Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 189
Filtrar
1.
Cancer Metastasis Rev ; 42(1): 277-296, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36622509

RESUMO

Acute myeloid leukaemia (AML), chronic lymphocytic leukaemia (CLL), and multiple myeloma (MM) are age-related haematological malignancies with defined precursor states termed myelodysplastic syndrome (MDS), monoclonal B-cell lymphocytosis (MBL), and monoclonal gammopathy of undetermined significance (MGUS), respectively. While the progression from asymptomatic precursor states to malignancy is widely considered to be mediated by the accumulation of genetic mutations in neoplastic haematopoietic cell clones, recent studies suggest that intrinsic genetic changes, alone, may be insufficient to drive the progression to overt malignancy. Notably, studies suggest that extrinsic, microenvironmental changes in the bone marrow (BM) may also promote the transition from these precursor states to active disease. There is now enhanced focus on extrinsic, age-related changes in the BM microenvironment that accompany the development of AML, CLL, and MM. One of the most prominent changes associated with ageing is the accumulation of senescent mesenchymal stromal cells within tissues and organs. In comparison with proliferating cells, senescent cells display an altered profile of secreted factors (secretome), termed the senescence-associated-secretory phenotype (SASP), comprising proteases, inflammatory cytokines, and growth factors that may render the local microenvironment favourable for cancer growth. It is well established that BM mesenchymal stromal cells (BM-MSCs) are key regulators of haematopoietic stem cell maintenance and fate determination. Moreover, there is emerging evidence that BM-MSC senescence may contribute to age-related haematopoietic decline and cancer development. This review explores the association between BM-MSC senescence and the development of haematological malignancies, and the functional role of senescent BM-MSCs in the development of these cancers.


Assuntos
Neoplasias Hematológicas , Leucemia Linfocítica Crônica de Células B , Leucemia Mieloide Aguda , Células-Tronco Mesenquimais , Mieloma Múltiplo , Humanos , Leucemia Linfocítica Crônica de Células B/metabolismo , Leucemia Linfocítica Crônica de Células B/patologia , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Leucemia Mieloide Aguda/genética , Senescência Celular , Microambiente Tumoral
2.
Br J Cancer ; 130(1): 19-30, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37884682

RESUMO

The side effects of cancer therapy continue to cause significant health and cost burden to the patient, their friends and family, and governments. A major barrier in the way in which these side effects are managed is the highly siloed mentality that results in a fragmented approach to symptom control. Increasingly, it is appreciated that many symptoms are manifestations of common underlying pathobiology, with changes in the gastrointestinal environment a key driver for many symptom sequelae. Breakdown of the mucosal barrier (mucositis) is a common and early side effect of many anti-cancer agents, known to contribute (in part) to a range of highly burdensome symptoms such as diarrhoea, nausea, vomiting, infection, malnutrition, fatigue, depression, and insomnia. Here, we outline a rationale for how, based on its already documented effects on the gastrointestinal microenvironment, medicinal cannabis could be used to control mucositis and prevent the constellation of symptoms with which it is associated. We will provide a brief update on the current state of evidence on medicinal cannabis in cancer care and outline the potential benefits (and challenges) of using medicinal cannabis during active cancer therapy.


Assuntos
Maconha Medicinal , Mucosite , Neoplasias , Humanos , Maconha Medicinal/efeitos adversos , Mucosite/tratamento farmacológico , Neoplasias/tratamento farmacológico , Náusea/induzido quimicamente , Náusea/tratamento farmacológico , Vômito , Microambiente Tumoral
3.
Brain Behav Immun ; 115: 229-247, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37858741

RESUMO

Childhood is recognised as a period of immense physical and emotional development, and this, in part, is driven by underlying neurophysiological transformations. These neurodevelopmental processes are unique to the paediatric brain and are facilitated by augmented rates of neuroplasticity and expanded neural stem cell populations within neurogenic niches. However, given the immaturity of the developing central nervous system, innate protective mechanisms such as neuroimmune and antioxidant responses are functionally naïve which results in periods of heightened sensitivity to neurotoxic insult. This is highly relevant in the context of paediatric cancer, and in particular, the neurocognitive symptoms associated with treatment, such as surgery, radio- and chemotherapy. The vulnerability of the developing brain may increase susceptibility to damage and persistent symptomology, aligning with reports of more severe neurocognitive dysfunction in children compared to adults. It is therefore surprising, given this intensified neurocognitive burden, that most of the pre-clinical, mechanistic research focuses exclusively on adult populations and extrapolates findings to paediatric cohorts. Given this dearth of age-specific research, throughout this review we will draw comparisons with neurodevelopmental disorders which share comparable pathways to cancer treatment related side-effects. Furthermore, we will examine the unique nuances of the paediatric brain along with the somatic systems which influence neurological function. In doing so, we will highlight the importance of developing in vitro and in vivo paediatric disease models to produce age-specific discovery and clinically translatable research.


Assuntos
Encefalopatias , Comprometimento Cognitivo Relacionado à Quimioterapia , Neoplasias , Adulto , Criança , Humanos , Encéfalo
4.
Br J Haematol ; 203(4): 614-624, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37699574

RESUMO

Expression of myeloperoxidase (MPO), a key inflammatory enzyme restricted to myeloid cells, is negatively associated with the development of solid tumours. Activated myeloid cell populations are increased in multiple myeloma (MM); however, the functional consequences of myeloid-derived MPO within the myeloma microenvironment are unknown. Here, the role of MPO in MM pathogenesis was investigated, and the capacity for pharmacological inhibition of MPO to impede MM progression was evaluated. In the 5TGM1-KaLwRij mouse model of myeloma, the early stages of tumour development were associated with an increase in CD11b+ myeloid cell populations and an increase in Mpo expression within the bone marrow (BM). Interestingly, MM tumour cell homing was increased towards sites of elevated myeloid cell numbers and MPO activity within the BM. Mechanistically, MPO induced the expression of key MM growth factors, resulting in tumour cell proliferation and suppressed cytotoxic T-cell activity. Notably, tumour growth studies in mice treated with a small-molecule irreversible inhibitor of MPO (4-ABAH) demonstrated a significant reduction in overall MM tumour burden. Taken together, our data demonstrate that MPO contributes to MM tumour growth, and that MPO-specific inhibitors may provide a new therapeutic strategy to limit MM disease progression.


Assuntos
Mieloma Múltiplo , Peroxidase , Microambiente Tumoral , Animais , Camundongos , Medula Óssea/patologia , Modelos Animais de Doenças , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Células Mieloides/patologia , Peroxidase/metabolismo
5.
Intern Med J ; 53(5): 819-824, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36880355

RESUMO

Multiple myeloma (MM) is a disease of older people, yet factors relating to comorbidity and frailty may threaten treatment tolerability for many of this heterogenous group. There has been increasing interest in defining specific and clinically relevant frailty assessment tools within the MM population, with the goal of using these frailty scores, not just as a prognostic instrument, but also as a predictive tool to allow for a frailty-adapted treatment approach. This paper reviews the various frailty assessment frameworks used in the evaluation of patients with MM, including the International Myeloma Working Group Frailty Index (IMWG-FI), the Mayo Frailty Index and the simplified frailty scale. While the IMWG-FI remains the most widely accepted tool, the simplified frailty scale is the most user-friendly in busy day-to-day clinics based on its ease of use. This paper summarises the recommendations from the Myeloma Scientific Advisory Group (MSAG) of Myeloma Australia, on the use of frailty assessment tools in clinical practice and proposes a frailty-stratified treatment algorithm to aid clinicians in tailoring therapy for this highly heterogeneous patient population.


Assuntos
Fragilidade , Mieloma Múltiplo , Humanos , Idoso , Fragilidade/epidemiologia , Mieloma Múltiplo/tratamento farmacológico , Idoso Fragilizado , Prognóstico , Comorbidade , Avaliação Geriátrica
6.
Cancer Metastasis Rev ; 40(1): 273-284, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33404860

RESUMO

Macrophages are a vital component of the tumour microenvironment and crucial mediators of tumour progression. In the last decade, significant strides have been made in understanding the crucial functional roles played by macrophages in the development of the plasma cell (PC) malignancy, multiple myeloma (MM). Whilst the interaction between MM PC and stromal cells within the bone marrow (BM) microenvironment has been extensively studied, we are only just starting to appreciate the multifaceted roles played by macrophages in disease progression. Accumulating evidence demonstrates that macrophage infiltration is associated with poor overall survival in MM. Indeed, macrophages influence numerous pathways critical for the initiation and progression of MM, including homing of malignant cells to BM, tumour cell growth and survival, drug resistance, angiogenesis and immune suppression. As such, therapeutic strategies aimed at targeting macrophages within the BM niche have promise in the clinical setting. This review will discuss the functions elicited by macrophages throughout different stages of MM and provide a comprehensive evaluation of potential macrophage-targeted therapies.


Assuntos
Mieloma Múltiplo , Medula Óssea , Humanos , Macrófagos , Mieloma Múltiplo/terapia , Neovascularização Patológica , Microambiente Tumoral
7.
Gastroenterology ; 160(4): 1224-1239.e30, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33197448

RESUMO

BACKGROUND & AIMS: Cancer-associated fibroblasts (CAFs), key constituents of the tumor microenvironment, either promote or restrain tumor growth. Attempts to therapeutically target CAFs have been hampered by our incomplete understanding of these functionally heterogeneous cells. Key growth factors in the intestinal epithelial niche, bone morphogenetic proteins (BMPs), also play a critical role in colorectal cancer (CRC) progression. However, the crucial proteins regulating stromal BMP balance and the potential application of BMP signaling to manage CRC remain largely unexplored. METHODS: Using human CRC RNA expression data, we identified CAF-specific factors involved in BMP signaling, then verified and characterized their expression in the CRC stroma by in situ hybridization. CRC tumoroids and a mouse model of CRC hepatic metastasis were used to test approaches to modify BMP signaling and treat CRC. RESULTS: We identified Grem1 and Islr as CAF-specific genes involved in BMP signaling. Functionally, GREM1 and ISLR acted to inhibit and promote BMP signaling, respectively. Grem1 and Islr marked distinct fibroblast subpopulations and were differentially regulated by transforming growth factor ß and FOXL1, providing an underlying mechanism to explain fibroblast biological dichotomy. In patients with CRC, high GREM1 and ISLR expression levels were associated with poor and favorable survival, respectively. A GREM1-neutralizing antibody or fibroblast Islr overexpression reduced CRC tumoroid growth and promoted Lgr5+ intestinal stem cell differentiation. Finally, adeno-associated virus 8 (AAV8)-mediated delivery of Islr to hepatocytes increased BMP signaling and improved survival in our mouse model of hepatic metastasis. CONCLUSIONS: Stromal BMP signaling predicts and modifies CRC progression and survival, and it can be therapeutically targeted by novel AAV-directed gene delivery to the liver.


Assuntos
Proteínas Morfogenéticas Ósseas/metabolismo , Neoplasias Colorretais/patologia , Imunoglobulinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neoplasias Hepáticas/secundário , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Fibroblastos Associados a Câncer/metabolismo , Carcinogênese/patologia , Diferenciação Celular , Linhagem Celular Tumoral , Neoplasias Colorretais/mortalidade , Progressão da Doença , Feminino , Hepatócitos/metabolismo , Humanos , Imunoglobulinas/genética , Estimativa de Kaplan-Meier , Masculino , Camundongos , Pessoa de Meia-Idade , Prognóstico , Transdução de Sinais , Microambiente Tumoral , Regulação para Cima , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Cell Mol Life Sci ; 78(1): 249-270, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32170339

RESUMO

eIF4E plays key roles in protein synthesis and tumorigenesis. It is phosphorylated by the kinases MNK1 and MNK2. Binding of MNKs to eIF4G enhances their ability to phosphorylate eIF4E. Here, we show that mTORC1, a key regulator of mRNA translation and oncogenesis, directly phosphorylates MNK2 on Ser74. This suppresses MNK2 activity and impairs binding of MNK2 to eIF4G. These effects provide a novel mechanism by which mTORC1 signaling impairs the function of MNK2 and thereby decreases eIF4E phosphorylation. MNK2[S74A] knock-in cells show enhanced phosphorylation of eIF4E and S6K1 (i.e., increased mTORC1 signaling), enlarged cell size, and increased invasive and transformative capacities. MNK2[Ser74] phosphorylation was inversely correlated with disease progression in human prostate tumors. MNK inhibition exerted anti-proliferative effects in prostate cancer cells in vitro. These findings define a novel feedback loop whereby mTORC1 represses MNK2 activity and oncogenic signaling through eIF4E phosphorylation, allowing reciprocal regulation of these two oncogenic pathways.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Fator de Iniciação 4E em Eucariotos/antagonistas & inibidores , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Morfolinas/farmacologia , Mutagênese Sítio-Dirigida , Fosforilação/efeitos dos fármacos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Ligação Proteica , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Transdução de Sinais/efeitos dos fármacos , Proteína 2 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/metabolismo
9.
Br J Haematol ; 193(1): 171-175, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33620089

RESUMO

Disease relapse is the greatest cause of treatment failure in paediatric B-cell acute lymphoblastic leukaemia (B-ALL). Current risk stratifications fail to capture all patients at risk of relapse. Herein, we used a machine-learning approach to identify B-ALL blast-secreted factors that are associated with poor survival outcomes. Using this approach, we identified a two-gene expression signature (CKLF and IL1B) that allowed identification of high-risk patients at diagnosis. This two-gene expression signature enhances the predictive value of current at diagnosis or end-of-induction risk stratification suggesting the model can be applied continuously to help guide implementation of risk-adapted therapies.


Assuntos
Quimiocinas/genética , Interleucina-1beta/genética , Proteínas com Domínio MARVEL/genética , Aprendizado de Máquina/estatística & dados numéricos , Leucemia-Linfoma Linfoblástico de Células Precursoras B/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Doença Aguda , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras B/mortalidade , Valor Preditivo dos Testes , Recidiva , Medição de Risco/normas , Análise de Sobrevida , Transcriptoma/genética , Falha de Tratamento
10.
Blood ; 134(1): 30-43, 2019 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-31023703

RESUMO

The era of targeted therapies has seen significant improvements in depth of response, progression-free survival, and overall survival for patients with multiple myeloma. Despite these improvements in clinical outcome, patients inevitably relapse and require further treatment. Drug-resistant dormant myeloma cells that reside in specific niches within the skeleton are considered a basis of disease relapse but remain elusive and difficult to study. Here, we developed a method to sequence the transcriptome of individual dormant myeloma cells from the bones of tumor-bearing mice. Our analyses show that dormant myeloma cells express a distinct transcriptome signature enriched for immune genes and, unexpectedly, genes associated with myeloid cell differentiation. These genes were switched on by coculture with osteoblastic cells. Targeting AXL, a gene highly expressed by dormant cells, using small-molecule inhibitors released cells from dormancy and promoted their proliferation. Analysis of the expression of AXL and coregulated genes in human cohorts showed that healthy human controls and patients with monoclonal gammopathy of uncertain significance expressed higher levels of the dormancy signature genes than patients with multiple myeloma. Furthermore, in patients with multiple myeloma, the expression of this myeloid transcriptome signature translated into a twofold increase in overall survival, indicating that this dormancy signature may be a marker of disease progression. Thus, engagement of myeloma cells with the osteoblastic niche induces expression of a suite of myeloid genes that predicts disease progression and that comprises potential drug targets to eradicate dormant myeloma cells.


Assuntos
Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Recidiva Local de Neoplasia/genética , Células-Tronco Neoplásicas/patologia , Nicho de Células-Tronco/genética , Animais , Humanos , Camundongos , Recidiva Local de Neoplasia/patologia , Proteínas Proto-Oncogênicas/genética , Receptores Proteína Tirosina Quinases/genética , Transcriptoma , Receptor Tirosina Quinase Axl
11.
Haematologica ; 106(12): 3176-3187, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-33147936

RESUMO

Multiple myeloma (MM) disease progression is dependent on the ability of MM plasma cells (PCs) to egress from the bone marrow (BM), enter the circulation and disseminate to distal BM sites. Expression of the chemokine CXCL12 by BM stromal cells is crucial for MM PC retention within the BM. However, the mechanisms which overcome CXCL12-mediated retention to enable dissemination are poorly understood. We have previously identified that treatment with the CCR1 ligand CCL3 inhibits the response to CXCL12 in MM cell lines, suggesting that CCL3/CCR1 signalling may enable egress of MM PC from the BM. Here, we demonstrated that CCR1 expression was an independent prognostic indicator in newly diagnosed MM patients. Furthermore, we showed that CCR1 is a crucial driver of dissemination in vivo, with CCR1 expression in the murine MM cell line 5TGM1 being associated with an increased incidence of bone and splenic disseminated tumours in C57BL/KaLwRij mice. Furthermore, we demonstrated that CCR1 knockout in the human myeloma cell line OPM2 resulted in a >95% reduction in circulating MM PC numbers and BM and splenic tumour dissemination following intratibial injection in NSG mice. Therapeutic targeting of CCR1 with the inhibitor CCX9588 significantly reduced OPM2 or RPMI-8226 dissemination in intratibial xenograft models. Collectively, our findings suggest a novel role for CCR1 as a critical driver of BM egress of MM PCs during tumour dissemination. Furthermore, these data suggest that CCR1 may represent a potential therapeutic target for the prevention of MM tumour dissemination.


Assuntos
Mieloma Múltiplo , Animais , Linhagem Celular Tumoral , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Plasmócitos , Receptores CCR1/genética
12.
Intern Med J ; 51(10): 1707-1712, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34664367

RESUMO

Imaging modalities for multiple myeloma (MM) have evolved to enable earlier detection of disease. Furthermore, the diagnosis of MM requiring therapy has recently changed to include disease prior to bone destruction, specifically the detection of focal bone lesions. Focal lesions are early, abnormal areas in the bone marrow, which may signal the development of subsequent lytic lesions that typically occur within the next 18-24 months. Cross-sectional imaging modalities are more sensitive for the detection and monitoring of bone and bone marrow disease and are now included in the International Myeloma Working Group current consensus criteria for initial diagnosis and treatment response assessment. The aim of this consensus practice statement is to review the evidence supporting these modalities. A more detailed Position Statement can be found on the Myeloma Australia website.


Assuntos
Mieloma Múltiplo , Paraproteinemias , Consenso , Diagnóstico por Imagem , Humanos , Mieloma Múltiplo/diagnóstico por imagem , Mieloma Múltiplo/terapia , Plasmócitos
13.
J Cell Physiol ; 233(9): 7320-7332, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29663378

RESUMO

Saethre-Chotzen syndrome (SCS), associated with TWIST-1 mutations, is characterized by premature fusion of cranial sutures. TWIST-1 haploinsufficiency, leads to alterations in suture mesenchyme cellular gene expression patterns, resulting in aberrant osteogenesis and craniosynostosis. We analyzed the expression of the TWIST-1 target, Tyrosine kinase receptor c-ros-oncogene 1 (C-ROS-1) in TWIST-1 haploinsufficient calvarial cells derived from SCS patients and calvaria of Twist-1del/+ mutant mice and found it to be highly expressed when compared to TWIST-1 wild-type controls. Knock-down of C-ROS-1 expression in TWIST-1 haploinsufficient calvarial cells derived from SCS patients was associated with decreased capacity for osteogenic differentiation in vitro. Furthermore, treatment of human SCS calvarial cells with the tyrosine kinase chemical inhibitor, Crizotinib, resulted in reduced C-ROS-1 activity and the osteogenic potential of human SCS calvarial cells with minor effects on cell viability or proliferation. Cultured human SCS calvarial cells treated with Crizotinib exhibited a dose-dependent decrease in alkaline phosphatase activity and mineral deposition, with an associated decrease in expression levels of Runt-related transcription factor 2 and OSTEOPONTIN, with reduced PI3K/Akt signalling in vitro. Furthermore, Crizotinib treatment resulted in reduced BMP-2 mediated bone formation potential of whole Twist-1del/+ mutant mouse calvaria organotypic cultures. Collectively, these results suggest that C-ROS-1 promotes osteogenic differentiation of TWIST-1 haploinsufficient calvarial osteogenic progenitor cells. Furthermore, the aberrant osteogenic potential of these cells is inhibited by the reduction of C-ROS-1. Therefore, targeting C-ROS-1 with a pharmacological agent, such as Crizotinib, may serve as a novel therapeutic strategy to alleviate craniosynostosis associated with aberrant TWIST-1 function.


Assuntos
Acrocefalossindactilia/genética , Acrocefalossindactilia/patologia , Haploinsuficiência/genética , Osteogênese , Proteínas Tirosina Quinases/antagonistas & inibidores , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Crânio/patologia , Proteína 1 Relacionada a Twist/metabolismo , Fosfatase Alcalina/metabolismo , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Suturas Cranianas/patologia , Crizotinibe/farmacologia , Heterozigoto , Humanos , Camundongos , Mutação/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo
14.
J Cell Physiol ; 233(5): 3769-3783, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28834550

RESUMO

The skeleton has recently emerged as a critical insulin target tissue that regulates whole body glucose metabolism and male reproductive function. While our understanding of these new regulatory axes remains in its infancy, the bone-specific protein, osteocalcin, has been shown to be centrally involved. Undercarboxylated osteocalcin acts as a secretagogue in a feed-forward loop to stimulate pancreatic ß-cell proliferation and insulin secretion, improve insulin sensitivity, and promote testosterone production. Importantly, dysregulation of insulin signaling in bone causes a reduction in serum osteocalcin levels that is associated with elevated blood glucose and reduced serum insulin levels, suggesting that the skeleton may play a significant role in the development of diet-induced insulin resistance. Insulin signaling is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1) which becomes hyper-activated in response to nutrient overload. Loss- and gain-of function models suggest that mTORC1 function in bone is essential for normal skeletal development; however, the role of this complex in the regulation of glucose metabolism remains to be determined. This review highlights our current understanding of the role played by osteocalcin in the skeletal regulation of glucose metabolism and fertility. In particular, it examines data emerging from transgenic mouse models which have revealed a pancreas-bone-testis regulatory axis and discusses recent human studies which seek to corroborate findings from mouse models with clinical observations. Moreover, we review recent studies which suggest dysregulation of insulin signaling in bone leads to the development of insulin resistance and discuss the potential role of mTORC1 signaling in this process.


Assuntos
Fertilidade/fisiologia , Glucose/metabolismo , Resistência à Insulina/fisiologia , Músculo Esquelético/metabolismo , Osteocalcina/metabolismo , Animais , Metabolismo Energético/fisiologia , Humanos
15.
Mol Genet Genomics ; 293(5): 1217-1229, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29882166

RESUMO

Recurrent oncogenic fusion genes play a critical role in the development of various cancers and diseases and provide, in some cases, excellent therapeutic targets. To date, analysis tools that can identify and compare recurrent fusion genes across multiple samples have not been available to researchers. To address this deficiency, we developed Co-occurrence Fusion (Co-fuse), a new and easy to use software tool that enables biologists to merge RNA-seq information, allowing them to identify recurrent fusion genes, without the need for exhaustive data processing. Notably, Co-fuse is based on pattern mining and statistical analysis which enables the identification of hidden patterns of recurrent fusion genes. In this report, we show that Co-fuse can be used to identify 2 distinct groups within a set of 49 leukemic cell lines based on their recurrent fusion genes: a multiple myeloma (MM) samples-enriched cluster and an acute myeloid leukemia (AML) samples-enriched cluster. Our experimental results further demonstrate that Co-fuse can identify known driver fusion genes (e.g., IGH-MYC, IGH-WHSC1) in MM, when compared to AML samples, indicating the potential of Co-fuse to aid the discovery of yet unknown driver fusion genes through cohort comparisons. Additionally, using a 272 primary glioma sample RNA-seq dataset, Co-fuse was able to validate recurrent fusion genes, further demonstrating the power of this analysis tool to identify recurrent fusion genes. Taken together, Co-fuse is a powerful new analysis tool that can be readily applied to large RNA-seq datasets, and may lead to the discovery of new disease subgroups and potentially new driver genes, for which, targeted therapies could be developed. The Co-fuse R source code is publicly available at https://github.com/sakrapee/co-fuse .


Assuntos
Genômica , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Software , Biologia Computacional , Bases de Dados Genéticas , Humanos , Leucemia Mieloide Aguda/patologia , Proteínas de Fusão Oncogênica/isolamento & purificação , Análise de Sequência de RNA
16.
Stem Cells ; 35(4): 940-951, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28026090

RESUMO

Since its discovery more than 25 years ago, the STRO-1 antibody has played a fundamental role in defining the hierarchical nature of mesenchymal precursor cells (MPC) and their progeny. STRO-1 antibody binding remains a hallmark of immature pluripotent MPC. Despite the significance of STRO-1 in the MPC field, the identity of the antigen has remained elusive. Using a combination of two-dimensional gel electrophoresis, coupled with Western blotting and Tandem mass spectroscopy, we have identified the STRO-1 antigen as heat shock cognate 70 (HSC70;HSPA8). STRO-1 binds to immune-precipitated HSC70 and siRNA-mediated knock down of HSPA8 reduced STRO-1 binding. STRO-1 surface binding does not correlate with HSC70 expression and sequestration of cholesterol reduces STRO-1 surface binding, suggesting that the plasma membrane lipid composition may be an important determinant in the presentation of HSC70 on the cell surface. HSC70 is present on the surface of STRO-1+ but not STRO-1- cell lines as assessed by cell surface biotinylation and recombinant HSC70 blocks STRO-1 binding to the cell surface. The STRO-1 epitope on HSC70 was mapped to the ATPase domain using a series of deletion mutants in combination with peptide arrays. Deletion of the first four amino acids of the consensus epitope negated STRO-1 binding. Notably, in addition to HSC70, STRO-1 cross-reacts with heat shock protein 70 (HSP70), however all the clonogenic cell activity is restricted to the STRO-1BRIGHT /HSP70- fraction. These results provide important insight into the properties that define multipotent MPC and provide the impetus to explore the role of cell surface HSC70 in MPC biology. Stem Cells 2017;35:940-951.


Assuntos
Anticorpos/metabolismo , Antígenos de Superfície/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Células-Tronco Mesenquimais/metabolismo , Sequência de Aminoácidos , Biomarcadores/metabolismo , Células da Medula Óssea/citologia , Linhagem Celular , Colesterol/metabolismo , Ensaio de Unidades Formadoras de Colônias , Mapeamento de Epitopos , Proteínas de Choque Térmico HSC70/química , Proteínas de Choque Térmico HSP70/metabolismo , Humanos , Leucócitos Mononucleares/citologia , Microdomínios da Membrana/metabolismo , Células-Tronco Mesenquimais/citologia , Ligação Proteica , Domínios Proteicos
17.
BMC Cancer ; 18(1): 939, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30285678

RESUMO

In many types of solid tumours, the aberrant expression of the cell adhesion molecule N-cadherin is a hallmark of epithelial-to-mesenchymal transition, resulting in the acquisition of an aggressive tumour phenotype. This transition endows tumour cells with the capacity to escape from the confines of the primary tumour and metastasise to secondary sites. In this review, we will discuss how N-cadherin actively promotes the metastatic behaviour of tumour cells, including its involvement in critical signalling pathways which mediate these events. In addition, we will explore the emerging role of N-cadherin in haematological malignancies, including bone marrow homing and microenvironmental protection to anti-cancer agents. Finally, we will discuss the evidence that N-cadherin may be a viable therapeutic target to inhibit cancer metastasis and increase tumour cell sensitivity to existing anti-cancer therapies.


Assuntos
Antineoplásicos/uso terapêutico , Caderinas/fisiologia , Neoplasias Hematológicas/fisiopatologia , Metástase Neoplásica/fisiopatologia , Neoplasias/tratamento farmacológico , Caderinas/metabolismo , Movimento Celular/fisiologia , Humanos , Invasividade Neoplásica/fisiopatologia , Neoplasias/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/fisiologia , Via de Sinalização Wnt/fisiologia
18.
FASEB J ; 31(3): 1011-1027, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27934660

RESUMO

In this study, we examined the functional importance of EZH2 during skeletal development and homeostasis using the conditional deletion of Ezh2 (Ezh2fl/fl ) in early mesenchyme with the use of a Prrx-1-cre driver mouse (Ezh2+/+). Heterozygous (Ezh2+/-) newborn and 4-wk-old mice exhibited increased skeletal size, growth plate size, and weight when compared to the wild-type control (Ezh2+/+), whereas homozygous deletion of Ezh2 (Ezh2-/-) resulted in skeletal deformities and reduced skeletal size, growth plate size, and weight in newborn and 4-wk-old mice. Ezh2-/- mice exhibited enhanced trabecular patterning. Osteogenic cortical and trabecular bone formation was enhanced in Ezh2+/- and Ezh2-/- animals. Ezh2+/- and Ezh2-/- mice displayed thinner cortical bone and decreased mechanical strength compared to the wild-type control. Differences in cortical bone thickness were attributed to an increased number of osteoclasts, corresponding with elevated levels of the bone turnover markers cross-linked C-telopeptide-1 and tartrate-resistant acid phosphatase, detected within serum. Moreover, Ezh2+/- mice displayed increased osteoclastogenic potential coinciding with an upregulation of Rankl and M-csf expression by mesenchymal stem cells (MSCs). MSCs isolated from Ezh2+/- mice also exhibited increased trilineage potential compared with wild-type bone marrow stromal/stem cells (BMSCs). Gene expression studies confirmed the upregulation of known Ezh2 target genes in Ezh2-/- bone tissue, many of which are involved in Wnt/BMP signaling as promoters of osteogenesis and inhibitors of adipogenesis. In summary, EZH2 appears to be an important orchestrator of skeletal development, postnatal bone remodelling and BMSC fate determination in vitro and in vivo-Hemming, S., Cakouros, D., Codrington, J., Vandyke, K., Arthur, A., Zannettino, A., Gronthos, S. EZH2 deletion in early mesenchyme compromises postnatal bone microarchitecture and structural integrity and accelerates remodeling.


Assuntos
Remodelação Óssea , Osso Esponjoso/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Mesoderma/metabolismo , Osteogênese , Animais , Osso Esponjoso/citologia , Osso Esponjoso/crescimento & desenvolvimento , Células Cultivadas , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Deleção de Genes , Heterozigoto , Homozigoto , Fator Estimulador de Colônias de Macrófagos/genética , Fator Estimulador de Colônias de Macrófagos/metabolismo , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Mesoderma/citologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/metabolismo , Ligante RANK/genética , Ligante RANK/metabolismo , Via de Sinalização Wnt
20.
Br J Haematol ; 178(2): 196-208, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28466550

RESUMO

Multiple Myeloma (MM) is a haematological malignancy characterised by the clonal expansion of plasma cells (PCs) within the bone marrow. Despite advances in therapy, MM remains a largely incurable disease with a median survival of 6 years. In almost all cases, the development of MM is preceded by the benign PC condition Monoclonal Gammopathy of Undetermined Significance (MGUS). Recent studies show that the transformation of MGUS to MM is associated with complex genetic changes. Understanding how these changes contribute to evolution will present targets for clinical intervention. We discuss three models of MM evolution; the linear, the expansionist and the intraclonal heterogeneity models. Of particular interest is the intraclonal heterogeneity model. Here, distinct populations of MM PCs carry differing combinations of genetic mutations. Acquisition of additional mutations can contribute to subclonal lineages where "driver" mutations may influence selective pressure and dominance, and "passenger" mutations are neutral in their effects. Furthermore, studies show that clinical intervention introduces additional selective pressure on tumour cells and can influence subclone survival, leading to therapy resistance. This review discusses how Next Generation Sequencing approaches are revealing critical insights into the genetics of MM development, disease progression and treatment. MM disease progression will illuminate possible mechanisms underlying the tumour.


Assuntos
Genômica/métodos , Mieloma Múltiplo/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Progressão da Doença , Inibidores Enzimáticos/uso terapêutico , Epigênese Genética/genética , Previsões , Genômica/tendências , Humanos , Fatores Imunológicos/uso terapêutico , Mieloma Múltiplo/tratamento farmacológico , Mutação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA