Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.546
Filtrar
1.
Mol Cell ; 82(10): 1850-1864.e7, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35429439

RESUMO

YAP and TAZ (YAP/TAZ), two major effectors of the Hippo signaling pathway, are frequently activated in human cancers. The activity of YAP/TAZ is strictly repressed upon phosphorylation by LATS1/2 tumor suppressors. However, it is unclear how LATS1/2 are precisely regulated by upstream factors such as Hippo kinases MST1/2. Here, we show that WWC proteins (WWC1/2/3) directly interact with LATS1/2 and SAV1, and SAV1, in turn, brings in MST1/2 to phosphorylate and activate LATS1/2. Hence, WWC1/2/3 play an organizer role in a signaling module that mediates LATS1/2 activation by MST1/2. Moreover, we have defined a minimum protein interaction interface on WWC1/2/3 that is sufficient to activate LATS1/2 in a robust and specific manner. The corresponding minigene, dubbed as SuperHippo, can effectively suppress tumorigenesis in multiple tumor models. Our study has uncovered a molecular mechanism underlying LATS1/2 regulation and provides a strategy for treating diverse malignancies related to Hippo pathway dysregulation.


Assuntos
Proteínas Serina-Treonina Quinases , Transdução de Sinais , Carcinogênese , Via de Sinalização Hippo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Proteínas Supressoras de Tumor/metabolismo
2.
Nature ; 624(7990): 86-91, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38030721

RESUMO

To close the gap between the rates of computational screening and experimental realization of novel materials1,2, we introduce the A-Lab, an autonomous laboratory for the solid-state synthesis of inorganic powders. This platform uses computations, historical data from the literature, machine learning (ML) and active learning to plan and interpret the outcomes of experiments performed using robotics. Over 17 days of continuous operation, the A-Lab realized 41 novel compounds from a set of 58 targets including a variety of oxides and phosphates that were identified using large-scale ab initio phase-stability data from the Materials Project and Google DeepMind. Synthesis recipes were proposed by natural-language models trained on the literature and optimized using an active-learning approach grounded in thermodynamics. Analysis of the failed syntheses provides direct and actionable suggestions to improve current techniques for materials screening and synthesis design. The high success rate demonstrates the effectiveness of artificial-intelligence-driven platforms for autonomous materials discovery and motivates further integration of computations, historical knowledge and robotics.

3.
J Immunol ; 212(1): 130-142, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-37975680

RESUMO

Pigs are the most suitable model to study various therapeutic strategies and drugs for human beings, although knowledge about cell type-specific transcriptomes and heterogeneity is poorly available. Through single-cell RNA sequencing and flow cytometry analysis of the types in the jejunum of pigs, we found that innate lymphoid cells (ILCs) existed in the lamina propria lymphocytes (LPLs) of the jejunum. Then, through flow sorting of live/dead-lineage (Lin)-CD45+ cells and single-cell RNA sequencing, we found that ILCs in the porcine jejunum were mainly ILC3s, with a small number of NK cells, ILC1s, and ILC2s. ILCs coexpressed IL-7Rα, ID2, and other genes and differentially expressed RORC, GATA3, and other genes but did not express the CD3 gene. ILC3s can be divided into four subgroups, and genes such as CXCL8, CXCL2, IL-22, IL-17, and NCR2 are differentially expressed. To further detect and identify ILC3s, we verified the classification of ILCs in the porcine jejunum subgroup and the expression of related hallmark genes at the protein level by flow cytometry. For systematically characterizing ILCs in the porcine intestines, we combined our pig ILC dataset with publicly available human and mice ILC data and identified that the human and pig ILCs shared more common features than did those mouse ILCs in gene signatures and cell states. Our results showed in detail for the first time (to our knowledge) the gene expression of porcine jejunal ILCs, the subtype classification of ILCs, and the markers of various ILCs, which provide a basis for an in-depth exploration of porcine intestinal mucosal immunity.


Assuntos
Imunidade Inata , Linfócitos , Humanos , Animais , Camundongos , Suínos , Jejuno , Células Matadoras Naturais , Mucosa
4.
J Immunol ; 213(7): 1008-1022, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39194407

RESUMO

The functions of the natural dsRNA sensors TLR3 (TRIF) and RIG-I (MAVS) are crucial during viral challenge and have not been accurately clarified in adaptive immune responses to rotavirus (RV) infection. In this study, we found that RV infection caused severe pathological damage to the small intestine of TLR3-/- and TRIF-/- mice. Our data found that dendritic cells from TLR3-/- and TRIF-/- mice had impaired Ag presentation to the RV and attenuated initiation of T cells upon viral infection. These attenuated functions resulted in impaired CD4+ T and CD8+ T function in mice lacking TLR3-TRIF signaling postinfection. Additionally, attenuated proliferative capacity of T cells from TLR3-/- and TRIF-/- mice was observed. Subsequently, we observed a significant reduction in the absolute number of memory T cells in the spleen and mesenteric lymph node (MLN) of TRIF-/- recipient mice following RV infection in a bone marrow chimeric model. Furthermore, there was reduced migration of type 2 classical dendritic cells from the intestine to MLNs after RV infection in TLR3-/- and TRIF-/- mice. Notably, RV infection resulted in attenuated killing of spleen and MLN tissues in TRIF-/- and MAVS-/- mice. Finally, we demonstrated that RV infection promoted apoptosis of CD8+ T cells in TRIF-/- and TLR3-/-MAVS-/- mice. Taken together, our findings highlight an important mechanism of TLR3 signaling through TRIF in mucosal T cell responses to RV and lay the foundation for the development of a novel vaccine.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas Adaptadoras de Transporte Vesicular , Células Dendríticas , Camundongos Knockout , Infecções por Rotavirus , Rotavirus , Transdução de Sinais , Receptor 3 Toll-Like , Animais , Receptor 3 Toll-Like/imunologia , Camundongos , Infecções por Rotavirus/imunologia , Transdução de Sinais/imunologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Rotavirus/imunologia , Células Dendríticas/imunologia , Camundongos Endogâmicos C57BL , Mucosa Intestinal/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas , Apresentação de Antígeno/imunologia
5.
Proc Natl Acad Sci U S A ; 120(35): e2305037120, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37603740

RESUMO

Polo-like kinase 1 (Plk1) is considered an attractive target for anticancer therapy. Over the years, studies on the noncatalytic polo-box domain (PBD) of Plk1 have raised the expectation of generating highly specific protein-protein interaction inhibitors. However, the molecular nature of the canonical PBD-dependent interaction, which requires extensive water network-mediated interactions with its phospholigands, has hampered efforts to identify small molecules suitable for Plk1 PBD drug discovery. Here, we report the identification of the first allosteric inhibitor of Plk1 PBD, called Allopole, a prodrug that can disrupt intracellular interactions between PBD and its cognate phospholigands, delocalize Plk1 from centrosomes and kinetochores, and induce mitotic block and cancer cell killing. At the structural level, its unmasked active form, Allopole-A, bound to a deep Trp-Phe-lined pocket occluded by a latch-like loop, whose adjoining region was required for securely retaining a ligand anchored to the phospho-binding cleft. Allopole-A binding completely dislodged the L2 loop, an event that appeared sufficient to trigger the dissociation of a phospholigand and inhibit PBD-dependent Plk1 function during mitosis. Given Allopole's high specificity and antiproliferative potency, this study is expected to open an unexplored avenue for developing Plk1 PBD-specific anticancer therapeutic agents.


Assuntos
Proteínas de Ciclo Celular , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas , Divisão do Núcleo Celular , Quinase 1 Polo-Like
6.
J Virol ; 98(8): e0103924, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39012142

RESUMO

In maintaining organismal homeostasis, gut immunity plays a crucial role. The coordination between the microbiota and the immune system through bidirectional interactions regulates the impact of microorganisms on the host. Our research focused on understanding the relationships between substantial changes in jejunal intestinal flora and metabolites and intestinal immunity during porcine epidemic diarrhea virus (PEDV) infection in piglets. We discovered that Lactobacillus rhamnosus GG (LGG) could effectively prevent PEDV infection in piglets. Further investigation revealed that LGG metabolites interact with type 3 innate lymphoid cells (ILC3s) in the jejunum of piglets through the aryl hydrocarbon receptor (AhR). This interaction promotes the activation of ILC3s and the production of interleukin-22 (IL-22). Subsequently, IL-22 facilitates the proliferation of IPEC-J2 cells and activates the STAT3 signaling pathway, thereby preventing PEDV infection. Moreover, the AhR receptor influences various cell types within organoids, including intestinal stem cells (ISCs), Paneth cells, and enterocytes, to promote their growth and development, suggesting that AhR has a broad impact on intestinal health. In conclusion, our study demonstrated the ability of LGG to modulate intestinal immunity and effectively prevent PEDV infection in piglets. These findings highlight the potential application of LGG as a preventive measure against viral infections in livestock.IMPORTANCEWe observed high expression of the AhR receptor on pig and human ILC3s, although its expression was negligible in mouse ILC3s. ILC3s are closely related to the gut microbiota, particularly the secretion of IL-22 stimulated by microbial signals, which plays a crucial regulatory role in intestinal immunity. In our study, we found that metabolites produced by beneficial gut bacteria interact with ILC3s through AhR, thereby maintaining intestinal immune homeostasis in pigs. Moreover, LGG feeding can enhance the activation of ILC3s and promote IL-22 secretion in the intestines of piglets, ultimately preventing PEDV infection.


Assuntos
Infecções por Coronavirus , Imunidade Inata , Interleucina 22 , Interleucinas , Linfócitos , Vírus da Diarreia Epidêmica Suína , Receptores de Hidrocarboneto Arílico , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Suínos , Interleucinas/metabolismo , Vírus da Diarreia Epidêmica Suína/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Microbioma Gastrointestinal/imunologia , Doenças dos Suínos/imunologia , Doenças dos Suínos/virologia , Doenças dos Suínos/prevenção & controle , Doenças dos Suínos/microbiologia , Jejuno/imunologia , Jejuno/metabolismo , Transdução de Sinais , Ligantes , Intestinos/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo
7.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36549921

RESUMO

Cancer initiation and progression are likely caused by the dysregulation of biological pathways. Gene set analysis (GSA) could improve the signal-to-noise ratio and identify potential biological insights on the gene set level. However, platforms exploring cancer multi-omics data using GSA methods are lacking. In this study, we upgraded our GSCALite to GSCA (gene set cancer analysis, http://bioinfo.life.hust.edu.cn/GSCA) for cancer GSA at genomic, pharmacogenomic and immunogenomic levels. In this improved GSCA, we integrated expression, mutation, drug sensitivity and clinical data from four public data sources for 33 cancer types. We introduced useful features to GSCA, including associations between immune infiltration with gene expression and genomic variations, and associations between gene set expression/mutation and clinical outcomes. GSCA has four main functional modules for cancer GSA to explore, analyze and visualize expression, genomic variations, tumor immune infiltration, drug sensitivity and their associations with clinical outcomes. We used case studies of three gene sets: (i) seven cell cycle genes, (ii) tumor suppressor genes of PI3K pathway and (iii) oncogenes of PI3K pathway to prove the advantage of GSCA over single gene analysis. We found novel associations of gene set expression and mutation with clinical outcomes in different cancer types on gene set level, while on single gene analysis level, they are not significant associations. In conclusion, GSCA is a user-friendly web server and a useful resource for conducting hypothesis tests by using GSA methods at genomic, pharmacogenomic and immunogenomic levels.


Assuntos
Neoplasias , Farmacogenética , Humanos , Fosfatidilinositol 3-Quinases/genética , Genômica/métodos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Oncogenes
8.
FASEB J ; 38(5): e23530, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38466314

RESUMO

Brevibacillus laterosporus is a strain of probiotic bacteria that has been widely used in pest control, cash crop, and other production areas. However, few studies have been conducted on its use as a feed additive in animals. Therefore, the probiotic potential of B. laterosporus PBC01 was evaluated by characterizing hydrophobicity, auto-aggregation activity, bile salt and simulated gastrointestinal fluid tolerance, bienzymatic, and antibacterial activity. Antibiotic susceptibility, hemolysis assays, and supplemental feeding of mice were also performed to evaluate safety features. Our results showed that B. laterosporus PBC01 had moderate hydrophobicity, high auto-agglutination ability. Meanwhile, B. laterosporus PBC01 had good tolerance to bile salt and simulated gastrointestinal fluid. It had the ability to secrete protease, cellulase, and to inhibit various pathogens. In addition, B. laterosporus PBC01 was sensitive to many antibiotics, and did not produce hemolysin. In the safety assessment of mice, it did not cause any deaths, nor did it affect the cell components of blood, antioxidant capacity, and reproductive health. The study indicated the great probiotic characteristics and safety of B. laterosporus PBC01. This may provide a theoretical basis for the clinical application and development of probiotic-based feed additives.


Assuntos
Bacillus , Brevibacillus , Animais , Camundongos , Antibacterianos/farmacologia , Ácidos e Sais Biliares
9.
Nano Lett ; 24(20): 5975-5983, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38726841

RESUMO

In the emerging two-dimensional organic-inorganic hybrid perovskites, the electronic structures and carrier behaviors are strongly impacted by intrinsic electron-phonon interactions, which have received inadequate attention. In this study, we report an intriguing phenomenon of negative carrier diffusion induced by electron-phonon coupling in (2T)2PbI4. Theoretical calculations reveal that the electron-phonon coupling drives the band alignment in (2T)2PbI4 to alternate between type I and type II heterostructures. As a consequence, photoexcited holes undergo transitions between the organic ligands and inorganic layers, resulting in abnormal carrier transport behavior compared to other two-dimensional hybrid perovskites. These findings provide valuable insights into the role of electron-phonon coupling in shaping the band alignments and carrier behaviors in two-dimensional hybrid perovskites. They also open up exciting avenues for designing and fabricating functional semiconductor heterostructures with tailored properties.

10.
Angiogenesis ; 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39096357

RESUMO

OBJECTIVE: Pathological retinal neovascularization is vision-threatening. In mouse oxygen-induced retinopathy (OIR) we sought to define mitochondrial respiration changes longitudinally during hyperoxia-induced vessel loss and hypoxia-induced neovascularization, and to test interventions addressing those changes to prevent neovascularization. METHODS: OIR was induced in C57BL/6J mice and retinal vasculature was examined at maximum neovessel formation. We assessed total proteome changes and the ratio of mitochondrial to nuclear DNA copy numbers (mtDNA/nDNA) of OIR vs. control retinas, and mitochondrial oxygen consumption rates (OCR) in ex vivo OIR vs. control retinas (BaroFuse). Pyruvate vs. vehicle control was supplemented to OIR mice either prior to or during neovessel formation. RESULTS: In OIR vs. control retinas, global proteomics showed decreased retinal mitochondrial respiration at peak neovascularization. OCR and mtDNA/nDNA were also decreased at peak neovascularization suggesting impaired mitochondrial respiration. In vivo pyruvate administration during but not prior to neovessel formation (in line with mitochondrial activity time course) suppressed NV. CONCLUSIONS: Mitochondrial energetics were suppressed during retinal NV in OIR. Appropriately timed supplementation of pyruvate may be a novel approach in neovascular retinal diseases.

11.
Biochem Biophys Res Commun ; 708: 149786, 2024 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-38493545

RESUMO

Ectopic lipid deposition (ELD) and mitochondrial dysfunction are common causes of metabolic disorders in humans. Consuming too much fructose can result in mitochondrial dysfunction and metabolic disorders. 6-Gingerol, the main component of ginger (Zingiber officinale Roscoe), has been proven to alleviate metabolic disorders. This study seeks to examine the effects of 6-gingerol on metabolic disorders caused by fructose and uncover the underlying molecular mechanisms. In this study, the results showed that 6-Gingerol ameliorated high-fructose-induced metabolic disorders. Moreover, it inhibited CD36 membrane translocation, increased CD36 expression in the mitochondria, and decreased the O-GlcNAc modification of CD36 and OGT expression in vitro and vivo. In addition, 6-Gingerol enhanced the performance of mitochondria in the skeletal muscle and boosted the respiratory capability of L6 myotubes. This study provides a theoretical basis and new insights for the development of lipid-lowering drugs in clinical practice.


Assuntos
Doenças Metabólicas , Doenças Mitocondriais , Humanos , Músculo Esquelético/metabolismo , Mitocôndrias/metabolismo , Álcoois Graxos/farmacologia , Álcoois Graxos/metabolismo , Catecóis/farmacologia , Frutose/metabolismo , Doenças Metabólicas/metabolismo , Doenças Mitocondriais/metabolismo
12.
Am J Gastroenterol ; 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39382852

RESUMO

INTRODUCTION: The course of maternal antiviral prophylaxis to prevent mother-to-child transmission of hepatitis B virus (HBV-MTCT) varies greatly, and it has not been demonstrated in a randomized controlled study. METHODS: In this multicenter, open-label, randomized controlled trial, eligible pregnant women with HBV DNA of 5.3-9.0 log10 IU/mL who received tenofovir alafenamide fumarate (TAF) from the first day of 33 gestational weeks to delivery (expected eight-week) or to four-week postpartum (expected twelve-week) were randomly enrolled at a 1:1 ratio and followed until six-month postpartum. All infants received standard immunoprophylaxis (hepatitis B immunoglobulin and vaccine). The primary endpoint was the safety of mothers and infants. The secondary endpoint was infants' HBV-MTCT rate at seven months of age. RESULTS: Among 119 and 120 intention-to-treat pregnant women, 115 and 116 women were followed until delivery, and 110 and 112 per-protocol mother-infant dyads in two groups completed the study. Overall, TAF was well tolerated, no one discontinued therapy due to adverse events (0/239, 0%, 95% confidence interval [CI] 0%-1.6%), and no infant had congenital defects or malformations at delivery (0/231, 0%, 95% CI 0%-1.6%). The infants' physical development at birth (n=231) and at seven months (n=222) were normal. Furthermore, 97.0% (224/231, 95% CI 93.9%-98.5%) of women achieved HBV DNA <5.3 log10 IU/mL at delivery. The intention-to-treat and per-protocol infants' HBV-MTCT rates were 7.1% (17/239, 95% CI 4.5%-11.1%) and 0% (0/222, 95% CI 0%-1.7%) at seven months of age. Comparatively, 15.1% (18/119, 95% CI 9.8%-22.7%) versus 18.3% (22/120, 95% CI 12.4%-26.2%) of women in the two groups had mildly elevated alanine aminotransferase levels at three-month and six-month postpartum, respectively (P=0.507); notably, no one experienced alanine aminotransferase flare (0% [0/119, 95% CI 0%-3.1%] versus 0% [0/120, 0%-3.1%]). DISCUSSION: Maternal TAF prophylaxis to prevent HBV-MTCT is generally safe and effective, and expected eight-week prenatal duration is feasible. ClinicalTrials.gov, NCT04850950.

13.
Planta ; 260(4): 93, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39264431

RESUMO

MAIN CONCLUSION: This review focuses on HATs and HDACs that modify non-histone proteins, summarizes functional mechanisms of non-histone acetylation as well as the roles of HATs and HDACs in rice and Arabidopsis. The growth and development of plants, as well as their responses to biotic and abiotic stresses, are governed by intricate gene and protein regulatory networks, in which epigenetic modifying enzymes play a crucial role. Histone lysine acetylation levels, modulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs), are well-studied in the realm of transcriptional regulation. However, the advent of advanced proteomics has unveiled that non-histone proteins also undergo acetylation, with its underlying mechanisms now being clarified. Indeed, non-histone acetylation influences protein functionality through diverse pathways, such as modulating protein stability, adjusting enzymatic activity, steering subcellular localization, influencing interactions with other post-translational modifications, and managing protein-protein and protein-DNA interactions. This review delves into the recent insights into the functional mechanisms of non-histone acetylation in plants. We also provide a summary of the roles of HATs and HDACs in rice and Arabidopsis, and explore their potential involvement in the regulation of non-histone proteins.


Assuntos
Arabidopsis , Histona Acetiltransferases , Histona Desacetilases , Oryza , Proteínas de Plantas , Processamento de Proteína Pós-Traducional , Histona Desacetilases/metabolismo , Histona Desacetilases/genética , Acetilação , Oryza/genética , Oryza/metabolismo , Oryza/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/enzimologia , Histona Acetiltransferases/metabolismo , Histona Acetiltransferases/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo
14.
J Virol ; 97(2): e0192322, 2023 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-36779759

RESUMO

African swine fever (ASF) is a devastating infectious disease of pigs caused by the African swine fever virus (ASFV), which poses a great danger to the global pig industry. Many viral proteins can suppress with interferon signaling to evade the host's innate immune responses. Therefore, the development of an effective vaccine against ASFV has been dampened. Recent studies have suggested that the L83L gene may be integrated into the host genome, weakening the host immune system, but the underlying mechanism is unknown. Our study found that L83L negatively regulates the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. Overexpression of L83L inhibited IFN-ß promoter and ISRE activity, and knockdown of L83L induced higher transcriptional levels of interferon-stimulated genes (ISGs) and phosphorylation levels of IRF3 in primary porcine alveolar macrophages. Mechanistically, L83L interacted with cGAS and STING to promote autophagy-lysosomal degradation of STING by recruiting Tollip, thereby blocking the phosphorylation of the downstream signaling molecules TBK1, IRF3, and IκBα and reducing IFN-I production. Altogether, our study reveals a negative regulatory mechanism involving the L83L-cGAS-STING-IFN-I axis and provides insights into an evasion strategy involving autophagy and innate signaling pathways employed by ASFV. IMPORTANCE African swine fever virus (ASFV) is a large double-stranded DNA virus that primarily infects porcine macrophages. The ASFV genome encodes a large number of immunosuppressive proteins. Current options for the prevention and control of this pathogen remain pretty limited. Our study showed that overexpression of L83L inhibited the cGAS-STING-mediated type I interferon (IFN-I) signaling pathway. In contrast, the knockdown of L83L during ASFV infection enhanced IFN-I production in porcine alveolar macrophages. Additional analysis revealed that L83L protein downregulated IFN-I signaling by recruiting Tollip to promote STING autophagic degradation. Although L83L deletion has been reported to have little effect on viral replication, its immune evade mechanism has not been elucidated. The present study extends our understanding of the functions of ASFV-encoded pL83L and its immune evasion strategy, which may provide a new basis for developing a live attenuated vaccine for ASF.


Assuntos
Vírus da Febre Suína Africana , Interferon Tipo I , Proteínas Virais , Animais , Febre Suína Africana , Vírus da Febre Suína Africana/imunologia , Imunidade Inata/imunologia , Interferon Tipo I/imunologia , Nucleotidiltransferases/metabolismo , Suínos , Proteínas Virais/genética , Proteínas Virais/imunologia
15.
Appl Environ Microbiol ; 90(2): e0109023, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38259075

RESUMO

Acetate is a major intermediate in the anaerobic digestion of organic waste to produce CH4. In methanogenic systems, acetate degradation is carried out by either acetoclastic methanogenesis or syntrophic degradation by acetate oxidizers and hydrogenotrophic methanogens. Due to challenges in the isolation of syntrophic acetate-oxidizing bacteria (SAOB), the diversity and metabolism of SAOB and the mechanisms of their interactions with methanogenic partners are not fully characterized. In this study, the in situ activity and metabolic characteristics of potential SAOB and their interactions with methanogens were elucidated through metagenomics and metatranscriptomics. In addition to the reported SAOB classified in the genera Tepidanaerobacter, Desulfotomaculum, and Thermodesulfovibrio, we identified a number of potential SAOB that are affiliated with Clostridia, Thermoanaerobacteraceae, Anaerolineae, and Gemmatimonadetes. The potential SAOB possessing the glycine-mediated acetate oxidation pathway dominates SAOB communities. Moreover, formate appeared to be the main product of the acetate degradation by the most active potential SAOB. We identified the methanogen partner of these potential SAOB in the acetate-fed chemostat as Methanosarcina thermophila. The dominated potential SAOB in each chemostat had similar metabolic characteristics, even though they were in different fatty-acid-fed chemostats. These novel syntrophic lineages are prevalent and may play critical roles in thermophilic methanogenic reactors. This study expands our understanding of the phylogenetic diversity and in situ biological functions of uncultured syntrophic acetate degraders and presents novel insights into how they interact with methanogens.IMPORTANCECombining reactor operation with omics provides insights into novel uncultured syntrophic acetate degraders and how they perform in thermophilic anaerobic digesters. This improves our understanding of syntrophic acetate degradation and contributes to the background knowledge necessary to better control and optimize anaerobic digestion processes.


Assuntos
Bactérias , Euryarchaeota , Filogenia , Acetatos/metabolismo , Bactérias Anaeróbias/metabolismo , Euryarchaeota/metabolismo , Anaerobiose , Oxirredução , Firmicutes/metabolismo , Metano/metabolismo , Reatores Biológicos/microbiologia
16.
Plant Physiol ; 193(4): 2734-2749, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37625793

RESUMO

Although the sources of molecular hydrogen (H2) synthesis in plants remain to be fully elucidated, ample evidence shows that plant-based H2 can regulate development and stress responses. Here, we present genetic and molecular evidence indicating that nitrate reductase (NR) might be a target of H2 sensing that positively regulates nitrogen use efficiency (NUE) and seed size in Arabidopsis (Arabidopsis thaliana). The expression level of NR and changes of NUE under control and, in particular, low nitrogen supply were positively associated with H2 addition supplied exogenously or through genetic manipulation. The improvement in nitrate assimilation achieved by H2 was also mediated via NR dephosphorylation. H2 control of seed size was impaired by NR mutation. Further genetic evidence revealed that H2, NR, and nitric oxide can synergistically regulate nitrate assimilation in response to N starvation conditions. Collectively, our data indicate that NR might be a target for H2 sensing, ultimately positively regulating nitrate uptake and seed size. These results provide insights into H2 signaling and its functions in plant metabolism.


Assuntos
Arabidopsis , Nitratos , Nitrato Redutase/genética , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Plantas/metabolismo , Sementes/genética , Sementes/metabolismo , Nitrogênio/metabolismo , Hidrogênio
17.
Opt Express ; 32(12): 21606-21615, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859510

RESUMO

Transverse mode switchable ultrashort optical pulses with narrow bandwidths can create potential for exploring what we believe are new physical effects. We demonstrate the generation of transverse mode switchable ultrashort pulses with narrow bandwidths in an all-fiber mode-locked laser by exploring a mode-selective photonic lantern (MSPL). The laser cavity serves not only as a ring resonator but also as an intrinsic spectral filter. For mode-locking with the LP01, LP11a, and LP11b modes, the bandwidths are 3.0 nm, 86.7 pm and 101.7 pm, respectively. The narrowband pulses with higher-order modes are generated by an intrinsic spectral filter due to the spectral-domain intermodal interference. Mode-locked pulses with a signal-to-noise ratio better than 60 dB for LP01, LP11a, and LP11b modes are independently generated, i.e., transverse mode switchable by changing the input port of the MSPL. The mode-locked wavelength can be tuned for the LP11a mode and LP11b mode by adjusting the state of polarization. Furthermore, our experimental results also show that, the slope efficiency of LP11a and LP11b modes can be improved, by the use of LP11 mode pump scheme. We anticipate that, narrowband pulses with complex mode profiles can be generated by simultaneously phase-locked transverse and longitudinal modes.

18.
Opt Express ; 32(6): 9332-9342, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38571170

RESUMO

We theoretically and experimentally verify that, the bidirectional hybrid-mode pumping scheme can address the optimization problem of trade-off between high gain and low differential modal gain (DMG) of four-mode erbium-doped fiber amplifier (4M-EDFA), in comparison with traditional both forward and backward hybrid-mode pumping scheme. It is noticed that, when the total pump power is fixed, the bidirectional hybrid-mode pumping scheme can not only achieve higher gain, but also suppress DMG due to different overlap integrals for the forward and backward pumping schemes. The bidirectional hybrid-mode pumped 4M-EDFA is developed with the forward pumping at LP02 mode and the backward pumping at LP21 mode, under a pump power ratio of 30%:70%. Thus, we can achieve an average gain of up to 21.16 dB and a low DMG of 0.43 dB at 1550 nm, and an average gain of up to 20.64 dB with a DMG of less than 1.6 dB over the C-band. In particular, the bidirectional hybrid-mode pumping scheme allows us to tailor the gain characteristics of the few-mode erbium-doped fiber amplifiers (FM-EDFAs), by adjusting the power ratio between forward and backward pumps.

19.
Cardiovasc Diabetol ; 23(1): 2, 2024 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-38172861

RESUMO

PURPOSE: Numerous clinical studies have explored sodium-glucose cotransporter 2 inhibitor (SGLT2i) in patients with chronic heart failure (CHF), with or without type 2 diabetes mellitus (T2DM), and SGLT2i were proved to significantly reduce CHF hospitalization, cardiovascular death, cardiovascular mortality, all-cause mortality and myocardial infarction in patients with or without T2DM. However, only a limited few have investigated the effects of SGLT-2i on HF disease-specific health status and cardiac function. This meta-analysis aims to assess the effects of SGLT2i on disease-specific health status and cardiac function in CHF patients. METHODS: A comprehensive search was conducted of trials by searching in PubMed, EMBASE, CENTRAL, Scopus, and Web of Science, and two Chinese databases (CNKI and Wanfang), Clinical Trials ( http://www. CLINICALTRIALS: gov ) were also searched. RESULTS: A total of 18 randomized controlled trials (RCTs) involving 23,953 participants were included in the meta-analysis. The effects of SGLT2 inhibitors were compared with control or placebo groups in CHF with or without T2DM. The SGLT2 inhibitors group exhibited a significant reduction in pro b-type natriuretic peptide (NT-proBNP) levels by 136.03 pg/ml (95% confidence interval [CI]: -253.36, - 18.70; P = 0.02). Additionally, a greater proportion of patients in the SGLT2 inhibitors group showed a ≥ 20% decrease in NT-proBNP (RR = 1.45, 95% CI [0.92, 2.29], p = 0.072). However, no statistically significant difference was observed for the effects on B-type natriuretic peptide (BNP). The use of SGLT-2 inhibitors led to a noteworthy improvement in LVEF by 2.79% (95% CI [0.18, 5.39];P = 0.036). In terms of health status, as assessed by the Kansas City Cardiomyopathy Questionnaire (KCCQ) and 6-minute walk distance, SGLT2 inhibitors led to a significant improvement in KCCQ clinical summary (KCCQ-CS) score (WMD = 1.7, 95% CI [1.67, 1.73], P < 0.00001), KCCQ overall summary (KCCQ-OS) score (WMD = 1.73, 95% CI [0.94, 2.52], P < 0.00001), and KCCQ total symptom (KCCQ-TS) score (WMD = 2.88, 95% CI [1.7, 4.06], P < 0.00001). Furthermore, the occurrence of KCCQ-CS and KCCQ-OS score increases ≥ 5 points had relative risks (RR) of 1.25 (95% CI [1.11, 1.42], P < 0.00001) and 1.15 (95% CI [1.09, 1.22], P < 0.00001), respectively. Overall, SGLT2 inhibitors increased the 6-minute walk distance by 23.98 m (95% CI [8.34, 39.62]; P = 0.003) compared to control/placebo from baseline. CONCLUSIONS: The SGLT2 inhibitors treatment offers an effective strategy for improving NT-proBNP levels, Kansas City Cardiomyopathy Questionnaire scores and 6-minute walk distance in CHF with or without T2DM. These findings indicate that SGLT2i improve cardiac function and health status in CHF with or without T2DM, and provide valuable guidance for clinicians making treatment decisions for patients with CHF.


Assuntos
Cardiomiopatias , Diabetes Mellitus Tipo 2 , Insuficiência Cardíaca , Inibidores do Transportador 2 de Sódio-Glicose , Humanos , Inibidores do Transportador 2 de Sódio-Glicose/efeitos adversos , Peptídeo Natriurético Encefálico , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/tratamento farmacológico , Nível de Saúde , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Doença Crônica , Cardiomiopatias/tratamento farmacológico , Ensaios Clínicos Controlados Aleatórios como Assunto
20.
Microb Pathog ; 186: 106489, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061666

RESUMO

Trichinellosis caused by Trichinella spiralis (T. spiralis) is a zoonotic disease that poses a substantial risk to human health. At present, vaccines used to prevent trichinellosis are effective, but the production of antibody levels and immunogenicity are low. Adjuvants can increase antibody levels and vaccine immunogenicity. As a result, it is critical to develop an effective adjuvant for the T. spiralis vaccine. Recent research has shown that traditional Chinese medicine polysaccharides with low-toxicity and biodegradability can act as adjuvants in vaccines. In this study, BALB/c mice were orally inoculated with a recombinant Lactobacillus plantarum (L. plantarum) vaccine expressing the T. spiralis cathepsin F-like protease 1 gene (rTs-CPF1), which was given three times at 10-day intervals. Lycium barbarum polysaccharide (LBP) was administered orally for 37 days. At 37 days after the first immunization, mice were infected with 350 T. spiralis muscle larvae (ML). Specific IgG and sIgA antibody levels against the T. spiralis CPF1 protein were increased in mice immunized with rTs-CPF1+LBP compared to those immunized with rTs-CPF1 alone. Furthermore, LBP increased IFN-γ and IL-4 expression levels, and the number of intestinal and intramuscular worms was significantly reduced in the rTs-CPF1+LBP group compared to that in the rTs-CPF1 group. In the rTs-CPF1+LBP group, the reduction rates of adult worms and muscle larvae were 47.31 % and 68.88 %, respectively. To summarize, LBP promotes the immunoprotective effects of the T. spiralis vaccine and may be considered as a novel adjuvant in parasitic vaccines.


Assuntos
Lactobacillus plantarum , Trichinella spiralis , Triquinelose , Camundongos , Humanos , Animais , Trichinella spiralis/genética , Triquinelose/prevenção & controle , Triquinelose/parasitologia , Catepsina F , Lactobacillus plantarum/genética , Antígenos de Helmintos/genética , Vacinas Sintéticas , Adjuvantes Imunológicos/farmacologia , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA