Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 205
Filtrar
1.
J Biol Chem ; 299(11): 105282, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37742923

RESUMO

The intracellular domains of connexins are essential for the assembly of gap junctions. For connexin 36 (Cx36), the major neuronal connexin, it has been shown that a dysfunctional PDZ-binding motif interferes with electrical synapse formation. However, it is still unknown how this motif coordinates the transport of Cx36. In the present study, we characterize a phenotype of Cx36 mutants that lack a functional PDZ-binding motif using HEK293T cells as an expression system. We provide evidence that an intact PDZ-binding motif is critical for proper endoplasmic reticulum (ER) export of Cx36. Removing the PDZ-binding motif of Cx36 results in ER retention and the formation of multimembrane vesicles containing gap junction-like connexin aggregates. Using a combination of site-directed mutagenesis and electron micrographs, we reveal that these vesicles consist of Cx36 channels that docked prematurely in the ER. Our data suggest a model in which ER-retained Cx36 channels reshape the ER membrane into concentric whorls that are released into the cytoplasm.


Assuntos
Conexinas , Retículo Endoplasmático , Junções Comunicantes , Humanos , Conexinas/genética , Conexinas/metabolismo , Retículo Endoplasmático/metabolismo , Junções Comunicantes/metabolismo , Células HEK293 , Domínios Proteicos , Motivos de Aminoácidos , Sinapses Elétricas/fisiologia , Mutação , Transporte Proteico/genética , Vesículas Sinápticas/patologia , Vesículas Sinápticas/ultraestrutura , Microscopia Eletrônica de Varredura , Proteína delta-2 de Junções Comunicantes
2.
Cell Mol Life Sci ; 80(11): 340, 2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37898985

RESUMO

Increasing evidence implicates astrocytic dysfunction in Alzheimer's disease (AD), a neurodegenerative disorder characterised by progressive cognitive loss. The accumulation of amyloid-ß (Aß) plaques is a histopathological hallmark of AD and associated with increased astrocyte reactivity. In APP/PS1 mice modelling established AD (9 months), we now show an altered astrocytic morphology and enhanced activity of astrocytic hemichannels, mainly composed by connexin 43 (Cx43). Hemichannel activity in hippocampal astrocytes is also increased in two models of early AD: (1) mice with intracerebroventricular (icv) administration of Aß1-42, and (2) hippocampal slices superfused with Aß1-42 peptides. In hippocampal gliosomes of APP/PS1 mice, Cx43 levels were increased, whereas mice administered icv with Aß1-42 only displayed increased Cx43 phosphorylation levels. This suggests that hemichannel activity might be differentially modulated throughout AD progression. Additionally, we tested if adenosine A2A receptor (A2AR) blockade reversed alterations of astrocytic hemichannel activity and found that the pharmacological blockade or genetic silencing (global and astrocytic) of A2AR prevented Aß-induced hemichannel dysregulation in hippocampal slices, although A2AR genetic silencing increased the activity of astroglial hemichannels in control conditions. In primary cultures of astrocytes, A2AR-related protective effect was shown to occur through a protein kinase C (PKC) pathway. Our results indicate that the dysfunction of hemichannel activity in hippocampal astrocytes is an early event in AD, which is modulated by A2AR.


Assuntos
Doença de Alzheimer , Camundongos , Animais , Doença de Alzheimer/metabolismo , Astrócitos/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Adenosina/metabolismo , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças
3.
Biol Res ; 57(1): 15, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576018

RESUMO

BACKGROUND: Alcohol, a widely abused drug, significantly diminishes life quality, causing chronic diseases and psychiatric issues, with severe health, societal, and economic repercussions. Previously, we demonstrated that non-voluntary alcohol consumption increases the opening of Cx43 hemichannels and Panx1 channels in astrocytes from adolescent rats. However, whether ethanol directly affects astroglial hemichannels and, if so, how this impacts the function and survival of astrocytes remains to be elucidated. RESULTS: Clinically relevant concentrations of ethanol boost the opening of Cx43 hemichannels and Panx1 channels in mouse cortical astrocytes, resulting in the release of ATP and glutamate. The activation of these large-pore channels is dependent on Toll-like receptor 4, P2X7 receptors, IL-1ß and TNF-α signaling, p38 mitogen-activated protein kinase, and inducible nitric oxide (NO) synthase. Notably, the ethanol-induced opening of Cx43 hemichannels and Panx1 channels leads to alterations in cytokine secretion, NO production, gliotransmitter release, and astrocyte reactivity, ultimately impacting survival. CONCLUSION: Our study reveals a new mechanism by which ethanol impairs astrocyte function, involving the sequential stimulation of inflammatory pathways that further increase the opening of Cx43 hemichannels and Panx1 channels. We hypothesize that targeting astroglial hemichannels could be a promising pharmacological approach to preserve astrocyte function and synaptic plasticity during the progression of various alcohol use disorders.


Assuntos
Alcoolismo , Conexina 43 , Camundongos , Ratos , Animais , Conexina 43/metabolismo , Astrócitos/metabolismo , Etanol/toxicidade , Etanol/metabolismo , Alcoolismo/metabolismo , Células Cultivadas , Conexinas/metabolismo , Proteínas do Tecido Nervoso/metabolismo
4.
Biol Res ; 57(1): 19, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689353

RESUMO

BACKGROUND: Astrocytes Ca2+ signaling play a central role in the modulation of neuronal function. Activation of metabotropic glutamate receptors (mGluR) by glutamate released during an increase in synaptic activity triggers coordinated Ca2+ signals in astrocytes. Importantly, astrocytes express the Ca2+-dependent nitric oxide (NO)-synthetizing enzymes eNOS and nNOS, which might contribute to the Ca2+ signals by triggering Ca2+ influx or ATP release through the activation of connexin 43 (Cx43) hemichannels, pannexin-1 (Panx-1) channels or Ca2+ homeostasis modulator 1 (CALHM1) channels. Hence, we aim to evaluate the participation of NO in the astrocytic Ca2+ signaling initiated by stimulation of mGluR in primary cultures of astrocytes from rat brain cortex. RESULTS: Astrocytes were stimulated with glutamate or t-ACPD and NO-dependent changes in [Ca2+]i and ATP release were evaluated. In addition, the activity of Cx43 hemichannels, Panx-1 channels and CALHM1 channels was also analyzed. The expression of Cx43, Panx-1 and CALHM1 in astrocytes was confirmed by immunofluorescence analysis and both glutamate and t-ACPD induced NO-mediated activation of CALHM1 channels via direct S-nitrosylation, which was further confirmed by assessing CALHM1-mediated current using the two-electrode voltage clamp technique in Xenopus oocytes. Pharmacological blockade or siRNA-mediated inhibition of CALHM1 expression revealed that the opening of these channels provides a pathway for ATP release and the subsequent purinergic receptor-dependent activation of Cx43 hemichannels and Panx-1 channels, which further contributes to the astrocytic Ca2+ signaling. CONCLUSIONS: Our findings demonstrate that activation of CALHM1 channels through NO-mediated S-nitrosylation in astrocytes in vitro is critical for the generation of glutamate-initiated astrocytic Ca2+ signaling.


Assuntos
Astrócitos , Sinalização do Cálcio , Óxido Nítrico , Animais , Ratos , Astrócitos/metabolismo , Astrócitos/efeitos dos fármacos , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Conexina 43/metabolismo , Ácido Glutâmico/metabolismo , Óxido Nítrico/metabolismo , Ratos Wistar
5.
Int J Mol Sci ; 25(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39000353

RESUMO

Connexins (Cxs) are transmembrane proteins that assemble into gap junction channels (GJCs) and hemichannels (HCs). Previous researches support the involvement of Rho GTPases and actin microfilaments in the trafficking of Cxs, formation of GJCs plaques, and regulation of channel activity. Nonetheless, it remains uncertain whether distinct types of Cxs HCs and GJCs respond differently to Rho GTPases or changes in actin polymerization/depolymerization dynamics. Our investigation revealed that inhibiting RhoA, a small GTPase that controls actin polymerization, or disrupting actin microfilaments with cytochalasin B (Cyto-B), resulted in reduced GJCs plaque size at appositional membranes and increased transport of HCs to non-appositional plasma membrane regions. Notably, these effects were consistent across different Cx types, since Cx26 and Cx43 exhibited similar responses, despite having distinct trafficking routes to the plasma membrane. Functional assessments showed that RhoA inhibition and actin depolymerization decreased the activity of Cx43 GJCs while significantly increasing HC activity. However, the functional status of GJCs and HCs composed of Cx26 remained unaffected. These results support the hypothesis that RhoA, through its control of the actin cytoskeleton, facilitates the transport of HCs to appositional cell membranes for GJCs formation while simultaneously limiting the positioning of free HCs at non-appositional cell membranes, independently of Cx type. This dynamic regulation promotes intercellular communications and reduces non-selective plasma membrane permeability through a Cx-type dependent mechanism, whereby the activity of Cx43 HCs and GJCs are differentially affected but Cx26 channels remain unchanged.


Assuntos
Citoesqueleto de Actina , Conexina 26 , Conexina 43 , Junções Comunicantes , Proteína rhoA de Ligação ao GTP , Citoesqueleto de Actina/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Junções Comunicantes/metabolismo , Conexina 43/metabolismo , Conexina 26/metabolismo , Humanos , Animais , Membrana Celular/metabolismo , Actinas/metabolismo
6.
J Neuroinflammation ; 20(1): 191, 2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37599352

RESUMO

Depression is a common mood disorder characterized by a range of clinical symptoms, including prolonged low mood and diminished interest. Although many clinical and animal studies have provided significant insights into the pathophysiology of depression, current treatment strategies are not sufficient to manage this disorder. It has been suggested that connexin (Cx)-based hemichannels are candidates for depression intervention by modifying the state of neuroinflammation. In this study, we investigated the antidepressant-like effect of a recently discovered selective Cx hemichannel inhibitor, a small organic molecule called D4. We first showed that D4 reduced hemichannel activity following systemic inflammation after LPS injections. Next, we found that D4 treatment prevented LPS-induced inflammatory response and depressive-like behaviors. These behavioral effects were accompanied by reduced astrocytic activation and hemichannel activity in depressive-like mice induced by repeated low-dose LPS challenges. D4 treatment also reverses depressive-like symptoms in mice subjected to chronic restraint stress (CRS). To test whether D4 broadly affected neural activity, we measured c-Fos expression in depression-related brain regions and found a reduction in c-Fos+ cells in different brain regions. D4 significantly normalized CRS-induced hypoactivation in several brain regions, including the hippocampus, entorhinal cortex, and lateral septum. Together, these results indicate that blocking Cx hemichannels using D4 can normalize neuronal activity and reduce depressive-like symptoms in mice by reducing neuroinflammation. Our work provides evidence of the antidepressant-like effect of D4 and supports glial Cx hemichannels as potential therapeutic targets for depression.


Assuntos
Lipopolissacarídeos , Doenças Neuroinflamatórias , Animais , Camundongos , Lipopolissacarídeos/toxicidade , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Conexinas , Córtex Entorrinal
7.
FASEB J ; 36(2): e22134, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35061296

RESUMO

Astrocytes release gliotransmitters via connexin 43 (Cx43) hemichannels into neighboring synapses, which can modulate synaptic activity and are necessary for fear memory consolidation. However, the gliotransmitters released, and their mechanisms of action remain elusive. Here, we report that fear conditioning training elevated Cx43 hemichannel activity in astrocytes from the basolateral amygdala (BLA). The selective blockade of Cx43 hemichannels by microinfusion of TAT-Cx43L2 peptide into the BLA induced memory deficits 1 and 24 h after training, without affecting learning. The memory impairments were prevented by the co-injection of glutamate and D-serine, but not by the injection of either alone, suggesting a role for NMDA receptors (NMDAR). The incubation with TAT-Cx43L2 decreased NMDAR-mediated currents in BLA slices, effect that was also prevented by the addition of glutamate and D-serine. NMDARs in primary neuronal cultures were unaffected by TAT-Cx43L2, ruling out direct effects of the peptide on NMDARs. Finally, we show that D-serine permeates through purified Cx43 hemichannels reconstituted in liposomes. We propose that the release of glutamate and D-serine from astrocytes through Cx43 hemichannels is necessary for the activation of post-synaptic NMDARs during training, to allow for the formation of short-term and subsequent long-term memory, but not for learning per se.


Assuntos
Astrócitos/metabolismo , Complexo Nuclear Basolateral da Amígdala/metabolismo , Conexina 43/metabolismo , Medo/fisiologia , Memória de Curto Prazo/fisiologia , Neurotransmissores/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animais , Ácido Glutâmico/metabolismo , Masculino , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Serina/metabolismo
8.
Cell Commun Signal ; 21(1): 263, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37770948

RESUMO

BACKGROUND: Without a viable cure, chronic kidney disease is a global health concern. Inflammatory damage in and around the renal tubules dictates disease severity and is contributed to by multiple cell types. Activated in response to danger associated molecular patterns (DAMPs) including ATP, the NOD-like receptor protein-3 (NLRP3) inflammasome is integral to this inflammation. In vivo, we have previously observed that increased expression of Connexin 43 (Cx43) is linked to inflammation in chronic kidney disease (CKD) whilst in vitro studies in human proximal tubule cells highlight a role for aberrant Cx43 hemichannel mediated ATP release in tubule injury. A role for Cx43 hemichannels in priming and activation of the NLRP3 inflammasome in tubule epithelial cells remains to be determined. METHODS: Using the Nephroseq database, analysis of unpublished transcriptomic data, examined gene expression and correlation in human CKD. The unilateral ureteral obstruction (UUO) mouse model was combined with genetic (tubule-specific Cx43 knockout) and specific pharmacological blockade of Cx43 (Peptide5), to explore a role for Cx43-hemichannels in tubule damage. Human primary tubule epithelial cells were used as an in vitro model of CKD. RESULTS: Increased Cx43 and NLRP3 expression correlates with declining glomerular filtration rate and increased proteinuria in biopsies isolated from patients with CKD. Connexin 43-tubule deletion prior to UUO protected against tubular injury, increased expression of proinflammatory molecules, and significantly reduced NLRP3 expression and downstream signalling mediators. Accompanied by a reduction in F4/80 macrophages and fibroblast specific protein (FSP1+) fibroblasts, Cx43 specific hemichannel blocker Peptide5 conferred similar protection in UUO mice. In vitro, Peptide5 determined that increased Cx43-hemichannel activity primes and activates the NLRP3 inflammasome via ATP-P2X7 receptor signalling culminating in increased secretion of chemokines and cytokines, each of which are elevated in individuals with CKD. Inhibition of NLRP3 and caspase 1 similarly decreased markers of tubular injury, whilst preventing the perpetual increase in Cx43-hemichannel activity. CONCLUSION: Aberrant Cx43-hemichannel activity in kidney tubule cells contributes to tubule inflammation via activation of the NLRP3 inflammasome and downstream paracrine mediated cell signalling. Use of hemichannel blockers in targeting Cx43-hemichannels is an attractive future therapeutic target to slow or prevent disease progression in CKD. Video Abstract.


Assuntos
Conexina 43 , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Insuficiência Renal Crônica , Animais , Humanos , Camundongos , Trifosfato de Adenosina/metabolismo , Conexina 43/metabolismo , Inflamassomos/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
9.
Behav Brain Funct ; 19(1): 23, 2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38110991

RESUMO

As a kind of environmental noise, infrasonic noise has negative effects on various human organs. To date, research has shown that infrasound impairs cognitive function, especially the ability for learning and memory. Previously, we demonstrated that impaired learning and memory induced by infrasound was closely related with glia activation; however, the underlying mechanisms remain unclear. Connexin 43 hemichannels (Cx43 HCs), which are mainly expressed in hippocampal astrocytes, are activated under pathological conditions, lending support to the hypothesis that Cx43 HCs might function in the impaired learning and memory induced by infrasound. This study revealed that that blocking hippocampal Cx43 HCs or downregulating hippocampal Cx43 expression significantly alleviated impaired learning and memory induced by infrasound. We also observed that infrasound exposure led to the abundant release of glutamate and ATP through Cx43 HCs. In addition, the abundant release of glutamate and ATP depended on proinflammatory cytokines. Our finds suggested that the enhanced release of ATP and glutamate by astroglial Cx43 HCs may be involved in the learning and memory deficits caused by infrasound exposure.


Assuntos
Astrócitos , Conexina 43 , Humanos , Astrócitos/metabolismo , Conexina 43/metabolismo , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Glutamatos/metabolismo , Glutamatos/farmacologia , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
10.
Biol Res ; 56(1): 56, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37876016

RESUMO

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes the ongoing coronavirus disease 2019 (COVID-19). An aspect of high uncertainty is whether the SARS-CoV-2 per se or the systemic inflammation induced by viral infection directly affects cellular function and survival in different tissues. It has been postulated that tissue dysfunction and damage observed in COVID-19 patients may rely on the direct effects of SARS-CoV-2 viral proteins. Previous evidence indicates that the human immunodeficiency virus and its envelope protein gp120 increase the activity of connexin 43 (Cx43) hemichannels with negative repercussions for cellular function and survival. Here, we evaluated whether the spike protein S1 of SARS-CoV-2 could impact the activity of Cx43 hemichannels. RESULTS: We found that spike S1 time and dose-dependently increased the activity of Cx43 hemichannels in HeLa-Cx43 cells, as measured by dye uptake experiments. These responses were potentiated when the angiotensin-converting enzyme 2 (ACE2) was expressed in HeLa-Cx43 cells. Patch clamp experiments revealed that spike S1 increased unitary current events with conductances compatible with Cx43 hemichannels. In addition, Cx43 hemichannel opening evoked by spike S1 triggered the release of ATP and increased the [Ca2+]i dynamics elicited by ATP. CONCLUSIONS: We hypothesize that Cx43 hemichannels could represent potential pharmacological targets for developing therapies to counteract SARS-CoV-2 infection and their long-term consequences.


Assuntos
COVID-19 , Conexina 43 , Humanos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Trifosfato de Adenosina
11.
Int J Mol Sci ; 24(3)2023 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-36768481

RESUMO

Neurulation is a crucial process in the formation of the central nervous system (CNS), which begins with the folding and fusion of the neural plate, leading to the generation of the neural tube and subsequent development of the brain and spinal cord. Environmental and genetic factors that interfere with the neurulation process promote neural tube defects (NTDs). Connexins (Cxs) are transmembrane proteins that form gap junctions (GJs) and hemichannels (HCs) in vertebrates, allowing cell-cell (GJ) or paracrine (HCs) communication through the release of ATP, glutamate, and NAD+; regulating processes such as cell migration and synaptic transmission. Changes in the state of phosphorylation and/or the intracellular redox potential activate the opening of HCs in different cell types. Cxs such as Cx43 and Cx32 have been associated with proliferation and migration at different stages of CNS development. Here, using molecular and cellular biology techniques (permeability), we demonstrate the expression and functionality of HCs-Cxs, including Cx46 and Cx32, which are associated with the release of ATP during the neurulation process in Xenopus laevis. Furthermore, applications of FGF2 and/or changes in intracellular redox potentials (DTT), well known HCs-Cxs modulators, transiently regulated the ATP release in our model. Importantly, the blockade of HCs-Cxs by carbenoxolone (CBX) and enoxolone (ENX) reduced ATP release with a concomitant formation of NTDs. We propose two possible and highly conserved binding sites (N and E) in Cx46 that may mediate the pharmacological effect of CBX and ENX on the formation of NTDs. In summary, our results highlight the importance of ATP release mediated by HCs-Cxs during neurulation.


Assuntos
Conexinas , Defeitos do Tubo Neural , Animais , Conexinas/metabolismo , Neurulação , Junções Comunicantes/metabolismo , Tubo Neural/metabolismo , Defeitos do Tubo Neural/metabolismo , Trifosfato de Adenosina/metabolismo
12.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958624

RESUMO

Glial reactivity is considered a hallmark of damage-induced innate immune responses in the central nervous system. In the visual system, unilateral optic nerve damage elicits dramatic glial reactivity in the retina directly affected by the lesion and a similar, albeit more modest, effect in the contralateral eye. Evaluation of astrocyte changes in a mouse model of optic nerve crush indicates that astrocyte reactivity, as a function of retinal coverage and cellular hypertrophy, occurs within both the experimental and contralateral retinas, although the hypertrophic response of the astrocytes in the contralateral eyes is delayed for at least 24 h. Evaluation of astrocytic reactivity as a function of Gfap expression indicates a similar, muted but significant, response in contralateral eyes. This constrained glial response is completely negated by conditional knock out of Panx1 in both astrocytes and Müller cells. Further studies are required to identify if this is an autocrine or a paracrine suppression of astroglial reactivity.


Assuntos
Astrócitos , Traumatismos do Nervo Óptico , Camundongos , Animais , Astrócitos/metabolismo , Neuroglia/metabolismo , Retina/metabolismo , Traumatismos do Nervo Óptico/metabolismo , Nervo Óptico/patologia , Proteína Glial Fibrilar Ácida/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Conexinas/metabolismo
13.
Exp Eye Res ; 215: 108911, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34958779

RESUMO

The inflammasome pathway is a fundamental component of the innate immune system, playing a key role especially in chronic age-related eye diseases (AREDs). The inflammasome is of particular interest because it is a common disease pathway that once instigated, can amplify and perpetuate itself leading to chronic inflammation. With aging, it becomes more difficult to shut down inflammation after an insult but the common pathway means that a shared solution may be feasible that could be effective across multiple disease indications. This review focusses on the NLRP3 inflammasome, the most studied and characterized inflammasome in the eye. It describes the two-step signalling required for NLRP3 inflammasome complex activation, and provides evidence for its role in AREDs. In the final section, the article gives an overview of potential NLRP3 inflammasome targeting therapies, before presenting evidence for connexin hemichannel regulators as upstream blockers of inflammasome activation. These have shown therapeutic efficacy in multiple ocular disease models.


Assuntos
Oftalmopatias , Inflamassomos , Animais , Doença Crônica , Conexinas , Humanos , Inflamassomos/metabolismo , Inflamação/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
14.
Cell Biol Int ; 46(2): 323-330, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34719065

RESUMO

Epithelial-mesenchymal transition (EMT) occurs when polarised epithelial cells change to a mesenchymal phenotype. EMT plays a role in several chronic conditions, including ocular diseases with retinal pigment epithelium (RPE) EMT associated with retinal diseases such as diabetic retinopathy (DR). Here, EMT results in breakdown of the blood-retinal barrier (BRB) leading to sub-retinal fluid deposition and retinal detachment. Previous studies have shown that blocking connexin43 (Cx43) hemichannels can protect against RPE BRB breakdown, but the underlying mechanism is unknown. To determine whether open Cx43 hemichannels may enable EMT of RPE cells and thus result in BRB breakdown, ARPE-19 cells were either challenged with high glucose plus the inflammatory cytokines IL-1ß and TNF-α (HG + Cyt) to simulate DR or treated with the Cx43 hemichannel blocker tonabersat alongside the HG + Cyt challenge. HG + Cyt induced a morphological change in RPE cells to a fibroblastic phenotype with a corresponding decrease in epithelial zonular occludens-1 and an increase in the fibroblastic marker α-SMA. The HG + Cyt challenge also induced loss of transepithelial electrical resistance while increasing dye passage between RPE cells. All of these changes were significantly reduced with tonabersat treatment, which also prevented HG + Cyt-induced transforming growth factor-ß2 (TGF-ß2) release. In conclusion, Cx43 hemichannel block with tonabersat attenuated both TGF-ß2 release and RPE EMT under disease-mimicking conditions, offering the potential to ameliorate the progression of EMT-associated retinal diseases.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta2 , Conexina 43/metabolismo , Células Epiteliais/metabolismo , Humanos , Epitélio Pigmentado da Retina/metabolismo , Fator de Crescimento Transformador beta2/metabolismo , Fator de Crescimento Transformador beta2/farmacologia , Regulação para Cima
15.
Exp Cell Res ; 407(2): 112823, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34506760

RESUMO

Cell transdifferentiation is the conversion of a cell type to another without requiring passage through a pluripotent cell state, and encompasses epithelial- and endothelial-mesenchymal transition (EMT and EndMT). EMT and EndMT are well defined processes characterized by a loss of epithelial/endothelial phenotype and gain in mesenchymal spindle shaped morphology, which results in increased cell migration and decreased apoptosis and cellular senescence. Such cells often develop invasive properties. Physiologically, these processes may occur during embryonic development and can resurface, for example, to promote wound healing in later life. However, they can also be a pathological process. In the eye, EMT, EndMT and cell transdifferentiation have all been implicated in development, homeostasis, and multiple diseases affecting different parts of the eye. Connexins, constituents of connexin hemichannels and intercellular gap junctions, have been implicated in many of these processes. In this review, we firstly provide an overview of the molecular mechanisms induced by transdifferentiation (including EMT and EndMT) and its involvement in eye diseases. We then review the literature for the role of connexins in transdifferentiation in the eye and eye diseases. The evidence presented in this review supports the need for more studies into the therapeutic potential for connexin modulators in prevention and treatment of transdifferentiation related eye diseases, but does indicate that connexin channel modulation may be an upstream and unifying approach for regulating these otherwise complex processes.


Assuntos
Transdiferenciação Celular , Conexinas/metabolismo , Transição Epitelial-Mesenquimal , Oftalmopatias/patologia , Fator de Crescimento Transformador beta/metabolismo , Animais , Oftalmopatias/metabolismo , Humanos , Transdução de Sinais
16.
Cell Mol Life Sci ; 78(7): 3087-3103, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33388835

RESUMO

Radiotherapy is an effective treatment for breast cancer and other thoracic tumors. However, while high-energy radiotherapy treatment successfully kills cancer cells, radiation exposure of the heart and large arteries cannot always be avoided, resulting in secondary cardiovascular disease in cancer survivors. Radiation-induced changes in the cardiac vasculature may thereby lead to coronary artery atherosclerosis, which is a major cardiovascular complication nowadays in thoracic radiotherapy-treated patients. The underlying biological and molecular mechanisms of radiation-induced atherosclerosis are complex and still not fully understood, resulting in potentially improper radiation protection. Ionizing radiation (IR) exposure may damage the vascular endothelium by inducing DNA damage, oxidative stress, premature cellular senescence, cell death and inflammation, which act to promote the atherosclerotic process. Intercellular communication mediated by connexin (Cx)-based gap junctions and hemichannels may modulate IR-induced responses and thereby the atherosclerotic process. However, the role of endothelial Cxs and their channels in atherosclerotic development after IR exposure is still poorly defined. A better understanding of the underlying biological pathways involved in secondary cardiovascular toxicity after radiotherapy would facilitate the development of effective strategies that prevent or mitigate these adverse effects. Here, we review the possible roles of intercellular Cx driven signaling and communication in radiation-induced atherosclerosis.


Assuntos
Aterosclerose/patologia , Comunicação Celular , Conexinas/metabolismo , Junções Comunicantes/fisiologia , Radiação Ionizante , Animais , Aterosclerose/etiologia , Aterosclerose/metabolismo , Humanos , Transdução de Sinais
17.
Int J Mol Sci ; 23(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35806312

RESUMO

Microcirculation homeostasis depends on several channels permeable to ions and/or small molecules that facilitate the regulation of the vasomotor tone, hyperpermeability, the blood-brain barrier, and the neurovascular coupling function. Connexin (Cxs) and Pannexin (Panxs) large-pore channel proteins are implicated in several aspects of vascular physiology. The permeation of ions (i.e., Ca2+) and key metabolites (ATP, prostaglandins, D-serine, etc.) through Cxs (i.e., gap junction channels or hemichannels) and Panxs proteins plays a vital role in intercellular communication and maintaining vascular homeostasis. Therefore, dysregulation or genetic pathologies associated with these channels promote deleterious tissue consequences. This review provides an overview of current knowledge concerning the physiological role of these large-pore molecule channels in microcirculation (arterioles, capillaries, venules) and in the neurovascular coupling function.


Assuntos
Conexinas , Acoplamento Neurovascular , Conexinas/metabolismo , Junções Comunicantes/metabolismo , Canais Iônicos/metabolismo , Microcirculação
18.
Int J Mol Sci ; 23(21)2022 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-36362291

RESUMO

Osteoporosis and sarcopenia (termed "Osteosarcopenia"), the twin-aging diseases, are major contributors to reduced bone mass and muscle weakness in the elderly population. Connexin 43 (Cx43) in osteocytes has been previously reported to play vital roles in bone homeostasis and muscle function in mature mice. The Cx43-formed gap junctions (GJs) and hemichannels (HCs) in osteocytes are important portals for the exchange of small molecules in cell-to-cell and cell-to-extracellular matrix, respectively. However, the roles of Cx43-based GJs and HCs in both bone and muscle aging are still unclear. Here, we used two transgenic mouse models with overexpression of the dominant negative Cx43 mutants primarily in osteocytes driven by the 10-kb Dmp1 promoter, R76W mice (inhibited gap junctions but enhanced hemichannels) and Δ130-136 mice (both gap junction and hemichannels are inhibited), to determine the actions of Cx43-based hemichannels (HCs) and gap junctions (GJs) in the regulation of bone and skeletal muscle from aged mice (18 months) as compared with those from adult mice (10 months). We demonstrated that enhancement of Cx43 HCs reduces bone mass due to increased osteoclast surfaces while the impairment of Cx43 HCs increases osteocyte apoptosis in aged mice caused by reduced PGE2 levels. Furthermore, altered mitochondrial homeostasis with reduced expression of Sirt-1, OPA-1, and Drp-1 resulted in excessive ROS level in muscle soleus (SL) of aged transgenic mice. In vitro, the impairment of Cx43 HCs in osteocytes from aged mice also promoted muscle collagen synthesis through activation of TGFß/smad2/3 signaling because of reduced PGE2 levels in the PO CM. These findings indicate that the enhancement of Cx43 HCs while GJs are inhibited reduces bone mass, and the impairment of Cx43 HCs inhibits PGE2 level in osteocytes and this reduction promotes muscle collagen synthesis in skeletal muscle through activation of TGFß/smad2/3 signaling, which together with increased ROS level contributes to reduced muscle force in aged mice.


Assuntos
Conexina 43 , Osteócitos , Animais , Masculino , Camundongos , Colágeno/metabolismo , Conexina 43/genética , Conexina 43/metabolismo , Dinoprostona/metabolismo , Junções Comunicantes/metabolismo , Camundongos Transgênicos , Músculo Esquelético/metabolismo , Osteócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fator de Crescimento Transformador beta/metabolismo
19.
Int J Mol Sci ; 23(21)2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36362410

RESUMO

Gamma-Aminobutyric acid (GABA) is the primary inhibitory neurotransmitter in the brain. It is produced by interneurons and recycled by astrocytes. In neurons, GABA activates the influx of Cl- via the GABAA receptor or efflux or K+ via the GABAB receptor, inducing hyperpolarization and synaptic inhibition. In astrocytes, the activation of both GABAA and GABAB receptors induces an increase in intracellular Ca2+ and the release of glutamate and ATP. Connexin 43 (Cx43) hemichannels are among the main Ca2+-dependent cellular mechanisms for the astroglial release of glutamate and ATP. However, no study has evaluated the effect of GABA on astroglial Cx43 hemichannel activity and Cx43 hemichannel-mediated gliotransmission. Here we assessed the effects of GABA on Cx43 hemichannel activity in DI NCT1 rat astrocytes and hippocampal brain slices. We found that GABA induces a Ca2+-dependent increase in Cx43 hemichannel activity in astrocytes mediated by the GABAA receptor, as it was blunted by the GABAA receptor antagonist bicuculline but unaffected by GABAB receptor antagonist CGP55845. Moreover, GABA induced the Cx43 hemichannel-dependent release of glutamate and ATP, which was also prevented by bicuculline, but unaffected by CGP. Gliotransmission in response to GABA was also unaffected by pannexin 1 channel blockade. These results are discussed in terms of the possible role of astroglial Cx43 hemichannel-mediated glutamate and ATP release in regulating the excitatory/inhibitory balance in the brain and their possible contribution to psychiatric disorders.


Assuntos
Astrócitos , Conexina 43 , Ratos , Animais , Conexina 43/metabolismo , Astrócitos/metabolismo , Receptores de GABA-A , Bicuculina/farmacologia , Animais Recém-Nascidos , Células Cultivadas , Ácido Glutâmico/farmacologia , Ácido gama-Aminobutírico/farmacologia , Trifosfato de Adenosina/farmacologia
20.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-35054783

RESUMO

Of increasing prevalence, diabetes is characterised by elevated blood glucose and chronic inflammation that precedes the onset of multiple secondary complications, including those of the kidney and the eye. As the leading cause of end stage renal disease and blindness in the working population, more than ever is there a demand to develop clinical interventions which can both delay and prevent disease progression. Connexins are membrane bound proteins that can form pores (hemichannels) in the cell membrane. Gated by cellular stress and injury, they open under pathophysiological conditions and in doing so release 'danger signals' including adenosine triphosphate into the extracellular environment. Linked to sterile inflammation via activation of the nod-like receptor protein 3 inflammasome, targeting aberrant hemichannel activity and the release of these danger signals has met with favourable outcomes in multiple models of disease, including secondary complications of diabetes. In this review, we provide a comprehensive update on those studies which document a role for aberrant connexin hemichannel activity in the pathogenesis of both diabetic eye and kidney disease, ahead of evaluating the efficacy of blocking connexin-43 specific hemichannels in these target tissues on tissue health and function.


Assuntos
Conexina 43/metabolismo , Complicações do Diabetes/terapia , Olho/patologia , Inflamação/metabolismo , Inflamação/terapia , Rim/patologia , Animais , Humanos , Microvasos/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA