Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Reprod Biomed Online ; 48(2): 103330, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38163419

RESUMO

RESEARCH QUESTION: Is there a protective effect of the humanin derivative [Gly14]-humanin (HNG) on a D-gal-induced mouse model of primary ovarian insufficiency (POI), and what is the underlying mechanism? DESIGN: D-gal (200 mg/kg/day) was injected subcutaneously for 6 weeks to induce the mouse POI model. Mice treated with HNG were injected intraperitoneally with different concentrations for 6 weeks. Ovarian morphology, function, levels of sex hormones and states of oxidative stress in the ovary and body were evaluated. RESULTS: Compared with the D-gal group, 10 mg/kg HNG improved the abnormal ovarian morphology and oestrous cycle (P = 0.0036), increased the number of ovarian follicles (P = 0.0016) and litters (P = 0.0127), and increased the levels of oestrogen (P = 0.0043) and AMH (P = 0.0147). Antioxidant indicators in the ovaries and serum of mice, including total antioxidant capacity (P = 0.0004 and P = 0.0032, respectively), catalase (P = 0.0173 and P = 0.0103, respectively) and glutathione (both P < 0.0001) were significantly increased. The oxidation indicator malondialdehyde decreased significantly (all P < 0.01). Apoptosis of ovarian granulosa cells was significantly reduced (P = 0.0140) as was the expression of senescence-related proteins p53, p21 and p16 (all P < 0.01). The level of autophagy in ovarian tissue of mice treated with high increased (significantly increased LC3 protein [P < 0.0001] and significantly reduced p62 protein [P = 0.0007]). CONCLUSIONS: HNG inhibited D-gal-induced oxidative stress, apoptosis and ovarian damage, promoting ovarian autophagy. HNG may be a potential prophylactic agent against POI.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Insuficiência Ovariana Primária , Humanos , Feminino , Camundongos , Animais , Insuficiência Ovariana Primária/induzido quimicamente , Insuficiência Ovariana Primária/prevenção & controle , Galactose/efeitos adversos , Antioxidantes/farmacologia
2.
Int J Mol Sci ; 25(2)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38256114

RESUMO

The discovery of mitochondria-derived peptides (MDPs) has provided a new perspective on mitochondrial function. MDPs encoded by mitochondrial DNA (mtDNA) can act as hormone-like peptides, influencing cell survival and proliferation. Among these peptides, humanin has been identified as a crucial factor for maintaining cell survival and preventing cell death under various conditions. Adrenocortical carcinoma (ACC) is a rare and aggressive malignancy that results from adrenal hormone dysfunction. This study aimed to investigate humanin expression in the adrenal tissue and serum of patients with ACC. For the first time, our study revealed significant reduction in the mRNA expression of humanin in patients with ACC compared to healthy controls. However, no significant changes were observed in the serum humanin levels. Interestingly, we identified a positive correlation between patient age and serum humanin levels and a negative correlation between tumor size and LDL levels. While the impaired expression of humanin in patients with ACC may be attributed to mitochondrial dysfunction, an alternative explanation could be related to diminished mitochondrial copy number. Further investigations are warranted to elucidate the intricate relationship among humanin, mitochondrial function, and ACC pathology.


Assuntos
Neoplasias do Córtex Suprarrenal , Carcinoma Adrenocortical , Humanos , Carcinoma Adrenocortical/genética , Peptídeos e Proteínas de Sinalização Intracelular , DNA Mitocondrial/genética , Neoplasias do Córtex Suprarrenal/genética , Hormônios
3.
Chron Respir Dis ; 20: 14799731231220058, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38112134

RESUMO

BACKGROUND: Chronic obstructive pulmonary disease (COPD) exacerbation (ECOPD) alters the natural course of the disease. To date, only C-reactive protein has been used as a biomarker in ECOPD, but it has important limitations. The mitochondria release peptides (Humanin (HN), FGF-21, GDF-15, MOTS-c and Romo1) under certain metabolic conditions. Here, we aimed to evaluate the pathophysiologic, diagnostic and prognostic value of measuring serum mitochondrial peptides at hospital admission in patients with ECOPD. METHODS: A total of 51 consecutive patients admitted to our hospital for ECOPD were included and followed for 1 year; in addition, 160 participants with stable COPD from our out-patient clinic were recruited as controls. RESULTS: Serum FGF-21 (p < .001), MOTS-c (p < .001) and Romo1 (p = .002) levels were lower, and GDF-15 (p < .001) levels were higher, in patients with ECOPD than stable COPD, but no differences were found in HN. In receiver operating characteristic analysis, MOTS-c (AUC 0.744, 95% CI 0.679-0.802, p < .001) and GDF-15 (AUC 0.735, 95% CI 0.670-0.793, p < .001) had the best diagnostic power for ECOPD, with a diagnostic accuracy similar to that of C-RP (AUC 0.796 95% IC 0.735-0.848, p < .001). FGF-21 (AUC 0.700, 95% CI 0.633-0.761, p < .001) and Romo1 (AUC 0.645 95% CI 0.573-0.712, p = .001) had lower diagnostic accuracy. HN levels did not differentiate patients with ECOPD versus stable COPD (p = .557). In Cox regression analysis, HN (HR 2.661, CI95% 1.009-7.016, p = .048) and MOTS-c (HR 3.441, CI95% 1.252-9.297, p = .016) levels exceeding mean levels were independent risk factors for re-admission. CONCLUSIONS: Most mitochondrial peptides are altered in ECOPD, as compared with stable COPD. MOTS-c and GDF15 levels have a diagnostic accuracy similar to C-RP for ECOPD. HN and MOTS-c independently predict future re-hospitalization.


Assuntos
Fator 15 de Diferenciação de Crescimento , Doença Pulmonar Obstrutiva Crônica , Humanos , Progressão da Doença , Estudos Prospectivos , Hospitalização , Mitocôndrias , Hospitais
4.
Turk J Med Sci ; 53(6): 1658-1666, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38813496

RESUMO

Background/aim: By applying humanin (HN) before myocardial infarction (MI), its protection in myocardial injury and the possible roles of its cellular mechanism in the Notch pathway were investigated. Materials and methods: The study was carried out at Firat University Experimental Research Center (12/24/2018-12/23/2019). Spraque-Dawley rats were divided into 10 groups: I (control) (n = 6), II (HN 6 h) (n = 6), III (HN 24 h) (n = 6), IV (HN day 7) (n = 6), V (MI 6 h) (n = 7), VI (MI 24 h) (n = 7), VII (MI day 7) (n = 7), VIII (MI+HN 6 h) (n = 7), IX (MI+HN 24 h) (n = 7), and X (MI+HN day 7) (n = 7). To create MI, 200 mg/kg of isoproterenol (ISO) was administered to the rats subcutaneously. Moreover, 252 µg/kg of HN was given intraperitoneally (ip) to the rats on its own and before MI. Molecular parameters Notch1, Notch2, Hes1, Hes2, Jagged1, Jagged2, DLL1, and DLL4 were examined using polymerase chain reaction in the heart tissue, Notch1, Hes1, and DLL4 were examined using western blot, while heart tissue was taken for histochemical examinations. Results: The mRNA expression levels of the Notch signaling members (Notch1, Notch2, Hes1, Hes2, Jagged1, Jagged2, DLL1, and DLL4) tended to decrease after MI. The Notch signaling members increased more significantly, especially toward day 7 after HN application before MI. In the western blot anylyses, the Notch1, Hes1, and DLL4 protein levels increased significantly toward day 7 in the groups given HN before MI. Moreover, the serum AST, LDH, CK-MB, and troponin I levels tended to decrease with the application of HN before MI and there was a significant decrease in edema, hemorrhage, and mononuclear cells in the heart tissue at 24 h post-MI and fibrosis on day 7 post-MI. Conclusion: HN administration before MI has a cardioprotective effect on rats via the Notch signaling pathway.


Assuntos
Infarto do Miocárdio , Ratos Sprague-Dawley , Transdução de Sinais , Animais , Infarto do Miocárdio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Ratos , Masculino , Receptores Notch/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Modelos Animais de Doenças
5.
Rev Cardiovasc Med ; 23(5): 181, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-39077591

RESUMO

Background: Humanin and the mitochondrial open reading frame of the 12S rRNA-c (MOTS-c) are mitochondrial encoded peptides involved in energy metabolism, cytoprotection, longevity, insulin sensitivity and their expression decrease with age. Levels of these molecules have been shown to respond to acute exercise, however little is known about their modulation under different chronic exercise conditions. In this study, we aim to compare levels of Humanin and MOTS-c in non-athletes vs professional (moderate and high endurance) athletes. Methods: Serum samples were collected from 30 non-athlete controls and 75 professional athletes (47 low/moderate endurance and 28 high endurance athletes). Levels of Humanin and MOTS-c were measured by the enzyme linked immunosorbent aaasy (ELISA) and linear models were generated to compare the effect of different levels of endurance exercise on these factors in different age groups. Spearman correlation was used to assess the correlation between these factors in athletes and non-athletes. Results: We showed that professional athletes had lower levels of MOTS-c and higher levels of Humanin than sedentary controls. Within the athletic groups, high endurance athletes had lower levels of Humanin than low/moderate endurance athletes of the same gender/age groups, whereas MOTS-c levels did not change between the subgroups. Humanin and MOTS-c levels were highly correlated in athletes, but not in sedentary controls. Conclusions: This pilot data suggests that serum levels of the mitochondrial proteins MOTS-c and Humanin change in response to chronic exercise with implications on energy metabolism and performance.

6.
J Endocr Soc ; 8(3): bvae009, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38328478

RESUMO

Context: Recent preclinical studies reported that the BCL-2 inhibitor venetoclax can impair bone growth. A strategy to prevent such a side effect of this promising anticancer drug is highly desired. Earlier in vitro and in vivo studies suggested that the mitochondrial peptide humanin has the potential to prevent drug-induced growth impairment. Objective: We hypothesized that co-treatment with the humanin analog HNG may prevent venetoclax-induced bone growth impairment. Methods: Ex vivo studies were performed in fetal rat metatarsal bones and human growth plate samples cultured for 12 and 2 days, respectively, while in vivo studies were performed in young neuroblastoma mice being treated daily for 14 days. The treatment groups included venetoclax, HNG, venetoclax plus HNG, or vehicle. Bone growth was continuously monitored and at the end point, histomorphometric and immunohistochemical analyses were performed in fixed tissues. Results: Venetoclax suppressed metatarsal bone growth and when combined with HNG, bone growth was rescued and all histological parameters affected by venetoclax monotherapy were normalized. Mechanistic studies showed that HNG downregulated the pro-apoptotic proteins Bax and p53 in cultured metatarsals and human growth plate tissues, respectively. The study in a neuroblastoma mouse model confirmed a growth-suppressive effect of venetoclax treatment. In this short-term in vivo study, no significant bone growth-rescuing effect could be verified when testing HNG at a single dose. We conclude that humanin dose-dependently protects ex vivo cultured metatarsal bones from venetoclax-induced bone growth impairment by restoring the growth plate microstructure.

7.
Peptides ; 172: 171147, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160808

RESUMO

Mitochondrial-derived peptides (MDPs) are a novel class of bioactive microproteins encoded by short open-reading frames (sORF) in mitochondrial DNA (mtDNA). Currently, three types of MDPs have been identified: Humanin (HN), MOTS-c (Mitochondrial ORF within Twelve S rRNA type-c), and SHLP1-6 (small Humanin-like peptide, 1 to 6). The 12 S ribosomal RNA (MT-RNR1) gene harbors the sequence for MOTS-c, whereas HN and SHLP1-6 are encoded by the 16 S ribosomal RNA (MT-RNR2) gene. Special genetic codes are used in mtDNA as compared to nuclear DNA: (i) ATA and ATT are used as start codons in addition to the standard start codon ATG; (ii) AGA and AGG are used as stop codons instead of coding for arginine; (iii) the standard stop codon UGA is used to code for tryptophan. While HN, SHLP6, and MOTS-c are encoded by the H (heavy owing to high guanine + thymine base composition)-strand of the mtDNA, SHLP1-5 are encoded by the L (light owing to less guanine + thymine base composition)-strand. MDPs attenuate disease pathology including Type 1 diabetes (T1D), Type 2 diabetes (T2D), gestational diabetes, Alzheimer's disease (AD), cardiovascular diseases, prostate cancer, and macular degeneration. The current review will focus on the MDP regulation of T2D, T1D, and gestational diabetes along with an emphasis on the evolutionary pressures for conservation of the amino acid sequences of MDPs.


Assuntos
Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Diabetes Gestacional , Masculino , Feminino , Gravidez , Humanos , Hipoglicemiantes , Timina , Peptídeos/metabolismo , DNA Mitocondrial/genética , RNA Ribossômico/genética , Guanina
8.
Free Radic Res ; 58(3): 180-193, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38535980

RESUMO

OBJECTIVE: Acute myocardial infarction (AMI) ranks among the top contributors to sudden death and disability worldwide. It should be noted that current therapies always cause increased reperfusion damage. Evidence suggests that humanin (HN) reduces mitochondrial dysfunction to have cardio-protective effects against MI-reperfusion injury. In this context, we hypothesized that HN may attenuate MI-reperfusion injury by alleviating lymphatic endothelial cells dysfunction through the regulation of mitophagy. MATERIALS AND METHODS: In this study, primary lymphatic endothelial cells were selected as the experimental model. Cells were maintained under 1% O2 to induce a hypoxic phenotype. For in vivo experiments, the left coronary arteries of C57/BL6 mice were clamped for 45 min followed by 24 h reperfusion to develop MI-reperfusion injury. The volume of infarcted myocardium in MI-reperfusion injury mouse models were TTC staining. PCR and western blot were used to quantify the expression of autophagy-, mitophagy- and mitochondria-related markers. The fibrosis and apoptosis in the ischemic area were evaluated for Masson staining and TUNEL respectively. We also used western blot to analyze the expression of VE-Cadherin in lymphatic endothelial cells. RESULTS: We firstly exhibited a specific mechanism by which HN mitigates MI-reperfusion injury. We demonstrated that HN effectively reduces such injury in vivo and also inhibits dysfunction in lymphatic endothelial cells in vitro. Importantly, this inhibitory effect is mediated through BNIP3-associated mitophagy. CONCLUSIONS: In conclusion, HN alleviates myocardial infarction-reperfusion injury by inhibiting lymphatic endothelial cells dysfunction, primarily through BNIP3-mediated mitophagy.


Assuntos
Células Endoteliais , Proteínas de Membrana , Proteínas Mitocondriais , Mitofagia , Traumatismo por Reperfusão Miocárdica , Animais , Camundongos , Células Endoteliais/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Humanos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Masculino , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
9.
Cureus ; 16(5): e61354, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38947691

RESUMO

INTRODUCTION: People are constantly exposed to formaldehyde, a volatile and poisonous gas, in indoor environments. In particular, anatomists, pathologists, histologists, and those involved in embalming are exposed to higher amounts of formaldehyde continuously due to their work. This study aimed to investigate the effect of N-acetylcysteine on endostatin and humanin values in male rats exposed to experimental formaldehyde. METHODS: In the study, 28 male Spraque-Dawley rats aged 12-14 weeks (seven animals in each group: control group, formaldehyde group, N-acetylcysteine group, formaldehyde+N-acetylcysteine group) were used. Four weeks later, the animals were sacrificed by decapitation. Following decapitation, endostatin and humanin levels in the serum of rats were studied by the enzyme-linked immunoassay (ELISA) method. In all analyses, p<0.05 was accepted as statistically significant. RESULTS: Humanin and endostatin values were checked in the serum of rats. When humanin levels were compared between groups, a statistically significant difference was found between the formaldehyde group and both the control group (p<0.05) and the N-acetylcysteine group (p<0.05). In the formaldehyde+N-acetylcysteine group, it was determined that the humanin level was impaired due to formaldehyde exposure, approaching the control group values with the administered N-acetylcysteine. When the endostatin level was compared between the groups, a statistical significance (p<0.05) was found only between the formaldehyde group and the N-acetylcysteine group. In the formaldehyde+N-acetylcysteine group, it was determined that the endostatin level was impaired due to formaldehyde exposure, approaching the control group values with the administered N-acetylcysteine. CONCLUSION: In this study, the effects of N-acetylcysteine on humanin and endostatin on rats exposed to formaldehyde were demonstrated for the first time. Formaldehyde exposure negatively affected humanin and endostatin levels in rat sera. N-acetylcysteine ameliorated the negative effects of formaldehyde, bringing humanin and endostatin levels closer to the healthy control group.

10.
Aging Cell ; 23(7): e14207, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38757793

RESUMO

A commentary of the paper 'Humanin variant P3S is associated with longevity in APOE4 carriers and resists APOE4-induced brain pathology' that appeared recently in Aging Cell. The possible association of a mitochondrial haplogroup with a disease is frequently discussed. The Humanin peptide encoded by the mtDNA has been shown to play an important regulatory role in cell metabolism. There are variants of Humanin caused by different mutations and it is known that the potent form of Humanin, termed S14G, is found naturally in the people of haplogroup U6a7a1a because they have the mutation m.A2672G; however it has not been shown that having this mutation is indeed beneficial. In their paper, the authors suggest that the mitochondrial DNA mutation, m.C2639T, may be beneficial in people who are in haplogroup N1b and also carry APOE4. The mutation changes the common form of Humanin to Humanin P3S. In the study, the researchers looked at a group of Ashkenazi women who were over the age of 95, and found that a higher proportion of them carried APOE4, suggesting that Humanin P3S protected them against the adverse effects of APOE4. A study in a mouse model supported this finding by showing treatment with Humanin P3S reduced APOE4-induced brain pathology. In the world population, there are about 500,000 Ashkenazi in haplogroup N1b, predominantly in the subgroup N1b1b1; and there are about 9.5 million non-Ashkenazi people with the mutation m.C2639T and are therefore also in haplogroup N1b and have Humanin P3S. However, the researchers have yet to show Humanin P3S is of benefit in non-Ashkenazi people. This paper raises the possibility of a therapeutic use of Humanin P3S in the treatment of Alzheimer's disease.


Assuntos
Doença de Alzheimer , Haplótipos , Doença de Alzheimer/genética , Humanos , Haplótipos/genética , Animais , Camundongos , Feminino , DNA Mitocondrial/genética , Apolipoproteína E4/genética , Mutação , Peptídeos e Proteínas de Sinalização Intracelular
11.
J Nephrol ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39102184

RESUMO

BACKGROUND: Mortality and cardiovascular (CV) risk prediction in individuals with end-stage kidney disease (ESKD) on chronic hemodialysis (HD) remains challenging due to the multitude of implicated factors. In a multicenter ESKD-HD cohort, we tested the prognostic yield of the assessment of circulating Humanin, a small mitochondrial-derived peptide involved in CV protection, on CV events and mortality. METHODS: We conducted a prospective, observational, pilot study on 94 prevalent HD patients. The prognostic capacity of circulating Humanin levels was tested on a primary composite (all-cause mortality + non-fatal CV events) and a secondary exploratory endpoint (all-cause mortality alone). RESULTS: Baseline Humanin level was comparable in patients reaching the primary or secondary endpoint as compared to others (p = 0.69 and 0.76, respectively). Unadjusted followed by multivariable Cox regression analyses adjusted for age, left ventricular mass index (LVMi), E/e', pulse pressure and diabetes mellitus indicated a non-linear relationship between Humanin levels and the composite outcome with the highest Hazard Ratio (HR) associated with very low (< 450.7 pg/mL; HR ranging from 4.25 to 2.49) and very high (> 759.5 pg/mL; HR ranging from 5.84 to 4.50) Humanin values. Restricted cubic splines fitting univariate and multivariate Cox regression analyses visually confirmed a curvilinear trend with an increasing risk observed for lower and higher Humanin values around the median, respectively. A similar, u-shaped association was also evidenced with the secondary endpoint. CONCLUSIONS: Altered Humanin levels may impart prognostic information in ESKD-HD patients at risk of death or CV events. Future investigations are needed to confirm whether Humanin measurement could improve CV and mortality risk prediction beyond traditional risk models.

12.
Reprod Toxicol ; 129: 108674, 2024 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-39079574

RESUMO

Male patients who undergo prepubertal chemotherapy face the dual problems of fertility preservation in adulthood, including low testosterone, hypersexual function, and infertility. Humanin, as a small polypeptide coded within the mitochondrial DNA, with the mitochondrial short open reading frame named MOTS-c, both was believed to regulate mitochondrial homeostasis, be anti-inflammatory, improve metabolism, anti-apoptosis, and multiple pharmacological effects. However, there exists little evidence that reported Humanin and MOTS-c 's effects on moderating male spermatogenic function of patients after prepubertal chemotherapy. Here, we found that in vivo, mitochondrial polypeptides Humanin analog (HNG) and MOTS-c efficaciously protected the testicular spermatogenic function from reproductive injury. Moreover, transcriptomic sequencing analysis was performed to verify the differentially expressed genes such as Piwil2, AGT (angiotensinogen), and PTGDS (glycoprotein prostaglandin D2 synthase), which are related to the regulation of male reproductive function of male mice induced by prepubertal chemotherapy. Collectively, our data revealed that both Humanin analogs HNG and MOTS-c are the feasible approaches attached to the protective effect on the male reproductive function damaged by prepubertal chemotherapy.

13.
Arch Physiol Biochem ; : 1-11, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38599217

RESUMO

OBJECTIVE: This study investigates the impact of chronic humanin (HN) treatment on pain-related markers (NMDA, substance P, TRPV1, and IL-1ß) in diabetic mice's dorsal root ganglia (DRG). Additionally, we assess the effects of HN on cellular viability in DRG neurons. METHODS: In vivo experiments involved 15 days of HN administration (4 mg/kg) to diabetic mice (n = 10). Protein levels of NMDA, IL-1ß, TRPV1, and substance P were measured in diabetic DRG. In vitro experiments explored HN's impact on apoptosis and cellular viability, focusing on the JAK2/STAT3 pathway. RESULTS: Humanin significantly reduced the elevated expression of NMDA, IL-1ß, TRPV1, and substance P induced by diabetes (p < .05). Furthermore, HN treatment increased cellular viability in DRG neurons through JAK2/STAT3 pathway activation (p < .05). CONCLUSION: These findings highlight the significance of understanding mitochondrial function and pain markers, as well as apoptosis in diabetes. The study provides insights for managing the condition and its complications.

14.
Acta Neurol Belg ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630326

RESUMO

OBJECTIVE: The main pathophysiological mechanisms in restless legs syndrome (RLS) are known as genetic predisposition, brain iron deficiency, and dopaminergic dysfunction. While some genetic variants and polymorphisms were defined, the genetic basis and etiopathogenesis of RLS remain unclear. We aimed to identify new candidate genes and/or potential biomarkers associated with increased RLS risk. METHODS: Twenty-three patients with RLS, 30 patients with Parkinson's disease (PD), and 27 healthy controls were enrolled. Agilent Human 8X60K Oligo Microarray was used for the identification of gene expression levels in peripheral blood cells. Gene ontology (GO) analysis was used for functional annotation of differentially expressed genes (DEGs). Serum levels of selected DEGs were measured by ELISA for validation. RESULTS: Patients with RLS showed 30 downregulated DEGs compared to healthy controls. Two genes, MTRNR2L10 and MTRNR2L3, involved negative regulation of the execution phase of apoptosis were highlighted in GO analysis. These genes encode humanin-like 10 and 3, respectively, were encoded by these genes, and their levels, along with CSF-1, linked to neurodegeneration, were reduced in RLS patients. Humanin-like 10 and CSF-1 levels correlated with sleep efficiency and N2 sleep duration, while humanin-like 3 levels correlated with mean sleep oxygen saturation during sleep. CONCLUSION: Our study showed that several neuroprotective genes were downregulated in RLS, which may confer susceptibility to neuronal death associated with decreased sleep efficiency. Microarray results differed between RLS and PD patients, suggesting diverse pathogenetic mechanisms. CSF-1, which is involved in iron, dopamine metabolism, and blood oxygenation, appears to partake in RLS pathophysiology.

15.
J Control Release ; 373: 224-239, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-39002796

RESUMO

Intravitreal injection of biodegradable implant drug carriers shows promise in reducing the injection frequency for neovascular retinal diseases. However, current intravitreal ocular devices have limitations in adjusting drug release rates for individual patients, thereby affecting treatment effectiveness. Accordingly, we developed mesoporous silica nanoparticles (MSNs) featuring a surface that reverse its charge in response to reactive oxygen species (ROS) for efficient delivery of humanin peptide (HN) to retinal epithelial cells (ARPE-19). The MSN core, designed with a pore size of 2.8 nm, ensures a high HN loading capacity 64.4% (w/w). We fine-tuned the external surface of the MSNs by incorporating 20% Acetyl-L-arginine (Ar) to create a partial positive charge, while 80% conjugated thioketal (TK) methoxy polyethylene glycol (mPEG) act as ROS gatekeeper. Ex vivo experiments using bovine eyes revealed the immobilization of Ar-MSNs-TK-PEG (mean zeta potential: 2 mV) in the negatively charged vitreous. However, oxidative stress reversed the surface charge to -25 mV by mPEG loss, facilitating the diffusion of the nanoparticles impeded with HN. In vitro studies showed that ARPE-19 cells effectively internalize HN-loaded Ar-MSNs-TK, subsequently releasing the peptide, which offered protection against oxidative stress-induced apoptosis, as evidenced by reduced TUNEL and caspase3 activation. The inhibition of retinal neovascularization was further validated in an in vivo oxygen-induced retinopathy (OIR) mouse model.

16.
Aging Cell ; 23(7): e14153, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38520065

RESUMO

The APOE4 allele is recognized as a significant genetic risk factor to Alzheimer's disease (AD) and influences longevity. Nonetheless, some APOE4 carriers exhibit resistance to AD even in advanced age. Humanin, a mitochondrial-derived peptide comprising 24 amino acids, has variants linked to cognitive resilience and longevity. Our research uncovered a unique humanin variant, P3S, specifically enriched in centenarians with the APOE4 allele. Through in silico analyses and subsequent experimental validation, we demonstrated a strong affinity between humanin P3S and APOE4. Utilizing an APOE4-centric mouse model of amyloidosis (APP/PS1/APOE4), we observed that humanin P3S significantly attenuated brain amyloid-beta accumulation compared to the wild-type humanin. Transcriptomic assessments of mice treated with humanin P3S highlighted its potential mechanism involving the enhancement of amyloid beta phagocytosis. Additionally, in vitro studies corroborated humanin P3S's efficacy in promoting amyloid-beta clearance. Notably, in the temporal cortex of APOE4 carriers, humanin expression is correlated with genes associated with phagocytosis. Our findings suggest a role of the rare humanin variant P3S, especially prevalent among individuals of Ashkenazi descent, in mitigating amyloid beta pathology and facilitating phagocytosis in APOE4-linked amyloidosis, underscoring its significance in longevity and cognitive health among APOE4 carriers.


Assuntos
Apolipoproteína E4 , Encéfalo , Longevidade , Idoso de 80 Anos ou mais , Animais , Feminino , Humanos , Masculino , Camundongos , Doença de Alzheimer/genética , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteína E4/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Modelos Animais de Doenças , Heterozigoto , Peptídeos e Proteínas de Sinalização Intracelular , Longevidade/genética , Camundongos Transgênicos
17.
Cell Rep Med ; : 101658, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39053460

RESUMO

The DNA damage response (DDR) and the blood-tumor barrier (BTB) restrict chemotherapeutic success for primary brain tumors like glioblastomas (GBMs). Coherently, GBMs almost invariably relapse with fatal outcomes. Here, we show that the interaction of GBM and myeloid cells simultaneously induces chemoresistance on the genetic and vascular levels by activating GP130 receptor signaling, which can be addressed therapeutically. We provide data from transcriptomic and immunohistochemical screens with human brain material and pharmacological experiments with a humanized organotypic GBM model, proteomics, transcriptomics, and cell-based assays and report that nanomolar concentrations of the signaling peptide humanin promote temozolomide (TMZ) resistance through DDR activation. GBM mouse models recapitulating intratumoral humanin release show accelerated BTB formation. GP130 blockade attenuates both DDR activity and BTB formation, resulting in improved preclinical chemotherapeutic efficacy. Altogether, we describe an overarching mechanism for TMZ resistance and outline a translatable strategy with predictive markers to improve chemotherapy for GBMs.

18.
Front Endocrinol (Lausanne) ; 14: 1142310, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38322155

RESUMO

Objective: Children with inflammatory bowel disease (IBD) often suffer from poor bone growth and impaired bone health. Humanin is a cytoprotective factor expressed in bone and other tissues and we hypothesized that humanin levels are suppressed in conditions of chronic inflammation. To address this, humanin levels were analyzed in serum samples from IBD patients and in ex vivo cultured human growth plate tissue specimens exposed to IBD serum or TNF alone. Methods: Humanin levels were measured by ELISA in serum from 40 children with IBD and 40 age-matched healthy controls. Growth plate specimens obtained from children undergoing epiphysiodesis surgery were cultured ex vivo for 48 hours while being exposed to IBD serum or TNF alone. The growth plate samples were then processed for immunohistochemistry staining for humanin, PCNA, SOX9 and TRAF2 expression. Dose-response effect of TNF was studied in the human chondrocytic cell line HCS-2/8. Ex vivo cultured fetal rat metatarsal bones were used to investigate the therapeutic effect of humanin. Results: Serum humanin levels were significantly decreased in children with IBD compared to healthy controls. When human growth plate specimens were cultured with IBD serum, humanin expression was significantly suppressed in the growth plate cartilage. When cultured with TNF alone, the expression of humanin, PCNA, SOX9, and TRAF2 were all significantly decreased in the growth plate cartilage. Interestingly, treatment with the humanin analog HNG prevented TNF-induced bone growth impairment in cultured metatarsal bones. Conclusion: Our data showing suppressed serum humanin levels in IBD children with poor bone health provides the first evidence for a potential link between chronic inflammation and humanin regulation. Such a link is further supported by the novel finding that serum from IBD patients suppressed humanin expression in ex vivo cultured human growth plates.


Assuntos
Inflamação , Doenças Inflamatórias Intestinais , Peptídeos e Proteínas de Sinalização Intracelular , Criança , Ratos , Humanos , Animais , Antígeno Nuclear de Célula em Proliferação , Fator 2 Associado a Receptor de TNF
19.
Biology (Basel) ; 12(12)2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38132360

RESUMO

Humanin is a 24-mer peptide first reported in the early 2000s as a new neuroprotective/cytoprotective factor rescuing neuronal cells from death induced by various Alzheimer's disease-associated insults. Nowadays it is known that humanin belongs to the novel class of the so-called mitochondrial-derived peptides (which are encoded by mitochondrial DNA) and has been shown to exert beneficial cytoprotective effects in a series of in vitro and/or in vivo experimental models of human diseases, including not only neurodegenerative disorders but other human diseases as well (e.g., age-related macular degeneration, cardiovascular diseases, or diabetes mellitus). This review article is focused on the presentation of recent in vitro and in vivo research results associated with the neuroprotective action of humanin as well as of various, mainly synthetic, analogues of the peptide; moreover, the main mode(s)/mechanism(s) through which humanin and humanin analogues may exert in vitro and in vivo regarding neuroprotection have been reported. The prospects of humanin and humanin analogues to be further investigated in the frame of future research endeavors against neurodegenerative/neural diseases have also been briefly discussed.

20.
NOVA publ. cient ; 17(32): 9-24, jul.-dic. 2019.
Artigo em Espanhol | LILACS | ID: biblio-1056786

RESUMO

Resumen La humanina es un péptido derivado de la mitocondria con efectos protectores robustos contra una gran variedad de estímulos citotóxicos en diversos tipos celulares. Esto la convierte en un blanco terapéutico interesante para muchas enfermedades, como el cáncer y enfermedades neurodegenerativas, entre otras. Además, este péptido podría utilizarse como un biomarcador en estas enfermedades. Durante la última década, han sido desarrollados análogos y péptido-miméticos de la humanina que muestran resultados prometedores en modelos preclínicos. A su vez, también se está explorando el potencial terapéutico de vectores de terapia génica que puedan sobreexpresar o silenciar la humanina endógena. Varios puntos importantes a considerar antes de trasladar estas estrategias terapéuticas a la clínica son su posible papel en la progresión del cáncer y la eventual generación de quimiorresistencia. Todos estos temas serán abordados en este artículo de revisión.


Abstract Humanin is a mitochondrial-derived peptide which shows robust protective effects against large series of cytotoxic stimuli in many cell types. This makes it an interesting therapeutic target for many diseases, including cancer and neurodegenerative diseases, among others. Furthermore, this peptide could be used as a biomarker for such diseases. Over the last decade, humanin analogs and peptide mimetics have been developed, which exert highly promising results in preclinical models. Besides, the therapeutic potential of gene therapy vectors that overexpress or silence endogenous humanin is under evaluation. Nonetheless, its possible role in cancer progression and chemoresistance are critical issues to be addressed before translating these therapeutic approaches to the clinic. All these matters will be covered in this review.


Assuntos
Doenças Neurodegenerativas , Volição , Doença , Neoplasias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA