Oligonucleotídeos/uso terapêutico , Atrofias Musculares Espinais da Infância/sangue , Atrofias Musculares Espinais da Infância/tratamento farmacológico , Atrofias Musculares Espinais da Infância/genética
16.
Ann Clin Transl Neurol ; 9(9): 1465-1474, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35869884

RESUMO

Ultra-rare biallelic pathogenic variants in geranylgeranyl diphosphate synthase 1 (GGPS1) have recently been associated with muscular dystrophy/hearing loss/ovarian insufficiency syndrome. Here, we describe 11 affected individuals from four unpublished families with ultra-rare missense variants in GGPS1 and provide follow-up details from a previously reported family. Our cohort replicated most of the previously described clinical features of GGPS1 deficiency; however, hearing loss was present in only 46% of the individuals. This report consolidates the disease-causing role of biallelic variants in GGPS1 and demonstrates that hearing loss and ovarian insufficiency might be a variable feature of the GGPS1-associated muscular dystrophy.


Assuntos
Surdez , Dimetilaliltranstransferase , Perda Auditiva , Distrofias Musculares , Insuficiência Ovariana Primária , Dimetilaliltranstransferase/genética , Farnesiltranstransferase/genética , Feminino , Geraniltranstransferase/genética , Perda Auditiva/genética , Humanos , Distrofias Musculares/genética , Mutação de Sentido Incorreto
17.
Nat Commun ; 13(1): 2306, 2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35484142

RESUMO

Missense variants in RNA-binding proteins (RBPs) underlie a spectrum of disease phenotypes, including amyotrophic lateral sclerosis, frontotemporal dementia, and inclusion body myopathy. Here, we present ten independent families with a severe, progressive muscular dystrophy, reminiscent of oculopharyngeal muscular dystrophy (OPMD) but of much earlier onset, caused by heterozygous frameshift variants in the RBP hnRNPA2/B1. All disease-causing frameshift mutations abolish the native stop codon and extend the reading frame, creating novel transcripts that escape nonsense-mediated decay and are translated to produce hnRNPA2/B1 protein with the same neomorphic C-terminal sequence. In contrast to previously reported disease-causing missense variants in HNRNPA2B1, these frameshift variants do not increase the propensity of hnRNPA2 protein to fibrillize. Rather, the frameshift variants have reduced affinity for the nuclear import receptor karyopherin ß2, resulting in cytoplasmic accumulation of hnRNPA2 protein in cells and in animal models that recapitulate the human pathology. Thus, we expand the phenotypes associated with HNRNPA2B1 to include an early-onset form of OPMD caused by frameshift variants that alter its nucleocytoplasmic transport dynamics.


Assuntos
Esclerose Lateral Amiotrófica , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Distrofia Muscular Oculofaríngea , Esclerose Lateral Amiotrófica/genética , Animais , Mutação da Fase de Leitura , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Heterozigoto , Humanos , Distrofia Muscular Oculofaríngea/genética
18.
Lancet ; 376(9750): 1401-8, 2010 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-20888040

RESUMO

BACKGROUND: Large, rare chromosomal deletions and duplications known as copy number variants (CNVs) have been implicated in neurodevelopmental disorders similar to attention-deficit hyperactivity disorder (ADHD). We aimed to establish whether burden of CNVs was increased in ADHD, and to investigate whether identified CNVs were enriched for loci previously identified in autism and schizophrenia. METHODS: We undertook a genome-wide analysis of CNVs in 410 children with ADHD and 1156 unrelated ethnically matched controls from the 1958 British Birth Cohort. Children of white UK origin, aged 5-17 years, who met diagnostic criteria for ADHD or hyperkinetic disorder, but not schizophrenia and autism, were recruited from community child psychiatry and paediatric outpatient clinics. Single nucleotide polymorphisms (SNPs) were genotyped in the ADHD and control groups with two arrays; CNV analysis was limited to SNPs common to both arrays and included only samples with high-quality data. CNVs in the ADHD group were validated with comparative genomic hybridisation. We assessed the genome-wide burden of large (>500 kb), rare (<1% population frequency) CNVs according to the average number of CNVs per sample, with significance assessed via permutation. Locus-specific tests of association were undertaken for test regions defined for all identified CNVs and for 20 loci implicated in autism or schizophrenia. Findings were replicated in 825 Icelandic patients with ADHD and 35,243 Icelandic controls. FINDINGS: Data for full analyses were available for 366 children with ADHD and 1047 controls. 57 large, rare CNVs were identified in children with ADHD and 78 in controls, showing a significantly increased rate of CNVs in ADHD (0·156 vs 0·075; p=8·9×10(-5)). This increased rate of CNVs was particularly high in those with intellectual disability (0·424; p=2·0×10(-6)), although there was also a significant excess in cases with no such disability (0·125, p=0·0077). An excess of chromosome 16p13.11 duplications was noted in the ADHD group (p=0·0008 after correction for multiple testing), a finding that was replicated in the Icelandic sample (p=0·031). CNVs identified in our ADHD cohort were significantly enriched for loci previously reported in both autism (p=0·0095) and schizophrenia (p=0·010). INTERPRETATION: Our findings provide genetic evidence of an increased rate of large CNVs in individuals with ADHD and suggest that ADHD is not purely a social construct. FUNDING: Action Research; Baily Thomas Charitable Trust; Wellcome Trust; UK Medical Research Council; European Union.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade/genética , Aberrações Cromossômicas , Variações do Número de Cópias de DNA/genética , Estudo de Associação Genômica Ampla , Adolescente , Transtorno Autístico/genética , Criança , Pré-Escolar , Deleção Cromossômica , Feminino , Variação Genética , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Esquizofrenia/genética
19.
Ann Clin Transl Neurol ; 8(4): 866-876, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33683023

RESUMO

OBJECTIVES: To investigate the levels of neurofilaments (NFs) in transgenic mice and patients with spinal muscular atrophy (SMA), and to evaluate their efficacy as a biomarker in SMA. METHODS: The levels of NF mRNA transcripts were measured by quantitative real-time PCR in spinal cord from SMA mice. Blood levels of NF heavy chain (NfH) from mice and patients were measured by an in-house ELISA method. The response of NFs to therapeutic intervention was analysed in severe SMA mice treated with morpholino antisense oligonucleotides. RESULTS: Significant changes in NF transcript and protein in spinal cord and protein levels in blood were detected in SMA mice with severe or mild phenotypes, at different time points. A decrease in blood levels of NfH after antisense oligonucleotide treatment was only transient in the mice, despite the persistent benefit on the disease phenotype. A drastic reduction of over 90% in blood levels of NfF was observed in both control and SMA mice during early postnatal development. In contrast, blood levels of NfH were found to be decreased in older SMA children with chronic disease progression. INTERPRETATION: Our results show that blood NfH levels are informative in indicating disease onset and response to antisense oligonucleotides treatment in SMA mice, and indicate their potential as a peripheral marker reflecting the pathological status in central nervous system. In older patients with chronic SMA, however, the lower NfH levels may limit their application as biomarker, highlighting the need to continue to pursue additional biomarkers for this group of patients.


Assuntos
Atrofia Muscular Espinal/diagnóstico , Atrofia Muscular Espinal/metabolismo , Proteínas de Neurofilamentos/metabolismo , Medula Espinal/metabolismo , Adolescente , Animais , Biomarcadores/metabolismo , Criança , Pré-Escolar , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Camundongos Transgênicos , Atrofia Muscular Espinal/sangue , Proteínas de Neurofilamentos/sangue
20.
Eur J Hum Genet ; 28(6): 815-825, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31896777

RESUMO

Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the DMD gene leading to the lack of dystrophin. Variability in the disease course suggests that other factors influence disease progression. With this study we aimed to identify genetic factors that may account for some of the variability in the clinical presentation. We compared whole-exome sequencing (WES) data in 27 DMD patients with extreme phenotypes to identify candidate variants that could affect disease progression. Validation of the candidate SNPs was performed in two independent cohorts including 301 (BIO-NMD cohort) and 109 (CINRG cohort of European ancestry) DMD patients, respectively. Variants in the Tctex1 domain containing 1 (TCTEX1D1) gene on chromosome 1 were associated with age of ambulation loss. The minor alleles of two independent variants, known to affect TCTEX1D1 coding sequence and induce skipping of its exon 4, were associated with earlier loss of ambulation. Our data show that disease progression of DMD is affected by a new locus on chromosome 1 and demonstrate the possibility to identify genetic modifiers in rare diseases by studying WES data in patients with extreme phenotypes followed by multiple layers of validation.


Assuntos
Genes Modificadores , Distrofia Muscular de Duchenne/genética , Adolescente , Criança , Progressão da Doença , Humanos , Masculino , Distrofia Muscular de Duchenne/patologia , Fenótipo , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA