Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.643
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 184(3): 775-791.e14, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33503446

RESUMO

The molecular pathology of multi-organ injuries in COVID-19 patients remains unclear, preventing effective therapeutics development. Here, we report a proteomic analysis of 144 autopsy samples from seven organs in 19 COVID-19 patients. We quantified 11,394 proteins in these samples, in which 5,336 were perturbed in the COVID-19 patients compared to controls. Our data showed that cathepsin L1, rather than ACE2, was significantly upregulated in the lung from the COVID-19 patients. Systemic hyperinflammation and dysregulation of glucose and fatty acid metabolism were detected in multiple organs. We also observed dysregulation of key factors involved in hypoxia, angiogenesis, blood coagulation, and fibrosis in multiple organs from the COVID-19 patients. Evidence for testicular injuries includes reduced Leydig cells, suppressed cholesterol biosynthesis, and sperm mobility. In summary, this study depicts a multi-organ proteomic landscape of COVID-19 autopsies that furthers our understanding of the biological basis of COVID-19 pathology.


Assuntos
COVID-19/metabolismo , Regulação da Expressão Gênica , Proteoma/biossíntese , Proteômica , SARS-CoV-2/metabolismo , Autopsia , COVID-19/patologia , COVID-19/terapia , Feminino , Humanos , Masculino , Especificidade de Órgãos
2.
Cell ; 183(5): 1354-1366.e13, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33065030

RESUMO

The COVID-19 pandemic has led to extensive morbidity and mortality throughout the world. Clinical features that drive SARS-CoV-2 pathogenesis in humans include inflammation and thrombosis, but the mechanistic details underlying these processes remain to be determined. In this study, we demonstrate endothelial disruption and vascular thrombosis in histopathologic sections of lungs from both humans and rhesus macaques infected with SARS-CoV-2. To define key molecular pathways associated with SARS-CoV-2 pathogenesis in macaques, we performed transcriptomic analyses of bronchoalveolar lavage and peripheral blood and proteomic analyses of serum. We observed macrophage infiltrates in lung and upregulation of macrophage, complement, platelet activation, thrombosis, and proinflammatory markers, including C-reactive protein, MX1, IL-6, IL-1, IL-8, TNFα, and NF-κB. These results suggest a model in which critical interactions between inflammatory and thrombosis pathways lead to SARS-CoV-2-induced vascular disease. Our findings suggest potential therapeutic targets for COVID-19.


Assuntos
COVID-19/complicações , COVID-19/imunologia , SARS-CoV-2/genética , Trombose/complicações , Doenças Vasculares/complicações , Idoso de 80 Anos ou mais , Animais , Lavagem Broncoalveolar , Proteína C-Reativa/análise , COVID-19/sangue , COVID-19/patologia , Ativação do Complemento , Citocinas/sangue , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/virologia , Pulmão/patologia , Macaca mulatta , Macrófagos/imunologia , Masculino , Ativação Plaquetária , Trombose/sangue , Trombose/patologia , Transcriptoma , Doenças Vasculares/sangue , Doenças Vasculares/patologia
3.
Immunity ; 55(2): 224-236.e5, 2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34995475

RESUMO

During gram-negative septicemia, interactions between platelets and neutrophils initiate a detrimental feedback loop that sustains neutrophil extracellular trap (NET) induction, disseminated intravascular coagulation, and inflammation. Understanding intracellular pathways that control platelet-neutrophil interactions is essential for identifying new therapeutic targets. Here, we found that thrombin signaling induced activation of the transcription factor NFAT in platelets. Using genetic and pharmacologic approaches, as well as iNFATuation, a newly developed mouse model in which NFAT activation can be abrogated in a cell-specific manner, we demonstrated that NFAT inhibition in activated murine and human platelets enhanced their activation and aggregation, as well as their interactions with neutrophils and NET induction. During gram-negative septicemia, NFAT inhibition in platelets promoted disease severity by increasing disseminated coagulation and NETosis. NFAT inhibition also partially restored coagulation ex vivo in patients with hypoactive platelets. Our results define non-transcriptional roles for NFAT that could be harnessed to address pressing clinical needs.


Assuntos
Plaquetas/efeitos dos fármacos , Fatores de Transcrição NFATC/antagonistas & inibidores , Agregação Plaquetária/efeitos dos fármacos , Sepse/patologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Plaquetas/metabolismo , Comunicação Celular/efeitos dos fármacos , Grânulos Citoplasmáticos/metabolismo , Modelos Animais de Doenças , Armadilhas Extracelulares/metabolismo , Humanos , Inflamação , Camundongos , Fatores de Transcrição NFATC/metabolismo , Neutrófilos/metabolismo , Receptores de Trombina/metabolismo , Sepse/metabolismo
4.
Immunity ; 54(3): 454-467.e6, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33561388

RESUMO

Heparin, a mammalian polysaccharide, is a widely used anticoagulant medicine to treat thrombotic disorders. It is also known to improve outcomes in sepsis, a leading cause of mortality resulted from infection-induced immune dysfunction. Whereas it is relatively clear how heparin exerts its anticoagulant effect, the immunomodulatory mechanisms enabled by heparin remain enigmatic. Here, we show that heparin prevented caspase-11-dependent immune responses and lethality in sepsis independent of its anticoagulant properties. Heparin or a chemically modified form of heparin without anticoagulant function inhibited the alarmin HMGB1-lipopolysaccharide (LPS) interaction and prevented the macrophage glycocalyx degradation by heparanase. These events blocked the cytosolic delivery of LPS in macrophages and the activation of caspase-11, a cytosolic LPS receptor that mediates lethality in sepsis. Survival was higher in septic patients treated with heparin than those without heparin treatment. The identification of this previously unrecognized heparin function establishes a link between innate immune responses and coagulation.


Assuntos
Anticoagulantes/uso terapêutico , Caspases/metabolismo , Heparina/uso terapêutico , Macrófagos/imunologia , Sepse/tratamento farmacológico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Caspases/genética , Linhagem Celular , Feminino , Glucuronidase/genética , Glucuronidase/metabolismo , Glicocálix/metabolismo , Proteína HMGB1/metabolismo , Humanos , Imunomodulação , Lipopolissacarídeos/metabolismo , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Sepse/mortalidade , Análise de Sobrevida , Adulto Jovem
5.
Immunity ; 51(6): 983-996.e6, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31836429

RESUMO

Excessive activation of the coagulation system leads to life-threatening disseminated intravascular coagulation (DIC). Here, we examined the mechanisms underlying the activation of coagulation by lipopolysaccharide (LPS), the major cell-wall component of Gram-negative bacteria. We found that caspase-11, a cytosolic LPS receptor, activated the coagulation cascade. Caspase-11 enhanced the activation of tissue factor (TF), an initiator of coagulation, through triggering the formation of gasdermin D (GSDMD) pores and subsequent phosphatidylserine exposure, in a manner independent of cell death. GSDMD pores mediated calcium influx, which induced phosphatidylserine exposure through transmembrane protein 16F, a calcium-dependent phospholipid scramblase. Deletion of Casp11, ablation of Gsdmd, or neutralization of phosphatidylserine or TF prevented LPS-induced DIC. In septic patients, plasma concentrations of interleukin (IL)-1α and IL-1ß, biomarkers of GSDMD activation, correlated with phosphatidylserine exposure in peripheral leukocytes and DIC scores. Our findings mechanistically link immune recognition of LPS to coagulation, with implications for the treatment of DIC.


Assuntos
Caspases Iniciadoras/metabolismo , Coagulação Intravascular Disseminada/patologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Ligação a Fosfato/metabolismo , Fosfatidilserinas/metabolismo , Tromboplastina/metabolismo , Animais , Coagulação Sanguínea/fisiologia , Caspases Iniciadoras/genética , Linhagem Celular Tumoral , Endotoxemia/patologia , Ativação Enzimática , Células HT29 , Células HeLa , Humanos , Interleucina-1alfa/sangue , Interleucina-1beta/sangue , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas de Ligação a Fosfato/genética , Piroptose/fisiologia , Transdução de Sinais/fisiologia
6.
Immunity ; 50(6): 1401-1411.e4, 2019 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-31076358

RESUMO

Inflammasome activation and subsequent pyroptosis are critical defense mechanisms against microbes. However, overactivation of inflammasome leads to death of the host. Although recent studies have uncovered the mechanism of pyroptosis following inflammasome activation, how pyroptotic cell death drives pathogenesis, eventually leading to death of the host, is unknown. Here, we identified inflammasome activation as a trigger for blood clotting through pyroptosis. We have shown that canonical inflammasome activation by the conserved type III secretion system (T3SS) rod proteins from Gram-negative bacteria or noncanonical inflammasome activation by lipopolysaccharide (LPS) induced systemic blood clotting and massive thrombosis in tissues. Following inflammasome activation, pyroptotic macrophages released tissue factor (TF), an essential initiator of coagulation cascades. Genetic or pharmacological inhibition of TF abolishes inflammasome-mediated blood clotting and protects against death. Our data reveal that blood clotting is the major cause of host death following inflammasome activation and demonstrate that inflammasome bridges inflammation with thrombosis.


Assuntos
Coagulação Sanguínea , Inflamassomos/metabolismo , Piroptose , Trombose/etiologia , Trombose/metabolismo , Animais , Infecções Bacterianas/complicações , Infecções Bacterianas/microbiologia , Biomarcadores , Caspases/metabolismo , Micropartículas Derivadas de Células/imunologia , Micropartículas Derivadas de Células/metabolismo , Modelos Animais de Doenças , Humanos , Lipopolissacarídeos/imunologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Monócitos/imunologia , Monócitos/metabolismo , Transdução de Sinais , Tromboplastina/metabolismo , Trombose/sangue , Trombose/mortalidade
7.
Trends Immunol ; 45(6): 397-399, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637200

RESUMO

The persistence or recurrence of symptoms after acute SARS-CoV-2 infection, termed 'long COVID', presents a formidable challenge to global healthcare systems. Recent research by Cervia-Hasler and colleagues delves into the intricate immunological landscape in patients with long COVID, demonstrating an interplay between complement and coagulation, driven by antiviral antibodies and tissue damage.


Assuntos
COVID-19 , Proteínas do Sistema Complemento , SARS-CoV-2 , Humanos , COVID-19/imunologia , SARS-CoV-2/imunologia , Proteínas do Sistema Complemento/imunologia , Proteínas do Sistema Complemento/metabolismo , Tromboinflamação/imunologia , Coagulação Sanguínea/imunologia , Síndrome de COVID-19 Pós-Aguda , Ativação do Complemento/imunologia , Anticorpos Antivirais/imunologia
8.
Proc Natl Acad Sci U S A ; 121(31): e2323050121, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39042684

RESUMO

Cerebellar injury in preterm infants with central nervous system (CNS) hemorrhage results in lasting neurological deficits and an increased risk of autism. The impact of blood-induced pathways on cerebellar development remains largely unknown, so no specific treatments have been developed to counteract the harmful effects of blood after neurovascular damage in preterm infants. Here, we show that fibrinogen, a blood-clotting protein, plays a central role in impairing neonatal cerebellar development. Longitudinal MRI of preterm infants revealed that cerebellar bleeds were the most critical factor associated with poor cerebellar growth. Using inflammatory and hemorrhagic mouse models of neonatal cerebellar injury, we found that fibrinogen increased innate immune activation and impeded neurogenesis in the developing cerebellum. Fibrinogen inhibited sonic hedgehog (SHH) signaling, the main mitogenic pathway in cerebellar granule neuron progenitors (CGNPs), and was sufficient to disrupt cerebellar growth. Genetic fibrinogen depletion attenuated neuroinflammation, promoted CGNP proliferation, and preserved normal cerebellar development after neurovascular damage. Our findings suggest that fibrinogen alters the balance of SHH signaling in the neurovascular niche and may serve as a therapeutic target to mitigate developmental brain injury after CNS hemorrhage.


Assuntos
Barreira Hematoencefálica , Cerebelo , Fibrinogênio , Proteínas Hedgehog , Transdução de Sinais , Proteínas Hedgehog/metabolismo , Animais , Fibrinogênio/metabolismo , Cerebelo/metabolismo , Camundongos , Barreira Hematoencefálica/metabolismo , Humanos , Animais Recém-Nascidos , Recém-Nascido , Neurogênese , Feminino , Masculino , Modelos Animais de Doenças
9.
Proc Natl Acad Sci U S A ; 121(29): e2401136121, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38985762

RESUMO

Hemostasis relies on a reaction network of serine proteases and their cofactors to form a blood clot. Coagulation factor IXa (protease) plays an essential role in hemostasis as evident from the bleeding disease associated with its absence. RNA aptamers specifically targeting individual coagulation factors have potential as anticoagulants and as probes of the relationship between structure and function. Here, we report X-ray structures of human factor IXa without a ligand bound to the active site either in the apo-form or in complex with an inhibitory aptamer specific for factor IXa. The aptamer binds to an exosite in the catalytic domain and allosterically distorts the active site. Our studies reveal a conformational ensemble of IXa states, wherein large movements of Trp215 near the active site drive functional transitions between the closed (aptamer-bound), latent (apo), and open (substrate-bound) states. The latent state of the apo-enzyme may bear on the uniquely poor catalytic activity of IXa compared to other coagulation proteases. The exosite, to which the aptamer binds, has been implicated in binding VIIIa and heparin, both of which regulate IXa function. Our findings reveal the importance of exosite-driven allosteric modulation of IXa function and new strategies to rebalance hemostasis for therapeutic gain.


Assuntos
Aptâmeros de Nucleotídeos , Fator IXa , Aptâmeros de Nucleotídeos/química , Aptâmeros de Nucleotídeos/metabolismo , Fator IXa/metabolismo , Fator IXa/química , Fator IXa/antagonistas & inibidores , Humanos , Regulação Alostérica , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Ligação Proteica , Anticoagulantes/química , Anticoagulantes/metabolismo , Anticoagulantes/farmacologia
10.
Circ Res ; 135(8): 841-855, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39234697

RESUMO

BACKGROUND: Excess fibrotic remodeling causes cardiac dysfunction in ischemic heart disease, driven by MAP (mitogen-activated protein) kinase-dependent TGF-ß1 (transforming growth factor-ß1) activation by coagulation signaling of myeloid cells. How coagulation-inflammatory circuits can be specifically targeted to achieve beneficial macrophage reprogramming after myocardial infarction (MI) is not completely understood. METHODS: Mice with permanent ligation of the left anterior descending artery were used to model nonreperfused MI and analyzed by single-cell RNA sequencing, protein expression changes, confocal microscopy, and longitudinal monitoring of recovery. We probed the role of the tissue factor (TF)-FVIIa (activated factor VII)-integrin ß1-PAR2 (protease-activated receptor 2) signaling complex by utilizing genetic mouse models and pharmacological intervention. RESULTS: Cleavage-insensitive PAR2R38E and myeloid cell integrin ß1-deficient mice had improved cardiac function after MI compared with controls. Proximity ligation assays of monocytic cells demonstrated that colocalization of FVIIa with integrin ß1 was diminished in monocyte/macrophage FVII-deficient mice after MI. Compared with controls, F7fl/fl CX3CR1 (CX3C motif chemokine receptor 1)Cre mice showed reduced TGF-ß1 and MAP kinase activation, as well as cardiac dysfunction after MI, despite unaltered overall recruitment of myeloid cells. Single-cell mRNA sequencing of CD45 (cluster of differentiation 45)+ cells 3 and 7 days after MI uncovered a trajectory from recruited monocytes to inflammatory TF+/TREM (triggered receptor expressed on myeloid cells) 1+ macrophages requiring F7. As early as 7 days after MI, macrophage F7 deletion led to an expansion of reparative Olfml 3 (olfactomedin-like protein 3)+ macrophages and, conversely, to a reduction of TF+/TREM1+ macrophages, which were also reduced in PAR2R38E mice. Short-term treatment from days 1 to 5 after nonreperfused MI with a monoclonal antibody inhibiting the macrophage TF-FVIIa-PAR2 signaling complex without anticoagulant activity improved cardiac dysfunction, decreased excess fibrosis, attenuated vascular endothelial dysfunction, and increased survival 28 days after MI. CONCLUSIONS: Extravascular TF-FVIIa-PAR2 complex signaling drives inflammatory macrophage polarization in ischemic heart disease. Targeting this signaling complex for specific therapeutic macrophage reprogramming following MI attenuates cardiac fibrosis and improves cardiovascular function.


Assuntos
Macrófagos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio , Receptor PAR-2 , Remodelação Ventricular , Animais , Macrófagos/metabolismo , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/genética , Receptor PAR-2/metabolismo , Receptor PAR-2/genética , Receptor PAR-2/deficiência , Camundongos , Fator VIIa/metabolismo , Masculino , Transdução de Sinais , Camundongos Knockout , Fator de Crescimento Transformador beta1/metabolismo , Integrina beta1/metabolismo , Integrina beta1/genética , Tromboplastina/metabolismo , Tromboplastina/genética , Fibrose
11.
Proc Natl Acad Sci U S A ; 120(36): e2309389120, 2023 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-37639602

RESUMO

The amyloid-beta peptide (Aß) is a driver of Alzheimer's disease (AD). Aß monomers can aggregate and form larger soluble (oligomers/protofibrils) and insoluble (fibrils) forms. There is evidence that Aß protofibrils are the most toxic form, but the reasons are not known. Consistent with a critical role for this form of Aß in AD, a recently FDA-approved therapeutic antibody targeted against protofibrils, lecanemab, slows the progression of AD in patients. The plasma contact system, which can promote coagulation and inflammation, has been implicated in AD pathogenesis. This system is activated by Aß which could lead to vascular and inflammatory pathologies associated with AD. We show here that the contact system is preferentially activated by protofibrils of Aß. Aß protofibrils bind to coagulation factor XII and high molecular weight kininogen and accelerate the activation of the system. Furthermore, lecanemab blocks Aß protofibril activation of the contact system. This work provides a possible mechanism for Aß protofibril toxicity in AD and why lecanemab is therapeutically effective.


Assuntos
Doença de Alzheimer , Humanos , Peptídeos beta-Amiloides/toxicidade , Coagulação Sanguínea , Citoesqueleto , Fator XII
12.
Immunol Rev ; 312(1): 38-51, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35899405

RESUMO

Extracellular vesicles (EVs) are small membrane-bound vesicles released by cells under various conditions. They are found in the extracellular milieu in all biological fluids. As the concentrations, contents, and origin of EVs can change during inflammation, the assessment of EVs can be used as a proxy of cellular activation. Here, we review the literature regarding EVs, more particularly those released by platelets and their mother cells, the megakaryocytes. Their cargo includes cytokines, growth factors, organelles (mitochondria and proteasomes), nucleic acids (messenger and non-coding RNA), transcription factors, and autoantigens. EVs may thus contribute to intercellular communication by facilitating exchange of material between cells. EVs also interact with other molecules secreted by cells. In autoimmune diseases, EVs are associated with antibodies secreted by B cells. By definition, EVs necessarily comprise a phospholipid moiety, which is thus the target of secreted phospholipases also abundantly expressed in the extracellular milieu. We discuss how platelet-derived EVs, which represent the majority of the circulating EVs, may contribute to immunity through the activity of their cargo or in combination with the secretory interactome.


Assuntos
Vesículas Extracelulares , Ácidos Nucleicos , Autoantígenos/metabolismo , Citocinas/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Ácidos Nucleicos/metabolismo , Fosfolipases/metabolismo , Fosfolipídeos/metabolismo , RNA não Traduzido/metabolismo , Fatores de Transcrição
13.
Artigo em Inglês | MEDLINE | ID: mdl-39153052

RESUMO

The coagulation system is known to play an important role in cancer development and metastasis, but the precise mechanisms by which it does so remain incompletely understood. With this in mind, we provide an updated overview of the effects of TFPI-2, a protease inhibitor, on cancer development and metastasis. TFPI-2 interacts with the thrombin cascade and also employs other mechanisms to suppress cancer growth and dissemination, which include extracellular matrix stabilization, promotion of caspase-mediated cell apoptosis, inhibition of angiogenesis and transduction of intracellular signals. Down-regulation of TFPI-2 expression is well documented in numerous types of neoplasms, mainly via promoter methylation. However, the exact role of TFPI-2 in cancer progression and possible approaches to up-regulate TFPI-2 expression warrant further studies. Strategies to reactivate TFPI-2 may represent a promising direction for future anticancer studies and therapy development.

14.
J Cell Sci ; 136(18)2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37671502

RESUMO

Previous clinical studies and work in mouse models have indicated that platelets and microclots might enable the recruitment of immune cells to the pre-metastatic cancer niche, leading to efficacious extravasation of cancer cells through the vessel wall. Here, we investigated the interaction between platelets, endothelial cells, inflammatory cells, and engrafted human and zebrafish cancer cells by live-imaging studies in translucent zebrafish larvae, and show how clotting (and clot resolution) act as foci and as triggers for extravasation. Fluorescent tagging in each lineage revealed their dynamic behaviour and potential roles in these events, and we tested function by genetic and drug knockdown of the contributing players. Morpholino knockdown of fibrinogen subunit α (fga) and warfarin treatment to inhibit clotting both abrogated extravasation of cancer cells. The inflammatory phenotype appeared fundamental, and we show that forcing a pro-inflammatory, tnfa-positive phenotype is inhibitory to extravasation of cancer cells.


Assuntos
Neoplasias , Trombose , Animais , Camundongos , Humanos , Células Endoteliais/patologia , Peixe-Zebra , Neoplasias/genética , Neoplasias/patologia , Coagulação Sanguínea
15.
Stem Cells ; 42(2): 98-106, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37966945

RESUMO

Mesenchymal stem cells (MSCs) are multipotent cells that can differentiate into various cell types and secrete extracellular vesicles (EVs) that transport bioactive molecules and mediate intercellular communication. MSCs and MSC-derived EVs (MSC-EVs) have shown promising therapeutic effects in several diseases. However, their procoagulant activity and thrombogenic risk may limit their clinical safety. In this review, we summarize current knowledge on procoagulant molecules expressed on the surface of MSCs and MSC-EVs, such as tissue factor and phosphatidylserine. Moreover, we discuss how these molecules interact with the coagulation system and contribute to thrombus formation through different mechanisms. Additionally, various confounding factors, such as cell dose, tissue source, passage number, and culture conditions of MSCs and subpopulations of MSC-EVs, affect the expression of procoagulant molecules and procoagulant activity of MSCs and MSC-EVs. Therefore, herein, we summarize several strategies to reduce the surface procoagulant activity of MSCs and MSC-EVs, thereby aiming to improve their safety profile for clinical use.


Assuntos
Vesículas Extracelulares , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Trombose , Humanos , Células-Tronco Mesenquimais/metabolismo , Vesículas Extracelulares/metabolismo , Comunicação Celular , Transplante de Células-Tronco Mesenquimais/métodos , Trombose/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 44(3): 533-544, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38235555

RESUMO

Both hyperlipidemia and thrombosis contribute to the risks of atherosclerotic cardiovascular diseases, which are the leading cause of death and reduced quality of life in survivors worldwide. The accumulation of lipid-rich plaques on arterial walls eventually leads to the rupture or erosion of vulnerable lesions, triggering excessive blood clotting and leading to adverse thrombotic events. Lipoproteins are highly dynamic particles that circulate in blood, carry insoluble lipids, and are associated with proteins, many of which are involved in blood clotting. A growing body of evidence suggests a reciprocal regulatory relationship between blood clotting and lipid metabolism. In this review article, we summarize the observations that lipoproteins and lipids impact the hemostatic system, and the clotting-related proteins influence lipid metabolism. We also highlight the gaps that need to be filled in this area of research.


Assuntos
Aterosclerose , Trombose , Humanos , Qualidade de Vida , Coagulação Sanguínea , Aterosclerose/patologia , Fatores de Coagulação Sanguínea , Lipoproteínas , Fibrinólise
17.
Mol Ther ; 32(7): 2064-2079, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38715361

RESUMO

We investigated long-term human coagulation factor IX (huFIX) expression of a novel variant when delivered into mice and rhesus macaques and compared transduction efficiencies using two different adeno-associated virus (AAV) capsids. In hemophilic mice injected with KP1-packaged recombinant AAV (rAAV) expressing the hyperactive FIX variant specific activity plasma levels were 10-fold or 2-fold enhanced when compared with wild-type or Padua huFIX injected mice, respectively. In rhesus macaques AAV-LK03 capsid outperformed AAV-KP1 in terms of antigen expression and liver transduction. Two animals from each group showed sustained low-level huFIX expression at 3 months after administration, while one animal from each group lost huFIX mRNA and protein expression over time, despite comparable vector copies. We investigated whether epigenetic differences in the vector episomes could explain this loss of transcription. Cut&Tag analysis revealed lower levels of activating histone marks in the two animals that lost expression. When comparing rAAV genome associated histone modifications in rhesus macaques with those in mice injected with the same vector, the activating histone marks were starkly decreased in macaque-derived episomes. Differential epigenetic marking of AAV genomes may explain different expression profiles in mice and rhesus macaques, as well as the wide dose response variation observed in primates in both preclinical and human clinical trials.


Assuntos
Dependovirus , Epigênese Genética , Fator IX , Vetores Genéticos , Macaca mulatta , Animais , Fator IX/genética , Fator IX/metabolismo , Dependovirus/genética , Camundongos , Humanos , Vetores Genéticos/genética , Vetores Genéticos/administração & dosagem , Hemofilia B/genética , Hemofilia B/terapia , Transdução Genética , Terapia Genética/métodos
18.
Cell Mol Life Sci ; 81(1): 84, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38345631

RESUMO

C3G is a Rap1 GEF that plays a pivotal role in platelet-mediated processes such as angiogenesis, tumor growth, and metastasis by modulating the platelet secretome. Here, we explore the mechanisms through which C3G governs platelet secretion. For this, we utilized animal models featuring either overexpression or deletion of C3G in platelets, as well as PC12 cell clones expressing C3G mutants. We found that C3G specifically regulates α-granule secretion via PKCδ, but it does not affect δ-granules or lysosomes. C3G activated RalA through a GEF-dependent mechanism, facilitating vesicle docking, while interfering with the formation of the trans-SNARE complex, thereby restricting vesicle fusion. Furthermore, C3G promotes the formation of lamellipodia during platelet spreading on specific substrates by enhancing actin polymerization via Src and Rac1-Arp2/3 pathways, but not Rap1. Consequently, C3G deletion in platelets favored kiss-and-run exocytosis. C3G also controlled granule secretion in PC12 cells, including pore formation. Additionally, C3G-deficient platelets exhibited reduced phosphatidylserine exposure, resulting in decreased thrombin generation, which along with defective actin polymerization and spreading, led to impaired clot retraction. In summary, platelet C3G plays a dual role by facilitating platelet spreading and clot retraction through the promotion of outside-in signaling while concurrently downregulating α-granule secretion by restricting granule fusion.


Assuntos
Actinas , Plaquetas , Retração do Coágulo , Fator 2 de Liberação do Nucleotídeo Guanina , Animais , Actinas/metabolismo , Plaquetas/metabolismo , Exocitose/fisiologia , Hemostasia , Fator 2 de Liberação do Nucleotídeo Guanina/metabolismo
19.
J Med Genet ; 61(8): 769-776, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38719348

RESUMO

BACKGROUND: Exploring the expression of X linked disorders like haemophilia A (HA) in females involves understanding the balance achieved through X chromosome inactivation (XCI). Skewed XCI (SXCI) may be involved in symptomatic HA carriers. We aimed to develop an approach for dissecting the specific cause of SXCI and verify its value in HA. METHODS: A family involving three females (two symptomatic with severe/moderate HA: I.2, the mother, and II.1, the daughter; one asymptomatic: II.2) and two related affected males (I.1, the father and I.3, the maternal uncle) was studied. The genetic analysis included F8 mutational screening, multiplex ligation-dependent probe amplification, SNP microarray, whole exome sequencing (WES) and Sanger sequencing. XCI patterns were assessed in ectoderm/endoderm and mesoderm-derived tissues using AR-based and RP2-based systems. RESULTS: The comprehensive family analysis identifies I.2 female patient as a heterozygous carrier of F8:p.(Ser1414Ter) excluding copy number variations. A consistent XCI pattern of 99.5% across various tissues was observed. A comprehensive filtering algorithm for WES data was designed, developed and applied to I.2. A Gly58Arg missense variant in VMA21 was revealed as the cause for SXCI.Each step of the variant filtering system takes advantage of publicly available genomic databases, non-SXCI controls and case-specific molecular data, and aligns with established concepts in the theoretical background of SXCI. CONCLUSION: This study acts as a proof of concept for our genomic filtering algorithm's clinical utility in analysing X linked disorders. Our findings clarify the molecular aspects of SXCI and improve genetic diagnostics and counselling for families with X linked diseases like HA.


Assuntos
Hemofilia A , Linhagem , Inativação do Cromossomo X , Humanos , Inativação do Cromossomo X/genética , Feminino , Hemofilia A/genética , Masculino , Algoritmos , Sequenciamento do Exoma/métodos , Fator VIII/genética , Cromossomos Humanos X/genética , Genômica/métodos , Variações do Número de Cópias de DNA/genética , Mutação/genética , Adulto
20.
Bioessays ; 45(12): e2300077, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37750435

RESUMO

In the context of macroevolutionary transitions, environmental changes prompted vertebrates already bearing genetic variations to undergo gradual adaptations resulting in profound anatomical, physiological, and behavioral adaptations. The emergence of new genes led to the genetic variation essential in metazoan evolution, just as was gene loss, both sources of genetic variation resulting in adaptive phenotypic diversity. In this context, F12-coding protein with defense and hemostatic roles emerged some 425 Mya, and it might have contributed in aquatic vertebrates to the transition from water-to-land. Conversely, the F12 loss in marine, air-breathing mammals like cetaceans has been associated with phenotypic adaptations in some terrestrial mammals in their transition to aquatic lifestyle. More recently, the advent of technological innovations in western lifestyle with blood-contacting devices and harmful environmental nanoparticles, has unfolded new roles of FXII. Environment operates as either a positive or a relaxed selective pressure on genes, and consequently genes are selected or lost. FXII, an old dog facing environmental novelties can learn new tricks and teach us new therapeutic avenues.


Assuntos
Cetáceos , Vertebrados , Animais , Cetáceos/genética , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA