Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.427
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 186(23): 5114-5134.e27, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37875108

RESUMO

Human inherited disorders of interferon-gamma (IFN-γ) immunity underlie severe mycobacterial diseases. We report X-linked recessive MCTS1 deficiency in men with mycobacterial disease from kindreds of different ancestries (from China, Finland, Iran, and Saudi Arabia). Complete deficiency of this translation re-initiation factor impairs the translation of a subset of proteins, including the kinase JAK2 in all cell types tested, including T lymphocytes and phagocytes. JAK2 expression is sufficiently low to impair cellular responses to interleukin-23 (IL-23) and partially IL-12, but not other JAK2-dependent cytokines. Defective responses to IL-23 preferentially impair the production of IFN-γ by innate-like adaptive mucosal-associated invariant T cells (MAIT) and γδ T lymphocytes upon mycobacterial challenge. Surprisingly, the lack of MCTS1-dependent translation re-initiation and ribosome recycling seems to be otherwise physiologically redundant in these patients. These findings suggest that X-linked recessive human MCTS1 deficiency underlies isolated mycobacterial disease by impairing JAK2 translation in innate-like adaptive T lymphocytes, thereby impairing the IL-23-dependent induction of IFN-γ.


Assuntos
Interferon gama , Janus Quinase 2 , Infecções por Mycobacterium , Humanos , Masculino , Proteínas de Ciclo Celular/metabolismo , Interferon gama/imunologia , Interleucina-12 , Interleucina-23 , Janus Quinase 2/metabolismo , Mycobacterium/fisiologia , Infecções por Mycobacterium/imunologia , Infecções por Mycobacterium/metabolismo , Proteínas Oncogênicas/metabolismo
2.
Cell ; 168(6): 1053-1064.e15, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28283061

RESUMO

Cytokines are classically thought to stimulate downstream signaling pathways through monotonic activation of receptors. We describe a severe anemia resulting from a homozygous mutation (R150Q) in the cytokine erythropoietin (EPO). Surprisingly, the EPO R150Q mutant shows only a mild reduction in affinity for its receptor but has altered binding kinetics. The EPO mutant is less effective at stimulating erythroid cell proliferation and differentiation, even at maximally potent concentrations. While the EPO mutant can stimulate effectors such as STAT5 to a similar extent as the wild-type ligand, there is reduced JAK2-mediated phosphorylation of select downstream targets. This impairment in downstream signaling mechanistically arises from altered receptor dimerization dynamics due to extracellular binding changes. These results demonstrate how variation in a single cytokine can lead to biased downstream signaling and can thereby cause human disease. Moreover, we have defined a distinct treatable form of anemia through mutation identification and functional studies.


Assuntos
Anemia de Diamond-Blackfan/genética , Anemia de Diamond-Blackfan/patologia , Eritropoetina/genética , Mutação de Sentido Incorreto , Transdução de Sinais , Anemia de Diamond-Blackfan/terapia , Criança , Consanguinidade , Ativação Enzimática , Eritropoese , Eritropoetina/química , Feminino , Humanos , Janus Quinase 2/metabolismo , Cinética , Masculino , Receptores da Eritropoetina/química , Receptores da Eritropoetina/genética , Receptores da Eritropoetina/metabolismo
3.
Mol Cell ; 82(3): 527-541.e7, 2022 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-35016033

RESUMO

Citrulline can be converted into argininosuccinate by argininosuccinate synthetase (ASS1) in the urea cycle and the citrulline-nitric oxide cycle. However, the regulation and biological function of citrulline metabolism remain obscure in the immune system. Unexpectedly, we found that macrophage citrulline declines rapidly after interferon gamma (IFN-γ) and/or lipopolysaccharide (LPS) stimulation, which is required for efficient proinflammatory signaling activation. Mechanistically, IFN-γ and/or LPS stimulation promotes signal transducers and activators of transcription 1 (STAT1)-mediated ASS1 transcription and Janus kinase2 (JAK2)-mediated phosphorylation of ASS1 at tyrosine 87, thereby leading to citrulline depletion. Reciprocally, increased citrulline directly binds to JAK2 and inhibits JAK2-STAT1 signaling. Blockage of ASS1-mediated citrulline depletion suppresses the host defense against bacterial infection in vivo. We therefore define a central role for ASS1 in controlling inflammatory macrophage activation and antibacterial defense through depletion of cellular citrulline and, further, identify citrulline as an innate immune-signaling metabolite that engages a metabolic checkpoint for proinflammatory responses.


Assuntos
Argininossuccinato Sintase/metabolismo , Citrulina/metabolismo , Imunidade Inata , Inflamação/enzimologia , Listeriose/enzimologia , Ativação de Macrófagos , Macrófagos/enzimologia , Animais , Argininossuccinato Sintase/genética , Modelos Animais de Doenças , Células HEK293 , Humanos , Inflamação/genética , Inflamação/imunologia , Mediadores da Inflamação/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Listeria monocytogenes/imunologia , Listeriose/genética , Listeriose/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Células RAW 264.7 , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
4.
Mol Cell ; 78(6): 1207-1223.e8, 2020 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-32504554

RESUMO

Tumor interferon (IFN) signaling promotes PD-L1 expression to suppress T cell-mediated immunosurveillance. We identify the IFN-stimulated non-coding RNA 1 (INCR1) as a long noncoding RNA (lncRNA) transcribed from the PD-L1 locus and show that INCR1 controls IFNγ signaling in multiple tumor types. Silencing INCR1 decreases the expression of PD-L1, JAK2, and several other IFNγ-stimulated genes. INCR1 knockdown sensitizes tumor cells to cytotoxic T cell-mediated killing, improving CAR T cell therapy. We discover that PD-L1 and JAK2 transcripts are negatively regulated by binding to HNRNPH1, a nuclear ribonucleoprotein. The primary transcript of INCR1 binds HNRNPH1 to block its inhibitory effects on the neighboring genes PD-L1 and JAK2, enabling their expression. These findings introduce a mechanism of tumor IFNγ signaling regulation mediated by the lncRNA INCR1 and suggest a therapeutic target for cancer immunotherapy.


Assuntos
Antígeno B7-H1/genética , Interferon gama/metabolismo , RNA Longo não Codificante/genética , Idoso , Animais , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoterapia , Imunoterapia Adotiva/métodos , Interferon gama/genética , Interferons/genética , Interferons/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos NOD , Pessoa de Meia-Idade , Proteína 2 Ligante de Morte Celular Programada 1/genética , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T Citotóxicos
5.
EMBO J ; 41(7): e108397, 2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35156727

RESUMO

While PAX5 is an important tumor suppressor gene in B-cell acute lymphoblastic leukemia (B-ALL), it is also involved in oncogenic translocations coding for diverse PAX5 fusion proteins. PAX5-JAK2 encodes a protein consisting of the PAX5 DNA-binding region fused to the constitutively active JAK2 kinase domain. Here, we studied the oncogenic function of the PAX5-JAK2 fusion protein in a mouse model expressing it from the endogenous Pax5 locus, resulting in inactivation of one of the two Pax5 alleles. Pax5Jak2/+ mice rapidly developed an aggressive B-ALL in the absence of another cooperating exogenous gene mutation. The DNA-binding function and kinase activity of Pax5-Jak2 as well as IL-7 signaling contributed to leukemia development. Interestingly, all Pax5Jak2/+ tumors lost the remaining wild-type Pax5 allele, allowing efficient DNA-binding of Pax5-Jak2. While we could not find evidence for a nuclear role of Pax5-Jak2 as an epigenetic regulator, high levels of active phosphorylated STAT5 and increased expression of STAT5 target genes were seen in Pax5Jak2/+ B-ALL tumors, implying that nuclear Pax5-Jak2 phosphorylates STAT5. Together, these data reveal Pax5-Jak2 as an important nuclear driver of leukemogenesis by maintaining phosphorylated STAT5 levels in the nucleus.


Assuntos
Janus Quinase 2 , Leucemia de Células B , Fator de Transcrição PAX5 , Fator de Transcrição STAT5 , Animais , Janus Quinase 2/genética , Leucemia de Células B/genética , Camundongos , Mutação , Fator de Transcrição PAX5/genética , Fator de Transcrição STAT5/genética , Translocação Genética
6.
Genes Dev ; 32(11-12): 849-864, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29907650

RESUMO

Activating JAK2 point mutations are implicated in the pathogenesis of myeloid and lymphoid malignancies, including high-risk B-cell acute lymphoblastic leukemia (B-ALL). In preclinical studies, treatment of JAK2 mutant leukemias with type I JAK2 inhibitors (e.g., Food and Drug Administration [FDA]-approved ruxolitinib) provided limited single-agent responses, possibly due to paradoxical JAK2Y1007/1008 hyperphosphorylation induced by these agents. To determine the importance of mutant JAK2 in B-ALL initiation and maintenance, we developed unique genetically engineered mouse models of B-ALL driven by overexpressed Crlf2 and mutant Jak2, recapitulating the genetic aberrations found in human B-ALL. While expression of mutant Jak2 was necessary for leukemia induction, neither its continued expression nor enzymatic activity was required to maintain leukemia survival and rapid proliferation. CRLF2/JAK2 mutant B-ALLs with sustained depletion or pharmacological inhibition of JAK2 exhibited enhanced expression of c-Myc and prominent up-regulation of c-Myc target genes. Combined indirect targeting of c-Myc using the BET bromodomain inhibitor JQ1 and direct targeting of JAK2 with ruxolitinib potently killed JAK2 mutant B-ALLs.


Assuntos
Janus Quinase 2/genética , Janus Quinase 2/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/fisiopatologia , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Masculino , Camundongos , Mutação , Nitrilas , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Pirazóis/farmacologia , Pirazóis/uso terapêutico , Pirimidinas , Interferência de RNA , Receptores de Citocinas/genética , Transcriptoma , Triazóis/farmacologia
7.
FASEB J ; 38(10): e23667, 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38742812

RESUMO

Immunity imbalance of T helper 17 (Th17)/regulatory T (Treg) cells is involved in the pathogenesis of Crohn's disease (CD). Complanatuside A (CA), a flavonol glycoside, exerts anti-inflammatory activities and our study aimed to identify its effect on TNBS-induced colitis and the possible mechanisms. We found that CA alleviated the symptoms of colitis in TNBS mice, as demonstrated by prevented weight loss and colon length shortening, as well as decreased disease activity index scores, inflammatory scores, and levels of proinflammatory factors. Flow cytometry analysis showed that CA markedly reduced the percentage of Th17 cells while increasing the percentage of Treg cells in TNBS mice. Under Th17 cell polarizing conditions, CA inhibited the differentiation of Th17 cells while the Treg cell differentiation was elevated under Treg cell polarizing conditions. Furthermore, it was observed that JAK2 interacted with CA through six hydrogen bonds via molecular docking. The phosphorylation of JAK2/STAT3 was reduced by CA, which might be correlated with the protective effect of CA on colitis. In conclusion, CA reduced the imbalance of Th17/Treg cells by inhibiting the JAK2/STAT3 signaling pathway in TNBS-induced colitis, which may provide novel strategies for CD treatment.


Assuntos
Colite , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Linfócitos T Reguladores , Células Th17 , Animais , Masculino , Camundongos , Diferenciação Celular/efeitos dos fármacos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/metabolismo , Janus Quinase 2/metabolismo , Camundongos Endogâmicos BALB C , Transdução de Sinais/efeitos dos fármacos , Fator de Transcrição STAT3/metabolismo , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th17/metabolismo , Ácido Trinitrobenzenossulfônico
8.
EMBO Rep ; 24(9): e55060, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37477088

RESUMO

Inflammation plays an important role in the initiation and progression of colorectal cancer (CRC) and leads to ß-catenin accumulation in colitis-related CRC. However, the mechanism remains largely unknown. Here, pancreatic progenitor cell differentiation and proliferation factor (PPDPF) is found to be upregulated in CRC and significantly correlated with tumor-node-metastasis (TNM) stages and survival time. Knockout of PPDPF in the intestinal epithelium shortens crypts, decreases the number of stem cells, and inhibits the growth of organoids and the occurrence of azoxymethane (AOM)/dextran sodium sulfate (DSS)-induced CRC. Mechanistically, PPDPF is found to interact with Casein kinase 1α (CK1α), thereby disrupting its binding to Axin, disassociating the ß-catenin destruction complex, decreasing the phosphorylation of ß-catenin, and activating the Wnt/ß-catenin pathway. Furthermore, interleukin 6 (IL6)/Janus kinase 2 (JAK2)-mediated inflammatory signals lead to phosphorylation of PPDPF at Tyr16 and Tyr17, stabilizing the protein. In summary, this study demonstrates that PPDPF is a key molecule in CRC carcinogenesis and progression that connects inflammatory signals to the Wnt/ß-catenin signaling pathway, providing a potential novel therapeutic target.


Assuntos
Neoplasias Colorretais , Interleucina-6 , Humanos , Interleucina-6/efeitos adversos , Interleucina-6/metabolismo , Fosforilação , beta Catenina/metabolismo , Via de Sinalização Wnt , Janus Quinase 2/metabolismo , Neoplasias Colorretais/genética , Proliferação de Células , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
9.
Exp Cell Res ; 440(1): 114103, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38848951

RESUMO

Elevated homocysteine (Hcy) levels have been recognized as significant risk factor for cardiovascular and cerebrovascular diseases, closely related to endothelial injury. While expression of Ciliary Neurotrophic Factor (CNTF) significantly increases during Hcy-induced vascular endothelial cell injury, the precise molecular pathways through which CNTF operates remain to be clarified. To induce vascular endothelial cell injury, human umbilical vein endothelial cells (HUVECs) were treated with Hcy. Cell viability and apoptosis in HUVECs were assessed using the CCK-8 assay and flow cytometry. Western blot analysis determined the expression levels of the JAK2-STAT3 pathway, inflammation-related factors (IL-1ß, NLRP3, ICAM-1, VCAM-1), and apoptosis-related factors (cleaved Caspase-3 and Bax). Immunofluorescence staining and western blotting were employed to examine CD31 and α-SMA expression. Knockdown of CNTF was achieved using lentiviral interference, and its effects on inflammation and cell injury were evaluated. Chromatin immunoprecipitation (ChIP) and dual luciferase reporter analysis were conducted to investigate the interaction between the MAFK and CNTF promoters. Our results indicated that Hcy induced high expression of CNTF and activated the JAK2-STAT3 signaling pathway, thereby upregulating factors associated with inflammation and cell apoptosis. Inhibiting CNTF alleviated Hcy-induced inflammation and cell injury. MAFK was identified as a transcription factor promoting CNTF transcription, and its overexpression exacerbated inflammation and cell injury in Hcy-treated HUVECs through the CNTF-JAK2-STAT3 axis, which could be reversed by knocking down CNTF. Activation of MAFK leads to CNTF upregulation, which activates the JAK2-STAT3 signaling pathway, regulating inflammation and inducing injury in Hcy-exposed vascular endothelial cells. Targeting CNTF or its upstream regulator MAFK may represent potential therapeutic strategies for mitigating endothelial dysfunction associated with hyperhomocysteinemia and cardiovascular diseases.


Assuntos
Apoptose , Fator Neurotrófico Ciliar , Homocisteína , Células Endoteliais da Veia Umbilical Humana , Inflamação , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Janus Quinase 2/metabolismo , Humanos , Fator de Transcrição STAT3/metabolismo , Homocisteína/farmacologia , Homocisteína/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Inflamação/metabolismo , Inflamação/patologia , Fator Neurotrófico Ciliar/metabolismo , Fator Neurotrófico Ciliar/genética , Apoptose/efeitos dos fármacos , Células Cultivadas , Sobrevivência Celular/efeitos dos fármacos
10.
Bioessays ; 45(3): e2200203, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36642848

RESUMO

Interferons (IFNs) are a diverse group of cytokines whose potent antitumor effects have piqued the interest of scientists for decades. Some of the most sustained clinical accomplishments have been in the field of myeloproliferative neoplasms (MPNs). Here, we discuss how both historical and novel breakthroughs in our understanding of IFN function may lead to more effective therapies for MPNs. The particular relevance and importance of modulating the novel IFN-regulated ULK1 pathway to optimize IFN responses is highlighted.


Assuntos
Neoplasias Hematológicas , Interferons , Humanos , Interferons/uso terapêutico , Transtornos Mieloproliferativos/tratamento farmacológico , Transtornos Mieloproliferativos/patologia , Neoplasias Hematológicas/tratamento farmacológico
11.
Proc Natl Acad Sci U S A ; 119(37): e2120374119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36083966

RESUMO

The developmental history of blood cancer begins with mutation acquisition and the resulting malignant clone expansion. The two most prevalent driver mutations found in myeloproliferative neoplasms-JAK2V617F and CALRm-occur in hematopoietic stem cells, which are highly complex to observe in vivo. To circumvent this difficulty, we propose a method relying on mathematical modeling and statistical inference to determine disease initiation and dynamics. Our findings suggest that CALRm mutations tend to occur later in life than JAK2V617F. Our results confirm the higher proliferative advantage of the CALRm malignant clone compared to JAK2V617F. Furthermore, we illustrate how mathematical modeling and Bayesian inference can be used for setting up early screening strategies.


Assuntos
Calreticulina , Janus Quinase 2 , Transtornos Mieloproliferativos , Teorema de Bayes , Calreticulina/genética , Humanos , Janus Quinase 2/genética , Modelos Biológicos , Mutação , Transtornos Mieloproliferativos/genética
12.
Nano Lett ; 24(27): 8361-8368, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38940365

RESUMO

Cell migration requires the interplay among diverse migration patterns. The molecular basis of distinct migration programs is undoubtedly vital but not fully explored. Meanwhile, the lack of tools for investigating spontaneous migratory plasticity in a single living cell also adds to the hindrance. Here, we developed a micro/nanotechnology-enabled single-cell analytical platform to achieve coherent monitoring of spontaneous migratory pattern and signaling molecules. Via the platform, we unveiled a previously unappreciated STAT3 regionalization on the multifunctional regulations of migration. Specifically, nuclear STAT3 is associated with amoeboid migration, while cytoplasmic STAT3 promotes mesenchymal movement. Opposing effects of JAK2 multisite phosphorylation shape its response to STAT3 distribution in a dynamic and antagonistic manner, eventually triggering a reversible amoeboid-mesenchymal transition. Based on the above results, bioinformatics further revealed a possible downstream regulator of nucleocytoplasmic STAT3. Thus, our platform, as an exciting technological advance in single-cell migration research, can provide in-depth mechanism interpretations of tumor metastasis and progression.


Assuntos
Movimento Celular , Núcleo Celular , Janus Quinase 2 , Fator de Transcrição STAT3 , Análise de Célula Única , Fator de Transcrição STAT3/metabolismo , Humanos , Núcleo Celular/metabolismo , Janus Quinase 2/metabolismo , Fosforilação , Transdução de Sinais , Citoplasma/metabolismo , Animais
13.
Genes Dev ; 31(10): 1007-1023, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28611190

RESUMO

Janus kinase 2 (JAK2) is a central kinase in hematopoietic stem/progenitor cells (HSPCs), and its uncontrolled activation is a prominent oncogenic driver of hematopoietic neoplasms. However, molecular mechanisms underlying the regulation of JAK2 have remained elusive. Here we report that the Casitas B-cell lymphoma (CBL) family E3 ubiquitin ligases down-regulate JAK2 stability and signaling via the adaptor protein LNK/SH2B3. We demonstrated that depletion of CBL/CBL-B or LNK abrogated JAK2 ubiquitination, extended JAK2 half-life, and enhanced JAK2 signaling and cell growth in human cell lines as well as primary murine HSPCs. Built on these findings, we showed that JAK inhibitor (JAKi) significantly reduced aberrant HSPCs and mitigated leukemia development in a mouse model of aggressive myeloid leukemia driven by loss of Cbl and Cbl-b Importantly, primary human CBL mutated (CBLmut ) leukemias exhibited increased JAK2 protein levels and signaling and were hypersensitive to JAKi. Loss-of-function mutations in CBL E3 ubiquitin ligases are found in a wide range of myeloid malignancies, which are diseases without effective treatment options. Hence, our studies reveal a novel signaling axis that regulates JAK2 in normal and malignant HSPCs and suggest new therapeutic strategies for treating CBLmut myeloid malignancies.


Assuntos
Janus Quinase 2/metabolismo , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/fisiopatologia , Proteínas Proto-Oncogênicas c-cbl/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Citocinas/metabolismo , Estabilidade Enzimática , Células-Tronco Hematopoéticas/enzimologia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Janus Quinase 2/genética , Leucemia Mieloide Aguda/genética , Proteínas de Membrana , Camundongos , Mutação , Proteólise , Proteínas Proto-Oncogênicas c-cbl/genética , Transdução de Sinais/genética , Ubiquitinação
14.
Artigo em Inglês | MEDLINE | ID: mdl-38593442

RESUMO

Heightened unfolded protein responses (UPRs) are associated with the risk for asthma, including severe asthma. Treatment-refractory severe asthma manifests a neutrophilic phenotype with TH17 responses. However, how UPRs participate in the deregulation of TH17 cells leading to neutrophilic asthma remains elusive. This study found that the UPR sensor IRE1 is induced in the murine lung with fungal asthma and is highly expressed in TH17 cells relative to naïve CD4+ T cells. Cytokine (e.g. IL-23) signals induce the IRE1-XBP1s axis in a JAK2-dependent manner. This noncanonical activation of the IRE1-XBP1s pathway promotes UPRs and cytokine secretion by both human and mouse TH17 cells. Ern1 (encoding IRE1)-deficiency decreases the expression of ER stress factors and impairs the differentiation and cytokine secretion of TH17 cells. Genetic ablation of Ern1 leads to alleviated TH17 responses and airway neutrophilia in a fungal airway inflammation model. Consistently, IL-23 activates the JAK2-IRE1-XBP1s pathway in vivo and enhances TH17 responses and neutrophilic infiltration into the airway. Taken together, our data indicate that IRE1, noncanonically activated by cytokine signals, promotes neutrophilic airway inflammation through the UPR-mediated secretory function of TH17 cells. The findings provide a novel insight into the fundamental understanding of IRE1 in TH17-biased TH2-low asthma.

15.
J Cell Mol Med ; 28(8): e18332, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38661644

RESUMO

The role of KIAA0040 role in glioma development is not yet understood despite its connection to nervous system diseases. In this study, KIAA0040 expression levels were evaluated using qRT-PCR, WB and IHC, and functional assays were conducted to assess its impact on glioma progression, along with animal experiments. Moreover, WB was used to examine the impact of KIAA0040 on the JAK2/STAT3 signalling pathway. Our study found that KIAA0040 was increased in glioma and linked to tumour grade and poor clinical outcomes, serving as an independent prognostic factor. Functional assays showed that KIAA0040 enhances glioma growth, migration and invasion by activating the JAK2/STAT3 pathway. Of course, KIAA0040 enhances glioma growth by preventing tumour cell death and promoting cell cycle advancement. Our findings suggest that targeting KIAA0040 could be an effective treatment for glioma due to its role in promoting aggressive tumour behaviour and poor prognosis.


Assuntos
Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glioma , Janus Quinase 2 , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Janus Quinase 2/metabolismo , Janus Quinase 2/genética , Camundongos Nus , Prognóstico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fator de Transcrição STAT3/metabolismo , Fator de Transcrição STAT3/genética
16.
Lab Invest ; 104(4): 102028, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38382808

RESUMO

Primary gastrointestinal (GI) T-cell and natural killer (NK)-cell lymphomas/lymphoproliferative disorders (LPD) are uncommon, and they are usually aggressive in nature. However, T-cell and NK-cell lymphoma/LPD of the GI tract with indolent clinical course has been reported over the past 2 decades. Indolent T-cell LPD was formally proposed a decade ago in 2013 and 4 years later recognized as a provisional entity by the revised fourth edition of WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues in 2017. Indolent T-cell LPD of the GI tract has been changed to indolent T-cell lymphoma of the GI tract as a distinct entity by the fifth edition of WHO Classification of Haematolymphoid Tumours, but the International Consensus Classification of mature lymphoid neoplasms prefers indolent clonal T-cell LPD of the GI tract instead. In the past decade, indolent lymphoma/LPD of the GI tract has been expanded to NK cells, and as such, indolent NK-cell LPD of the GI tract was recognized as an entity by both the fifth edition of WHO Classification of Haematolymphoid Tumours and the International Consensus Classification. The underlying genetic/molecular mechanisms of both indolent T-cell lymphoma/LPD of the GI tract and indolent NK-cell LPD of the GI tract have been recently discovered. In this review, we describe the history; salient clinical, cytohistomorphologic, and immunohistochemical features; and genetic/genomic landscape of both entities. In addition, we also summarize the mimics and differential diagnosis. Finally, we propose future directions with regard to the pathogenesis and clinical management.


Assuntos
Linfoma de Células T , Linfoma , Transtornos Linfoproliferativos , Humanos , Linfoma/diagnóstico , Linfoma/patologia , Trato Gastrointestinal/patologia , Células Matadoras Naturais , Linfoma de Células T/diagnóstico , Linfócitos T/patologia , Transtornos Linfoproliferativos/diagnóstico , Transtornos Linfoproliferativos/patologia
17.
Int J Cancer ; 155(4): 742-755, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38647131

RESUMO

Alteration of cell metabolism is one of the essential characteristics of tumor growth. Cancer stem cells (CSCs) are the initiating cells of tumorigenesis, proliferation, recurrence, and other processes, and play an important role in therapeutic resistance and metastasis. Thus, identification of the metabolic profiles in prostate cancer stem cells (PCSCs) is critical to understanding prostate cancer progression. Using untargeted metabolomics and lipidomics methods, we show distinct metabolic differences between prostate cancer cells and PCSCs. Urea cycle is the most significantly altered metabolic pathway in PCSCs, the key metabolites arginine and proline are evidently elevated. Proline promotes cancer stem-like characteristics via the JAK2/STAT3 signaling pathway. Meanwhile, the enzyme pyrroline-5-carboxylate reductase 1 (PYCR1), which catalyzes the conversion of pyrroline-5-carboxylic acid to proline, is highly expressed in PCSCs, and the inhibition of PYCR1 suppresses the stem-like characteristics of prostate cancer cells and tumor growth. In addition, carnitine and free fatty acid levels are significantly increased, indicating reprogramming of fatty acid metabolism in PCSCs. Reduced sphingolipid levels and increased triglyceride levels are also observed. Collectively, our data illustrate the comprehensive landscape of the metabolic reprogramming of PCSCs and provide potential therapeutic strategies for prostate cancer.


Assuntos
Células-Tronco Neoplásicas , Neoplasias da Próstata , Pirrolina Carboxilato Redutases , Ureia , delta-1-Pirrolina-5-Carboxilato Redutase , Masculino , Humanos , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Pirrolina Carboxilato Redutases/metabolismo , Ureia/metabolismo , Animais , Camundongos , Linhagem Celular Tumoral , Transdução de Sinais , Janus Quinase 2/metabolismo , Metabolômica/métodos , Prolina/metabolismo , Fator de Transcrição STAT3/metabolismo , Esferoides Celulares/metabolismo , Esferoides Celulares/patologia , Proliferação de Células , Lipidômica/métodos
18.
Mol Med ; 30(1): 98, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38943069

RESUMO

BACKGROUND: L-theanine is a unique non-protein amino acid in tea that is widely used as a safe food additive. We investigated the cardioprotective effects and mechanisms of L-theanine in myocardial ischemia-reperfusion injury (MIRI). METHODS: The cardioprotective effects and mechanisms of L-theanine and the role of Janus Kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) signaling were investigated in MIRI mice using measures of cardiac function, oxidative stress, and apoptosis. RESULTS: Administration of L-theanine (10 mg/kg, once daily) suppressed the MIRI-induced increase in infarct size and serum creatine kinase and lactate dehydrogenase levels, as well as MIRI-induced cardiac apoptosis, as evidenced by an increase in Bcl-2 expression and a decrease in Bax/caspase-3 expression. Administration of L-theanine also decreased the levels of parameters reflecting oxidative stress, such as dihydroethidium, malondialdehyde, and nitric oxide, and increased the levels of parameters reflecting anti-oxidation, such as total antioxidant capacity (T-AOC), glutathione (GSH), and superoxide dismutase (SOD) in ischemic heart tissue. Further analysis showed that L-theanine administration suppressed the MIRI-induced decrease of phospho-JAK2 and phospho-STAT3 in ischemic heart tissue. Inhibition of JAK2 by AG490 (5 mg/kg, once daily) abolished the cardioprotective effect of L-theanine, suggesting that the JAK2/STAT3 signaling pathway may play an essential role in mediating the anti-I/R effect of L-theanine. CONCLUSIONS: L-theanine administration suppresses cellular apoptosis and oxidative stress in part via the JAK2/STAT3 signaling pathway, thereby attenuating MIRI-induced cardiac injury. L-theanine could be developed as a potential drug to alleviate cardiac damage in MIRI.


Assuntos
Apoptose , Glutamatos , Janus Quinase 2 , Traumatismo por Reperfusão Miocárdica , Estresse Oxidativo , Fator de Transcrição STAT3 , Transdução de Sinais , Animais , Janus Quinase 2/metabolismo , Fator de Transcrição STAT3/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/etiologia , Apoptose/efeitos dos fármacos , Glutamatos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Cardiotônicos/farmacologia , Cardiotônicos/uso terapêutico
19.
Br J Haematol ; 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38698680

RESUMO

We describe the clinical phenotype, management strategies and outcomes of 22 patients with autoimmune myelofibrosis (AIMF); median age: 45 years; 77% females; 83% with autoimmune disease, pancytopenia in 32% and transfusion-requiring anaemia in 59%. All informative cases were negative for JAK2 (n = 18) and CALR/MPL mutations (n = 12). Fourteen of nineteen (74%) evaluable patients achieved complete response (CR) based on the resolution of cytopenias. First-line treatments included steroids +/- immunosuppressive agents, cyclosporin and mycophenolate with CR in 7 of 13 (54%), 1 of 2 (50%) and 1 of 2 (50%) respectively. Rituximab salvage therapy yielded CR in 4 of 5 (80%) cases. The current study provides information on steroid-sparing treatments for AIMF.

20.
Biochem Biophys Res Commun ; 722: 150132, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788354

RESUMO

OBJECTIVE: The present study aims to investigate the protective potential of salidroside in both lung ischemia/reperfusion injury (LIRI) mice model and cell hypoxia/reoxygenation (H/R)model and the involvement of ferroptosis and JAK2/STAT3 pathway. MATERIALS AND METHODS: After we established the IR-induced lung injury model in mice, we administered salidroside and the ferroptosis inhibitor, ferrostatin-1, then assessed the lung tissue injury, ferroptosis (levels of reactive oxygen species level, malondialdehyde and glutathione), and inflammation in lung tissues. The levels of ferroptosis-related proteins (glutathione peroxidase 4, fibroblast-specific protein 1, solute carrier family 1 member 5 and glutaminase 2) in the lung tissue were measured with Western blotting. Next, BEAS-2B cells were used to establish an H/R cell model and treated with salidroside or ferrostatin-1 before the cell viability and the levels of lactate dehydrogenase (LDH), inflammatory factor, ferroptosis-related proteins were measured. The activation of the JAK2/STAT3 signaling pathway was measured with Western blotting, then its role was confirmed with STAT3 knockdown. RESULTS: Remarkably, salidroside was found to alleviate ferroptosis, inflammation, and lung injury in LIRI mice and the cell injury in H/R cell model. Severe ferroptosis were observed in LIRI mice models and H/R-induced BEAS-2B cells, which was alleviated by salidroside. Furthermore, salidroside could inhibit JAK2/STAT3 activation induced by LIRI. STAT3 knockdown could enhance the effect of salidroside treatment on H/R-induced cell damage and ferroptosis in vitro. CONCLUSIONS: Salidroside inhibits ferroptosis to alleviate lung ischemia reperfusion injury via the JAK2/STAT3 signaling pathway.


Assuntos
Ferroptose , Glucosídeos , Janus Quinase 2 , Fenóis , Traumatismo por Reperfusão , Fator de Transcrição STAT3 , Transdução de Sinais , Fenóis/farmacologia , Fenóis/uso terapêutico , Animais , Ferroptose/efeitos dos fármacos , Janus Quinase 2/metabolismo , Glucosídeos/farmacologia , Fator de Transcrição STAT3/metabolismo , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Transdução de Sinais/efeitos dos fármacos , Masculino , Camundongos , Humanos , Camundongos Endogâmicos C57BL , Pulmão/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Linhagem Celular , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/metabolismo , Lesão Pulmonar/patologia , Lesão Pulmonar/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA