Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 404
Filtrar
1.
Immunology ; 2024 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-39129256

RESUMO

Cancer immunotherapy has revolutionized the treatment landscape by harnessing the power of the immune system to combat malignancies. Two of the most promising players in this field are cluster of differentiation 24 (CD24) and sialic acid-binding Ig-like lectin 10 (Siglec-10), and both of them play pivotal roles in modulating immune responses. CD24, a cell surface glycoprotein, emerges as a convincing fundamental signal transducer for therapeutic intervention, given its significant implication in the processes related to tumour progression and immunogenic evasion. Additionally, the immunomodulatory functions of Siglec-10, a prominent member within the Siglec family of immune receptors, have recently become a crucial point of interest, particularly in the context of the tumour microenvironment. Hence, the intricate interplay of both CD24 and Siglec-10 assumes a critical role in fostering tumour growth, facilitating metastasis and also orchestrating immune evasion. Recent studies have found multiple evidences supporting the therapeutic potential of targeting CD24 in cancer treatment. Siglec-10, on the other hand, exhibits immunosuppressive properties that contribute to immune tolerance within the tumour microenvironment. Therefore, we delve into the complex mechanisms through which Siglec-10 modulates immune responses and facilitates immune escape in cancer. Siglec-10 also acts as a viable target for cancer immunotherapy and presents novel avenues for the development of therapeutic interventions. Furthermore, we examine the synergy between CD24 and Siglec-10 in shaping the immunosuppressive tumour microenvironment and discuss the implications for combination therapies. Therefore, understanding the roles of CD24 and Siglec-10 in cancer immunotherapy opens exciting possibilities for the development of novel therapeutics.

2.
Cancer Sci ; 115(7): 2461-2472, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38655663

RESUMO

L-type amino acid transporter 1 (LAT1) is specifically expressed in many malignancies, contributes to the transport of essential amino acids, such as leucine, and regulates the mammalian target of rapamycin (mTOR) signaling pathway. We investigated the expression profile and functional role of LAT1 in prostate cancer using JPH203, a specific inhibitor of LAT1. LAT1 was highly expressed in castration-resistant prostate cancer (CRPC) cells, including C4-2 and PC-3 cells, but its expression level was low in castration-sensitive LNCaP cells. JPH203 significantly inhibited [14C] leucine uptake in CRPC cells but had no effect in LNCaP cells. JPH203 inhibited the proliferation, migration, and invasion of CRPC cells but not of LNCaP cells. In C4-2 cells, Cluster of differentiation (CD) 24 was identified by RNA sequencing as a novel downstream target of JPH203. CD24 was downregulated in a JPH203 concentration-dependent manner and suppressed activation of the Wnt/ß-catenin signaling pathway. Furthermore, an in vivo study showed that JPH203 inhibited the proliferation of C4-2 cells in a castration environment. The results of this study indicate that JPH203 may exert its antitumor effect in CRPC cells via mTOR and CD24.


Assuntos
Antígeno CD24 , Movimento Celular , Proliferação de Células , Transportador 1 de Aminoácidos Neutros Grandes , Neoplasias de Próstata Resistentes à Castração , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/tratamento farmacológico , Neoplasias de Próstata Resistentes à Castração/metabolismo , Neoplasias de Próstata Resistentes à Castração/patologia , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Linhagem Celular Tumoral , Animais , Proliferação de Células/efeitos dos fármacos , Antígeno CD24/metabolismo , Camundongos , Movimento Celular/efeitos dos fármacos , Via de Sinalização Wnt/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/antagonistas & inibidores , Benzoxazóis/farmacologia , Leucina/farmacologia , Leucina/análogos & derivados , Camundongos Nus , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tirosina/análogos & derivados
3.
Apoptosis ; 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136818

RESUMO

Anastasis is a phenomenon observed in cancer cells, where cells that have initiated apoptosis are able to recover and survive. This molecular event is increasingly recognized as a potential contributor to cancer metastasis, facilitating the survival and migration of tumor cells. Nevertheless, the identification of a specific surface marker for detecting cancer cells in anastasis remained elusive. Here we report our observation that the cell surface expression of CD24 is preferentially enriched in a non-adherent FSClowSSChigh melanoma subpopulation, which is generally considered a non-viable population in cultivated melanoma cell lines. More than 90% of non-adherent FSClowSSChighCD24+ve metastatic melanoma cells exhibited bonafide features of apoptosis on the cell surface and in the nucleus, marking apoptotic or seemingly apoptotic subpopulations of the in vitro cultivated metastatic melanoma cell lines. Unexpectedly, however, the CD24+ve subpopulation, despite being apoptotic, showed evidence of metabolic activity and exhibited proliferative capacities, including anchorage-independent growth, when inoculated in soft agarose growth medium. These findings indicate that apoptotic FSClowSSChighCD24+ve melanoma subpopulations are capable of reversing the progression of apoptosis. We report CD24 as the first novel cell surface marker for anastasis in melanoma cells.

4.
Cancer Immunol Immunother ; 73(2): 31, 2024 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-38279998

RESUMO

The small, heavily glycosylated protein CD24 is primarily expressed by many immune cells and is highly expressed mostly in cancer cells. As one of the most crucial biomarkers of cancers, CD24 is frequently highly expressed in solid tumors, while tumor-associated macrophages express Siglec-10 at high levels, Siglec-10 and CD24 can interact on innate immune cells to lessen inflammatory responses to a variety of disorders. Inhibiting inflammation brought on by SHP-1 and/or SHP-2 phosphatases as well as cell phagocytosis by macrophages, the binding of CD24 to Siglec-10 can prevent toll-like receptor-mediated inflammation. Targeted immunotherapy with immune checkpoint inhibitors (ICI) has lately gained popularity as one of the best ways to treat different tumors. CD24 is a prominent innate immune checkpoint that may be a useful target for cancer immunotherapy. In recent years, numerous CD24/Siglec-10-related research studies have made tremendous progress. This study discusses the characteristics and workings of CD24/Siglec-10-targeted immunotherapy and offers a summary of current advances in CD24/Siglec-10-related immunotherapy research for cancer. We then suggested potential directions for CD24-targeted immunotherapy, basing our speculation mostly on the results of recent preclinical and clinical trials.


Assuntos
Macrófagos , Neoplasias , Humanos , Transdução de Sinais , Inflamação , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico , Imunoterapia/métodos , Antígeno CD24/metabolismo
5.
Respir Res ; 25(1): 151, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561798

RESUMO

INTRODUCTION: EXO-CD24 are exosomes genetically manipulated to over-express Cluster of Differentiation (CD) 24. It consists of two breakthrough technologies: CD24, the drug, as a novel immunomodulator that is smarter than steroids without any side effects, and exosomes as the ideal natural drug carrier. METHODS: A randomized, single blind, dose-finding phase IIb trial in hospitalized patients with mild to moderate Coronavirus disease 2019 (COVID-19) related Acute Respiratory Distress Syndrome (ARDS) was carried out in two medical centers in Athens. Patients received either 109 or 1010 exosome particles of EXO-CD24, daily, for five consecutive days and monitored for 28 days. Efficacy was assessed at day 7 among 91 patients who underwent randomization. The outcome was also compared in a post-hoc analysis with an income control group (n = 202) that fit the inclusion and exclusion criteria. RESULTS: The mean age was 49.4 (± 13.2) years and 74.4% were male. By day 7, 83.7% showed improved respiratory signs and 64% had better oxygen saturation (SpO2) (p < 0.05). There were significant reductions in all inflammatory markers, most notably in C-reactive protein (CRP), lactate dehydrogenase (LDH), ferritin, fibrinogen and an array of cytokines. Conversely, levels of the anti-inflammatory cytokine Interleukin-10 (IL-10) were increased (p < 0.05). Of all the documented adverse events, none were considered treatment related. No drug-drug interactions were noted. Two patients succumbed to COVID-19. Post-hoc analysis revealed that EXO-CD24 patients exhibited greater improvements in clinical and laboratory outcomes compared to an observational income control group. CONCLUSIONS: EXO-CD24 presents a promising therapeutic approach for hyper-inflammatory state and in particular ARDS. Its unique combination of exosomes, as a drug carrier, and CD24, as an immunomodulator, coupled with inhalation administration, warrants further investigation in a larger, international, randomized, quadri-blind trial against a placebo.


Assuntos
COVID-19 , Exossomos , Síndrome do Desconforto Respiratório , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , SARS-CoV-2 , Método Simples-Cego , Fatores Imunológicos , Síndrome do Desconforto Respiratório/diagnóstico , Síndrome do Desconforto Respiratório/tratamento farmacológico , Síndrome do Desconforto Respiratório/genética , Portadores de Fármacos , Resultado do Tratamento , Antígeno CD24
6.
Respir Res ; 25(1): 317, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39160511

RESUMO

RATIONAL: Basal cells (BCs) are bronchial progenitor/stem cells that can regenerate injured airway that, in smokers, may undergo malignant transformation. As a model for early stages of lung carcinogenesis, we set out to characterize cytologically normal BC outgrowths from never-smokers and ever-smokers without cancers (controls), as well as from the normal epithelial "field" of ever-smokers with anatomically remote cancers, including lung adenocarcinoma (LUAD) and squamous cell carcinoma (LUSC) (cases). METHODS: Primary BCs were cultured and expanded from endobronchial brushings taken remote from the site of clinical or visible lesions/tumors. Donor subgroups were tested for growth, morphology, and underlying molecular features by qRT-PCR, RNAseq, flow cytometry, immunofluorescence, and immunoblot. RESULTS: (a) the BC population includes epithelial cell adhesion molecule (EpCAM) positive and negative cell subsets; (b) smoking reduced overall BC proliferation corresponding with a 2.6-fold reduction in the EpCAMpos/ITGA6 pos/CD24pos stem cell fraction; (c) LUSC donor cells demonstrated up to 2.8-fold increase in dysmorphic BCs; and (d) cells procured from LUAD patients displayed increased proliferation and S-phase cell cycle fractions. These differences corresponded with: (i) disparate NOTCH1/NOTCH2 transcript expression and altered expression of potential downstream (ii) E-cadherin (CDH1), tumor protein-63 (TP63), secretoglobin family 1a member 1 (SCGB1A1), and Hairy/enhancer-of-split related with YRPW motif 1 (HEY1); and (iii) reduced EPCAM and increased NK2 homeobox-1 (NKX2-1) mRNA expression in LUAD donor BCs. CONCLUSIONS: These and other findings demonstrate impacts of donor age, smoking, and lung cancer case-control status on BC phenotypic and molecular traits and may suggest Notch signaling pathway deregulation during early human lung cancer pathogenesis.


Assuntos
Brônquios , Proliferação de Células , Neoplasias Pulmonares , Transdução de Sinais , Fumar , Humanos , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/genética , Transdução de Sinais/fisiologia , Masculino , Feminino , Estudos de Casos e Controles , Pessoa de Meia-Idade , Proliferação de Células/fisiologia , Fumar/efeitos adversos , Fumar/metabolismo , Idoso , Brônquios/metabolismo , Brônquios/patologia , Células Cultivadas , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/genética , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética
7.
Inflamm Res ; 73(6): 1047-1068, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38622285

RESUMO

BACKGROUND: Tumor immunotherapy brings new light and vitality to breast cancer patients, but low response rate and limitations of therapeutic targets become major obstacles to its clinical application. Recent studies have shown that CD24 is involved in an important process of tumor immune regulation in breast cancer and is a promising target for immunotherapy. METHODS: In this study, singleR was used to annotate each cell subpopulation after t-distributed stochastic neighbor embedding (t-SNE) methods. Pseudo-time trace analysis and cell communication were analyzed by Monocle2 package and CellChat, respectively. A prognostic model based on CD24-related genes was constructed using several machine learning methods. Multiple quantitative immunofluorescence (MQIF) was used to evaluate the spatial relationship between CD24+PANCK+cells and exhausted CD8+T cells. RESULTS: Based on the scRNA-seq analysis, 1488 CD24-related differential genes were identified, and a risk model consisting of 15 prognostic characteristic genes was constructed by combining the bulk RNA-seq data. Patients were divided into high- and low-risk groups based on the median risk score. Immune landscape analysis showed that the low-risk group showed higher infiltration of immune-promoting cells and stronger immune reactivity. The results of cell communication demonstrated a strong interaction between CD24+epithelial cells and CD8+T cells. Subsequent MQIF demonstrated a strong interaction between CD24+PANCK+ and exhausted CD8+T cells with FOXP3+ in breast cancer. Additionally, CD24+PANCK+ and CD8+FOXP3+T cells were positively associated with lower survival rates. CONCLUSION: This study highlights the importance of CD24+breast cancer cells in clinical prognosis and immunosuppressive microenvironment, which may provide a new direction for improving patient outcomes.


Assuntos
Neoplasias da Mama , Antígeno CD24 , Microambiente Tumoral , Humanos , Neoplasias da Mama/imunologia , Neoplasias da Mama/genética , Antígeno CD24/genética , Antígeno CD24/imunologia , Microambiente Tumoral/imunologia , Feminino , Prognóstico , Linfócitos T CD8-Positivos/imunologia , Aprendizado de Máquina , Multiômica
8.
Cancer Sci ; 114(4): 1270-1283, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36529523

RESUMO

Epidermal growth factor receptor (EGFR)-tyrosine kinase inhibitors (TKIs) elicit potent cell cycle arrest in EGFR-mutant non-small-cell lung cancer (NSCLC) cells. However, little is known about the mechanisms through which these drugs alter the tumor phenotype that contributes to the immune escape of EGFR-mutant cells. Using EGFR-mutant NSCLC cell lines and tissue samples from patients, we investigated the changes in immune checkpoints expressed in tumor cells following EGFR inhibition. Subsequently, we also analyzed the role of soluble factors from the dying tumor cells in the activation of immune signaling pathways involved in therapy resistance. Upon EGFR-TKI treatment, we found that EGFR-mutant cells upregulated the expression of innate immune checkpoint CD24 in vitro. We then analyzed biopsy samples from six patients who developed resistance to a first-generation EGFR-TKI without the acquired T790M mutation. Immunohistochemistry revealed that levels of tumor CD24 expression were increased upon treatment compared with those from pre-treatment samples. Monocyte-derived macrophages facilitated antibody-dependent cellular phagocytosis when EGFR-TKI-treated EGFR-mutant cells were incubated with anti-CD24 antibodies in vitro, suggesting that CD24 may be a therapeutical target for EGFR-mutant lung cancer. Moreover, EGFR inhibition accelerated the release of cell-free DNA (cfDNA) from dying tumor cells, which activated the type I interferon signaling pathways in human THP-1 monocytes in a stimulator of interferon genes-dependent manner. Our study indicates that EGFR inhibition in EGFR-mutant NSCLC cells fosters a tumor microenvironment associated with immune escape. Thus, CD24 targeted therapy and cfDNA monitoring may contribute to improved treatment outcomes in patients with EGFR-mutant NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Receptores ErbB , Microambiente Tumoral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Transdução de Sinais
9.
Cancer Immunol Immunother ; 72(10): 3191-3202, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37418008

RESUMO

Triple negative breast cancer (TNBC) is a subtype of breast cancer with the highest degree of malignancy and the worst prognosis. The application of immunotherapy for TNBC is limited. This study was to verify the potential application of chimeric antigen receptor-T cells (CAR-T cells) targeting CD24 named as 24BBz in treatment of TNBC. 24BBz was constructed by lentivirus infection and then was co-culture with breast cancer cell lines to evaluate the activation, proliferation and cytotoxicity of engineered T cells. The anti-tumor activity of 24BBz was verified in the subcutaneous xenograft model of nude mice. We found that CD24 gene was significantly up-regulated in breast cancer (BRCA), especially in TNBC. 24BBz showed antigen-specific activation and dose-dependent cytotoxicity against CD24-positive BRCA tumor cells in vitro. Furthermore, 24BBz showed significant anti-tumor effect in CD24-positive TNBC xenografts and T cells infiltration in tumor tissues, while some T cells exhibited exhaustion. No pathological damage of major organs was found during the treatment. This study proved that CD24-specific CAR-T cells have potent anti-tumor activity and potential application value in treatment of TNBC.


Assuntos
Receptores de Antígenos Quiméricos , Neoplasias de Mama Triplo Negativas , Animais , Camundongos , Humanos , Neoplasias de Mama Triplo Negativas/metabolismo , Camundongos Nus , Linfócitos T , Imunoterapia , Linhagem Celular Tumoral , Antígeno CD24/metabolismo
10.
Exp Eye Res ; 227: 109368, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36586549

RESUMO

While choroidal neuronal control is known to be essential for retinal and ocular health, its mechanisms are not understood. Especially, the local choroidal innervation mediated by intrinsic choroidal neurons (ICN) remains enigmatic. Neuronal functionality depends on the synaptic neurotransmitters and neuroregulatory peptides involved as well as from membrane components presented on the cell surface. Since the neuronal surface molecular expression patterns in the choroid are currently unknown, we sought to determine the presence of various cluster-of-differentiation (CD) antigens in choroidal neuronal structures with a particular focus on ICN. Human choroids were prepared for immunohistochemistry and the pan-neuronal marker PGP9.5 was combined with CD15, CD24, CD29, CD34, CD46, CD49b, CD49e, CD56, CD58, CD59, CD71, CD81, CD90, CD146, CD147, CD151, CD165, CD171, CD184, CD200, CD271 and fluorescence- and confocal laser scanning-microscopy was used for documentation. The following antigens were found to be co-localized in PGP.9.5+ nerve fibers and ICN perikarya: CD29, CD34, CD56, CD81, CD90, CD146, CD147, CD151, CD171, CD200 and CD271, while all other CD markers where not detectable. Whereas CD24- and CD59- immunoreactivity was clearly absent in ICN perikarya, some neural processes of the choroidal stroma displayed CD24 and CD59 immunopositivity. While a multitude of the aforementioned CD-markers were indeed detected in nervous structures of the choroid, the CD24+ and CD59+ nerve fibers most likely have extrinsic origin from cranial ganglia since ICN cell bodies were found to lack both markers. These findings illustrate how the detailed analysis of CD molecules described here opens novel avenues for future functional studies on choroidal innervation and its control.


Assuntos
Corioide , Neurônios , Humanos , Antígeno CD146/metabolismo , Neurônios/metabolismo , Corioide/inervação , Fibras Nervosas
11.
Cell Commun Signal ; 21(1): 312, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919766

RESUMO

Cluster of differentiation 24 (CD24), a mucin-like highly glycosylated molecule has been extensively studied as a cancer stem cell marker in a variety of solid cancers. The functional role of CD24 is either fulfilled by combining with ligands or participating in signal transduction, which mediate the initiation and progression of neoplasms. Recently, CD24 was also described as an innate immune checkpoint with apparent significance in several types of solid cancers. Herein, we review the current understanding of the molecular fundamentals of CD24, the role of CD24 in tumorigenesis and cancer progression, the possibility as a promising therapeutic target and summarized different therapeutic agents or strategies targeting CD24 in solid cancers. Video Abstract.


Assuntos
Neoplasias , Humanos , Neoplasias/terapia , Transdução de Sinais , Ligantes , Imunoterapia , Antígeno CD24/metabolismo
12.
Mol Pharm ; 20(2): 971-986, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36547230

RESUMO

Tumor-associated macrophages (TAMs) possess great potential in the development of ovarian cancer (OC). Aberrant GATA-binding protein-3 (GATA3) expression has been found in TAM-derived extracellular vesicles (EVs). This study is intended to investigate the regulatory mechanism of TAM-derived EVs, expressing GATA3 in immune escape and chemotherapy resistance of OC cells. In silico analysis was employed to identify differentially expressed genes. The expression of GATA3, CD24, and sialic acid-binding igg-like lectin 10 (Siglec-10) in OC tissues and cells was characterized, with their correlation verified. OC cells were co-cultured with TAM-derived EVs and CD8+T cells. The functional significance of GATA3/CD24/Siglec-10 in immune escape and chemotherapy resistance of OC cells was assayed by the gain and loss of function experiments. In vivo experiments were also performed for further validation. High expressions of GATA3, CD24, and Siglec-10 were observed in OC tissues and cells. GATA3 could be transferred by TAM-derived EVs into OC cells, which facilitated immune escape and resistance to cisplatin of OC cells. GATA3 up-regulated CD24 to increase Siglec-10 expression. The in vivo assay confirmed the promoting effect of GATA3 delivered by TAM-derived EVs on OC through activation of the CD24/Siglec-10 axis. Collectively, TAM-derived EVs harboring GATA3 played a tumor-promoting role in immune escape and chemotherapy resistance of OC cells via the CD24/Siglec-10 axis.


Assuntos
Vesículas Extracelulares , Neoplasias Ovarianas , Humanos , Feminino , Macrófagos Associados a Tumor/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Vesículas Extracelulares/metabolismo , Linhagem Celular Tumoral , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo , Fator de Transcrição GATA3/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo
13.
Immunol Invest ; 52(8): 997-1007, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37933581

RESUMO

OBJECTIVE: To investigate the expression of Siglec10 and CD24 in normal early pregnancy and missed abortion, and their significance in the maternal-fetal interface. METHODS: For our research, we employed Q-PCR and WB techniques to evaluate the traits and expression of Siglec10 and CD24 in the nonpregnant endometrium, as well as in the villus and decidua of women in their 6-10 weeks of normal early pregnancy and those who experienced missed abortion. Additionally, we utilized ELISA to determine the levels of Siglec10 and CD24 in the peripheral blood of pregnancy, missed abortion, and non-pregnant individuals. T-test and ANOVA were used to compare groups. RESULTS: 1. Villous tissues in early pregnancy showed high expression of Siglec10 and CD24, with a significant increase in expression in the missed abortion group (P < 0.01).2. Nonpregnant endometrial tissue showed low expression of Siglec10 and CD24, while early pregnancy decidua showed high expression, with even higher expression in missed abortion (all P < 0.05).3. Serum levels of Siglec10 and CD24 in normal early pregnancy were significantly higher than non-pregnancy (P < 0.01). However, the missed abortion group showed significantly higher levels than normal pregnancy (P < 0.01).4. CD24 expression in serum of missed abortion increases with Siglec10 expression, indicating a significant positive correlation (r = 0.500, P < 0.01). CONCLUSION: Siglec10 and CD24 expression in villus, decidua, and peripheral blood are up-regulated in unexplained missed abortions than those of women with normal pregnancies. This suggests that the levels of serum Siglec10 and CD24 can be used as an effective predictor of missed abortion.


Assuntos
Aborto Retido , Feminino , Humanos , Gravidez , Aborto Retido/genética , Aborto Retido/metabolismo , Antígeno CD24/genética , Antígeno CD24/metabolismo , Decídua/metabolismo , Endométrio/metabolismo
14.
Cell Mol Life Sci ; 79(2): 83, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35048182

RESUMO

Breast cancer is the leading cause of cancer death in female. Until now, advanced breast cancer is still lack effective treatment strategies and reliable prognostic markers. In the present article, we introduced the physiologic and pathologic functions and regulation mechanisms of ZBTB28, a tumor suppressor gene, in breast cancer. ZBTB28 is frequently silenced in breast cancer due to promoter CpG methylation, and its expression is positively correlated with breast cancer patient survival. The antineoplastic effect of ZBTB28 in breast cancer was elucidated through a series of in vitro and in vivo measurements, including cell proliferation, apoptosis, cell cycle, epithelial mesenchymal transition (EMT), and growth of xenografts. Furthermore, ZBTB28 can directly regulate IFNAR to activate interferon-stimulated genes and potentiate macrophage activation. Ectopic ZBTB28 expression in breast cancer cells was sufficient to downregulate CD24 and CD47 to promote phagocytosis of macrophages, demonstrating that ZBTB28 was beneficial for the combination treatment of anti-CD24 and anti-CD47. Collectively, our results reveal a mode of action of ZBTB28 as a tumor suppressor gene and suggest that ZBTB28 is an important regulator of macrophage phagocytosis in breast cancer, holding promise for the development of novel therapy strategies for breast cancer patients.


Assuntos
Neoplasias da Mama/genética , Antígeno CD24/genética , Antígeno CD47/genética , Fagocitose , Receptor de Interferon alfa e beta/genética , Proteínas Repressoras/genética , Animais , Neoplasias da Mama/imunologia , Antígeno CD24/imunologia , Antígeno CD47/imunologia , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Ativação de Macrófagos , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor de Interferon alfa e beta/imunologia , Proteínas Repressoras/imunologia , Células THP-1
15.
Int J Mol Sci ; 25(1)2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38203250

RESUMO

Acute Respiratory Distress Syndrome (ARDS) is a major health concern with urgent unmet need for treatment options. There are three million new ARDS cases annually, and the disease's mortality rate is high (35-46%). Cluster of differentiation 24 (CD24), a long-known protein with multifaceted functions, is a small, heavily glycosylated, membrane-anchored protein which functions as an immune checkpoint control. CD24 allows for immune discrimination between Damage-Associated Molecular Patterns and Pathogen-Associated Molecular Patterns derived from pathogens. Exosomes are intraluminal vesicles which play an important role in intercellular communication. Exosomes offer the advantage of targeted delivery, which improves safety and efficacy. The safety and efficacy of EXO-CD24 is promising, as was shown in >180 ARDS patients in phase 1b/2a, phase 2b, and compassionate use. CD24 binds Damage-associated molecular patterns (DAMPs) and inhibits the activation of the NF-ĸB pathway, a pivotal mediator of inflammatory responses. In contrast to anti-inflammatory therapies that are cytokine-specific or steroids that shut down the entire immune system, EXO-CD24 acts upstream, reverting the immune system back to normal activity. Herein, the safety and efficacy of mEXO-CD24 is shown in murine models of several pulmonary diseases (sepsis, allergic asthma, Chronic Obstructive Pulmonary Disease(COPD), fibrosis). EXO CD24 can suppress the hyperinflammatory response in the lungs in several pulmonary diseases with a significant unmet need for treatment options.


Assuntos
Exossomos , Doença Pulmonar Obstrutiva Crônica , Transtornos Respiratórios , Síndrome do Desconforto Respiratório , Doenças Respiratórias , Humanos , Animais , Camundongos , Síndrome do Desconforto Respiratório/tratamento farmacológico , Alarminas , Proteínas de Membrana , Antígeno CD24
16.
Int J Mol Sci ; 24(20)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37894750

RESUMO

Cancer immunotherapy strategies are based on the utilization of immune checkpoint inhibitors to instigate an antitumor immune response. The efficacy of immune checkpoint blockade, directed at adaptive immune checkpoints, has been demonstrated in select cancer types. However, only a limited subset of patients has exhibited definitive outcomes characterized by a sustained response after discontinuation of therapy. Recent investigations have highlighted the significance of immune checkpoint molecules that are overexpressed in cancer cells and inhibit myeloid lineage immune cells within a tumor microenvironment. These checkpoints are identified as potential targets for anticancer immune responses. Notably, the immune checkpoint molecules CD24 and CD200 have garnered attention owing to their involvement in tumor immune evasion. CD24 and CD200 are overexpressed across diverse cancer types and serve as signaling checkpoints by engaging their respective receptors, Siglec-10 and CD200 receptor, which are expressed on tumor-associated myeloid cells. In this review, we summarized and discussed the latest advancements and insights into CD24 and CD200 as emergent immune checkpoint moieties, further delving into their therapeutic potentials for cancer treatment.


Assuntos
Proteínas de Checkpoint Imunológico , Neoplasias , Humanos , Antígeno CD24 , Imunoterapia , Células Mieloides , Neoplasias/patologia , Evasão Tumoral , Microambiente Tumoral
17.
Artigo em Zh | MEDLINE | ID: mdl-37006141

RESUMO

Objective: To investigate the expression of CD24 gene in human malignant pleural mesothelioma (MPM) cells and tissues, and evaluate its relationship with clinicopathological characteristics and clinical prognosis of MPM patients. Methods: In February 2021, UALCAN database was used to analyze the correlation between CD24 gene expression and clinicopathological characteristics in 87 cases of MPM patients. The TIMER 2.0 platform was used to explore the relationship between the expression of CD24 in MPM and tumor immune infiltrating cells. cBioportal online tool was used to analyze the correlation between CD24 and MPM tumor marker gene expression. RT-qPCR was used to analyze the expressions of CD24 gene in human normal pleural mesothelial cell lines LP9 and MPM cell lines NCI-H28 (epithelial type), NCI-H2052 (sarcoma type), and NCI-H2452 (biphasic mixed type). RT-qPCR was performed to detect the expressions of CD24 gene in 18 cases of MPM tissues and matched normal pleural tissues. The expression difference of CD24 protein in normal mesothelial tissue and MPM tissue was analyzed by immunohistochemistry. A Kaplan-Meier model was constructed to explore the influence of CD24 gene expression on the prognosis of MPM patients, and Cox regression analysis of prognostic factors in MPM patients was performed. Results: The CD24 gene expression without TP53 mutation MPM patients was significantly higher than that of patients in TP53 mutation (P<0.05). The expression of CD24 gene in MPM was positively correlated with B cells (r(s)=0.37, P<0.001). The expression of CD24 gene had a positive correlation with the expressions of thrombospondin 2 (THBS2) (r(s)=0.26, P<0.05), and had a negative correlation with the expression of epidermal growth factor containing fibulin like extracellular matrix protein 1 (EFEMP1), mesothelin (MSLN) and calbindin 2 (CALB2) (r(s)=-0.31, -0.52, -0.43, P<0.05). RT-qPCR showed that the expression level of CD24 gene in MPM cells (NCI-H28, NCI-H2052 and NCI-H2452) was significantly higher than that in normal pleural mesothelial LP9 cells. The expression level of CD24 gene in MPM tissues was significantly higher than that in matched normal pleural tissues (P<0.05). Immunohistochemistry showed that the expressions of CD24 protein in epithelial and sarcoma MPM tissues were higher than those of matched normal pleural tissues. Compared with low expression of CD24 gene, MPM patients with high expression of CD24 gene had lower overall survival (HR=2.100, 95%CI: 1.336-3.424, P<0.05) and disease-free survival (HR=1.800, 95%CI: 1.026-2.625, P<0.05). Cox multivariate analysis showed that compared with the biphasic mixed type, the epithelial type was a protective factor for the prognosis of MPM patients (HR=0.321, 95%CI: 0.172-0.623, P<0.001). Compared with low expression of CD24 gene, high expression of CD24 gene was an independent risk factor for the prognosis of MPM patients (HR=2.412, 95%CI: 1.291-4.492, P=0.006) . Conclusion: CD24 gene and protein are highly expressed in MPM tissues, and the high expression of CD24 gene suggests poor prognosis in MPM patients.


Assuntos
Neoplasias Pulmonares , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Humanos , Mesotelioma/genética , Mesotelioma/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pleurais/genética , Neoplasias Pleurais/diagnóstico , Prognóstico , Biomarcadores Tumorais/análise , Proteínas da Matriz Extracelular , Antígeno CD24/genética
18.
Semin Cancer Biol ; 77: 127-143, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-32931951

RESUMO

Platinum resistant ovarian cancer, usually defined as progression occurring within 6 months after completing platinum-based therapy, is a heterogeneous disease with poor prognosis and short survival (less than 18 months). It is typically considered as a "cold tumor", characterized by reduced infiltration by immune cells, particularly CD8+ T cells. Response rate to anti-PD1/PD-L1 monotherapy is low, not exceeding 8%. Multiple therapeutic strategies are currently investigated in order to increase response rates to anti-PD1/PD-L1 through adding chemotherapy, anti-angiogenic agents, DNA damage (PARP inhibitors, cyclophosphamide and/or radiotherapy) or other immune checkpoint inhibitors (CTLA-4, etc.). Ovarian clear cell carcinoma, a rare histotype characterized by primary platinum-resistance, recently showed anecdotal but promising response rates to immune checkpoint blockade. Other immunotherapeutic approaches such as adoptive T cell therapy, vaccines and targeting myeloid immune checkpoints like "don't eat me" signal CD47 are currently investigated. Each approach faces distinct challenges that will be reviewed here. Robust immunogenomics studies conducted in parallel of the ongoing trials will help into refining optimal immunotherapy combination for this lethal disease and identify predictive biomarkers.


Assuntos
Carcinoma Epitelial do Ovário/terapia , Resistencia a Medicamentos Antineoplásicos/imunologia , Imunoterapia/métodos , Animais , Antineoplásicos/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Compostos de Platina
19.
Cancer Cell Int ; 22(1): 423, 2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36585652

RESUMO

BACKGROUND: Breast cancer stem cells (BCSCs) have a crucial role in breast carcinogenesis, development, and progression. The aim of the current study is to characterize the BCSCs through the genetic profiling of different BCSCs phenotypic subsets to determine their related genetic pathways. METHODS: Fresh tumor tissue samples were obtained from 31 breast cancer (BC) patients for (1) Mammosphere culture. (2) Magnetic separation of the BCSCs subsets using CD24, CD44, and CD326 Microbeads. (3) Flow cytometry (FCM) assay using CD44, CD24, and EpCAM. (4) RT-PCR profiler Arrays using stem cell (SC) panel of 84 genes for four group of cells (1) CD44+/CD24-/EpCAM- BCSCs, (2) CD44+/CD24- /EpCAM+ BCSCs, (3) mammospheres, and (4) normal breast tissues. RESULTS: The BCSCs (CD44+/CD24-/EpCAM-) showed significant downregulation in 13 genes and upregulation in 15, where the CD44, GJB1 and GDF3 showed the maximal expression (P = 0.001, P = 0.003 and P = 0.007); respectively). The CD44+/CD24-/EpCAM+ BCSCs showed significant upregulation in 28 genes, where the CD44, GDF3, and GJB1 showed maximal expression (P < 0.001, P = 0.001 and P = 0.003; respectively). The mammospheres showed significant downregulation in 9 genes and a significant upregulation in 35 genes. The maximal overexpression was observed in GJB1 and FGF2 (P = 0.001, P = 0.001; respectively). The genes which achieved significant overexpression in all SC subsets were CD44, COL9A1, FGF1, FGF2, GDF3, GJA1, GJB1, GJB2, HSPA9, and KRT15. While significant downregulation in BMP2, BMP3, EP300, and KAT8. The genes which were differentially expressed by the mammospheres compared to the other BCSC subsets were CCND2, FGF3, CD4, WNT1, KAT2A, NUMB, ACAN, COL2A1, TUBB3, ASCL2, FOXA2, ISL1, DTX1, and DVL1. CONCLUSION: BCSCs have specific molecular profiles that differ according to their phenotypes which could affect patients' prognosis and outcome.

20.
Neurochem Res ; 47(3): 590-600, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34665391

RESUMO

Subarachnoid hemorrhage (SAH), as one of the most severe hemorrhagic strokes, is closely related to neuronal damage. Neurogenesis is a promising therapy, however, reliable targets are currently lacking. Increasing evidence has indicated that CD24 is associated with the growth of hippocampal neurons and the regulation of neural stem/precursor cell proliferation. To investigate the potential effect of CD24 in astrocytes on neuron growth in the hippocampus, we used a Transwell co-culture system of hippocampal astrocytes and neurons, and oxyhemoglobin (OxyHb) was added to the culture medium to mimic SAH in vitro. A specific lentivirus was used to knock down CD24 expression in astrocytes, which was verified by western blot, quantitative real-time polymerase chain reaction, and immunofluorescent staining. Astrocyte activation, neurite elongation, neuronal apoptosis, and cell viability were also assessed. We first determined the augmented expression level of CD24 in hippocampal astrocytes after SAH. A similar result was observed in cultured astrocytes exposed to OxyHb, and a corresponding change in SHP2/ERK was also noticed. CD24 in astrocytes was then downregulated by the lentivirus, which led to the impairment of axons and dendrites on the co-cultured neurons. Aggravated neuronal apoptosis was induced by the CD24 downregulation in astrocytes, which might be a result of a lower level of brain derived neurotrophic factor (BDNF). In conclusion, the knock-down of CD24 in astrocytes suppressed hippocampal neuron growth, in which the SHP2-ERK signaling pathway and BNDF were possibly involved.


Assuntos
Astrócitos , Antígeno CD24 , Oxiemoglobinas , Astrócitos/metabolismo , Antígeno CD24/genética , Antígeno CD24/fisiologia , Regulação para Baixo , Hipocampo/metabolismo , Neurogênese , Neurônios/metabolismo , Oxiemoglobinas/metabolismo , Oxiemoglobinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA