Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Mol Cell ; 81(7): 1397-1410.e9, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725486

RESUMO

Phospholipid scrambling in dying cells promotes phosphatidylserine exposure, a critical process for efferocytosis. We previously identified the Xkr family protein Xkr4 as a phospholipid-scrambling protein, but its activation mechanisms remain unknown. Here we show that Xkr4 is activated in two steps: dimer formation by caspase-mediated cleavage and structural change caused by activating factors. To identify the factors, we developed a new screening system, "revival screening," using a CRISPR sgRNA library. Applying this system, we identified the nuclear protein XRCC4 as the single candidate for the Xkr4 activator. Upon apoptotic stimuli, XRCC4, contained in the DNA repair complex, is cleaved by caspases, and its C-terminal fragment with an intrinsically disordered region is released into the cytoplasm. Protein interaction screening showed that the fragment interacts directly with the Xkr4 dimer to activate it. This study demonstrates that caspase-mediated cleavage releases a nuclear protein fragment for direct regulation of lipid dynamics on the plasma membrane.


Assuntos
Proteínas Reguladoras de Apoptose/metabolismo , Caspases/metabolismo , Membrana Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Membrana/metabolismo , Fosfolipídeos/metabolismo , Proteólise , Animais , Proteínas Reguladoras de Apoptose/genética , Caspases/genética , Linhagem Celular Tumoral , Membrana Celular/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Proteínas de Membrana/genética , Camundongos , Fosfolipídeos/genética , Multimerização Proteica
2.
Proc Natl Acad Sci U S A ; 120(18): e2216342120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37098070

RESUMO

NKG2D (natural-killer group 2, member D) is a homodimeric transmembrane receptor that plays an important role in NK, γδ+, and CD8+ T cell-mediated immune responses to environmental stressors such as viral or bacterial infections and oxidative stress. However, aberrant NKG2D signaling has also been associated with chronic inflammatory and autoimmune diseases, and as such NKG2D is thought to be an attractive target for immune intervention. Here, we describe a comprehensive small-molecule hit identification strategy and two distinct series of protein-protein interaction inhibitors of NKG2D. Although the hits are chemically distinct, they share a unique allosteric mechanism of disrupting ligand binding by accessing a cryptic pocket and causing the two monomers of the NKG2D dimer to open apart and twist relative to one another. Leveraging a suite of biochemical and cell-based assays coupled with structure-based drug design, we established tractable structure-activity relationships with one of the chemical series and successfully improved both the potency and physicochemical properties. Together, we demonstrate that it is possible, albeit challenging, to disrupt the interaction between NKG2D and multiple protein ligands with a single molecule through allosteric modulation of the NKG2D receptor dimer/ligand interface.


Assuntos
Células Matadoras Naturais , Subfamília K de Receptores Semelhantes a Lectina de Células NK , Ligantes , Linfócitos T CD8-Positivos , Ligação Proteica
3.
Bioorg Med Chem ; 104: 117700, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38583236

RESUMO

Adenosine Deaminases Acting on RNA (ADARs) catalyze the deamination of adenosine to inosine in double-stranded RNA (dsRNA). ADARs' ability to recognize and edit dsRNA is dependent on local sequence context surrounding the edited adenosine and the length of the duplex. A deeper understanding of how editing efficiency is affected by mismatches, loops, and bulges around the editing site would aid in the development of therapeutic gRNAs for ADAR-mediated site-directed RNA editing (SDRE). Here, a SELEX (systematic evolution of ligands by exponential enrichment) approach was employed to identify dsRNA substrates that bind to the deaminase domain of human ADAR2 (hADAR2d) with high affinity. A library of single-stranded RNAs was hybridized with a fixed-sequence target strand containing the nucleoside analog 8-azanebularine that mimics the adenosine deamination transition state. The presence of this nucleoside analog in the library biased the screen to identify hit sequences compatible with adenosine deamination at the site of 8-azanebularine modification. SELEX also identified non-duplex structural elements that supported editing at the target site while inhibiting editing at bystander sites.


Assuntos
Adenosina Desaminase , Nucleosídeos de Purina , Ribonucleosídeos , Humanos , Adenosina , Adenosina Desaminase/metabolismo , Sequência de Bases , RNA de Cadeia Dupla , RNA Guia de Sistemas CRISPR-Cas
4.
BMC Plant Biol ; 23(1): 93, 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36782128

RESUMO

BACKGROUND: Gibberellins (GAs) are widely involved in plant growth and development. DELLA proteins are key regulators of plant development and a negative regulatory factor of GA. Dendrobium officinale is a valuable traditional Chinese medicine, but little is known about D. officinale DELLA proteins. Assessing the function of D. officinale DELLA proteins would provide an understanding of their roles in this orchid's development. RESULTS: In this study, the D. officinale DELLA gene family was identified. The function of DoDELLA1 was analyzed in detail. qRT-PCR analysis showed that the expression levels of all DoDELLA genes were significantly up-regulated in multiple shoots and GA3-treated leaves. DoDELLA1 and DoDELLA3 were significantly up-regulated in response to salt stress but were significantly down-regulated under drought stress. DoDELLA1 was localized in the nucleus. A strong interaction was observed between DoDELLA1 and DoMYB39 or DoMYB308, but a weak interaction with DoWAT1. CONCLUSIONS: In D. officinale, a developmental regulatory network involves a close link between DELLA and other key proteins in this orchid's life cycle. DELLA plays a crucial role in D. officinale development.


Assuntos
Dendrobium , Dendrobium/genética , Dendrobium/metabolismo , Giberelinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
5.
Fish Shellfish Immunol ; 137: 108730, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37084857

RESUMO

Fish perivitelline fluid (PVF) is a vital extra-embryonic compartment. At hatching, PVF-contents dissolve into the hatching fluid (HF). Analysis of Atlantic salmon HF reveals nearly a hundred distinct proteins, most of which were identified by advanced mass-spectrometry. However, one entity with an apparent molecular weight 26 kDa, necessitated identification from its tryptic peptides. Subsequent cloning and sequencing revealed novel leukolectin-proteins. From bioinformatic analysis, leukolectins (LL) belong in the tectonin protein-family, with recognized functions in innate immunity. This study aims to identify LL-expressing cells in diverse fish species, and to characterize the LL-gene in order to predict bio-functions of leukolectins. LL-proteins were detected in HF from several fish species and one invertebrate, using polyclonal LL-specific IgGs. Embryonic LL-immunoreactive cells were numerous in Atlantic salmon, rainbow trout, fewer in Atlantic cod, and rare in Atlantic halibut and Oikopleura dioica. LL-immunoreactive cells were termed lectocytes, which corresponded to peridermal mucuscells stained by PAS, but unstained by eosin. Hence, lectocytes and hatching-gland cells were clearly distinguished. Northern blots revealed two salmon LL-transcripts at mid-embryogenesis. Such transcripts were detected in epithelial cells of the periderm, gills and oral cavity. LL-transcripts predominated in the periderm, while choriolysin-transcripts were dominant in the gills. No co-expression of choriolysins and LL-transcripts was detected. BAC-library screening yielded salmon LL's genestructure with 4 introns, 5 exons, TATA-box, multiple upstream putative transcription-factor bindingsites and polyadenylation site. LL-gene location on chromosome ssa17 was identified in Ssal_v3.1, the 2021version of the salmon genome. In conclusion, larvae from several fish species are outfitted with mucus enriched by LL-proteins. Mucus cells are present in embryos of all fishes, but embryonic lectocyte-numbers are far higher in species with near total larval survival. When (maternal) chorionic first-line immuno-defence is lost at hatching, leukolectin-enriched mucus may provide vital protection for larvae.


Assuntos
Oncorhynchus mykiss , Salmo salar , Animais , Imunidade Inata/genética , Salmão , Íntrons , Larva , Muco
6.
Mol Ther ; 30(12): 3601-3618, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-35810332

RESUMO

AAV vectors are promising delivery tools for human gene therapy. However, broad tissue tropism and pre-existing immunity against natural serotypes limit their clinical use. We identified two AAV capsid variants, AAV2-THGTPAD and AAV2-NLPGSGD, by in vivo AAV2 peptide display library screening in a murine model of pressure overload-induced cardiac hypertrophy. Both variants showed significantly improved efficacy in in vivo cardiomyocyte transduction compared with the parental serotype AAV2 as indicated by a higher number of AAV vector episomes in the nucleus and significant improved transduction efficiency. Both variants also outcompeted the reference serotype AAV9 regarding cardiomyocyte tropism, reaching comparable cardiac transduction efficiencies accompanied with liver de-targeting and decreased transduction efficiency of non-cardiac cells. Capsid modification influenced immunogenicity as sera of mice treated with AAV2-THGTPAD and AAV2-NLPGSGD demonstrated a poor neutralization capacity for the parental serotype and the novel variants. In a therapeutic setting, using the long non-coding RNA H19 in low vector dose conditions, novel AAV variants mediated superior anti-hypertrophic effects and revealed a further improved target-to-noise ratio, i.e., cardiomyocyte tropism. In conclusion, AAV2-THGTPAD and AAV2-NLPGSGD are promising novel tools for cardiac-directed gene therapy outperforming AAV9 regarding the specificity and therapeutic efficiency of in vivo cardiomyocyte transduction.


Assuntos
Miócitos Cardíacos , RNA Longo não Codificante , Animais , Humanos , Camundongos , Tropismo , Capsídeo
7.
Mol Cancer ; 21(1): 11, 2022 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-34983546

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is among the most common forms of cancer and is associated with poor patient outcomes. The emergence of therapeutic resistance has hampered the efficacy of targeted treatments employed to treat HCC patients to date. In this study, we conducted a series of CRISPR/Cas9 screens to identify genes associated with synthetic lethality capable of improving HCC patient clinical responses. METHODS: CRISPR-based loss-of-function genetic screens were used to target 18,053 protein-coding genes in HCC cells to identify chemotherapy-related synthetic lethal genes in these cells. Synergistic effects were analyzed through in vitro and in vivo analyses, while related mechanisms were explored through RNA-seq and metabolomics analyses. Potential inhibitors of identified genetic targets were selected through high-throughput virtual screening. RESULTS: The inhibition of phosphoseryl-tRNA kinase (PSTK) was found to increase HCC cell sensitivity to chemotherapeutic treatment. PSTK was associated with the suppression of chemotherapy-induced ferroptosis in HCC cells, and the depletion of PSTK resulted in the inactivation of glutathione peroxidative 4 (GPX4) and the disruption of glutathione (GSH) metabolism owing to the inhibition of selenocysteine and cysteine synthesis, thus enhancing the induction of ferroptosis upon targeted chemotherapeutic treatment. Punicalin, an agent used to treat hepatitis B virus (HBV), was identified as a possible PSTK inhibitor that exhibited synergistic efficacy when applied together with Sorafenib to treat HCC in vitro and in vivo. CONCLUSIONS: These results highlight a key role for PSTK as a mediator of resistance to targeted therapeutic treatment in HCC cells that functions by suppressing ferroptotic induction. PSTK inhibitors may thus represent ideal candidates for overcoming drug resistance in HCC.


Assuntos
Sistemas CRISPR-Cas , Carcinoma Hepatocelular/genética , Ferroptose/efeitos dos fármacos , Ferroptose/genética , Testes Genéticos , Neoplasias Hepáticas/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Biomarcadores Tumorais , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/tratamento farmacológico , Linhagem Celular Tumoral , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Técnicas de Silenciamento de Genes , Testes Genéticos/métodos , Humanos , Estimativa de Kaplan-Meier , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Oxirredução/efeitos dos fármacos , Fosfotransferases (Aceptor do Grupo Álcool)/antagonistas & inibidores , Fosfotransferases (Aceptor do Grupo Álcool)/química , Prognóstico , Resultado do Tratamento
8.
Biochem Biophys Res Commun ; 629: 95-100, 2022 11 12.
Artigo em Inglês | MEDLINE | ID: mdl-36115284

RESUMO

Subtilase cytotoxin (SubAB) is a major virulence factor produced by eae-negative Shiga-toxigenic Escherichia coli (STEC) that can cause fatal systemic complications. SubAB binds to target cells through multivalent interactions between its B-subunit pentamer and receptor molecules such as glycoproteins with a terminal N-glycolylneuraminic acid (Neu5Gc). We screened randomized multivalent peptide libraries synthesized on a cellulose membrane and identified a series of tetravalent peptides that efficiently bind to the receptor-binding region of the SubAB B-subunit pentamer. These peptides competitively inhibited the binding of the B-subunit to a receptor-mimic molecule containing clustered Neu5Gc (Neu5Gc-polymer). We selected the peptide with the highest inhibitory efficacy, FFP-tet, and covalently bound it to beads to synthesize FFP-tet-beads, a highly clustered SubAB absorber that displayed potency to absorb SubAB cytotoxicity through direct binding to the toxin. The efficacy of FFP-tet-beads to absorb SubAB cytotoxicity in solution was similar to that of Neu5Gc-polymer, suggesting that FFP-tet-beads might be an effective therapeutic agent against complications arising from eae-negative STEC infection.


Assuntos
Proteínas de Escherichia coli , Escherichia coli Shiga Toxigênica , Proteínas de Transporte/metabolismo , Celulose/metabolismo , Citotoxinas , Proteínas de Escherichia coli/metabolismo , Biblioteca de Peptídeos , Polímeros/metabolismo , Escherichia coli Shiga Toxigênica/genética , Escherichia coli Shiga Toxigênica/metabolismo , Subtilisinas/toxicidade , Fatores de Virulência/metabolismo
9.
Metab Eng ; 72: 247-258, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35398513

RESUMO

Targeted engineering of mammalian cells has been widely attempted to ensure the efficient production of therapeutic proteins with proper quality during bioprocesses. However, the identification of novel targets for cell engineering is labor-intensive and has not yet been fully substantiated. Here, we established a CRISPR/Cas9 library screening platform in human embryonic kidney (HEK293) cells based on guide RNA integration mediated by recombinase-mediated cassette exchange (RMCE) to interrogate gene function in a high-throughput manner. This platform was further advanced using a nuclear localization signal-tagged recombinase that increased RMCE efficiency by 4.8-fold. Using this platform, we identified putative target genes, such as CDK8, GAS2L1, and GSPT1, and their perturbation confers resistance to hyperosmotic stress that inhibits cell growth and induces apoptosis. Knockout of these genes in monoclonal antibody (mAb)-producing recombinant HEK293 (rHEK293) cells enhanced resistance to hyperosmotic stress-induced apoptosis, resulting in enhanced mAb production. In particular, GSPT1-knockout yielded 2.3-fold increase in maximum mAb concentration in fed-batch culture where hyperosmotic stress naturally occurs due to nutrient feeding. Taken together, this streamlined screening platform allows the identification of novel targets associated with hyperosmotic stress, enabling the development of stress-resistant cells producing recombinant proteins.


Assuntos
Sistemas CRISPR-Cas , Proteínas Recombinantes , Recombinases , Anticorpos Monoclonais , Células HEK293 , Humanos , Rim/metabolismo , Pressão Osmótica , Proteínas Recombinantes/biossíntese , Recombinases/genética
10.
Pharmacol Res ; 184: 106409, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995346

RESUMO

A range of neurodegenerative and related aging diseases, such as Alzheimer's disease and type 2 diabetes, are linked to toxic protein aggregation. Yet the mechanisms of protein aggregation inhibition by small molecule inhibitors remain poorly understood, in part because most protein targets of aggregation assembly are partially unfolded or intrinsically disordered, which hinders detailed structural characterization of protein-inhibitor complexes and structural-based inhibitor design. Herein we employed a parallel small molecule library-screening approach to identify inhibitors against three prototype amyloidogenic proteins in neurodegeneration and related proteinopathies: amylin, Aß and tau. One remarkable class of inhibitors identified from these screens against different amyloidogenic proteins was catechol-containing compounds and redox-related quinones/anthraquinones. Secondary assays validated most of the identified inhibitors. In vivo efficacy evaluation of a selected catechol-containing compound, rosmarinic acid, demonstrated its strong mitigating effects of amylin amyloid deposition and related diabetic pathology in transgenic HIP rats. Further systematic investigation of selected class of inhibitors under aerobic and anaerobic conditions revealed that the redox state of the broad class of catechol-containing compounds is a key determinant of the amyloid inhibitor activities. The molecular insights we gained not only explain why a large number of catechol-containing polyphenolic natural compounds, often enriched in healthy diet, have anti-neurodegeneration and anti-aging activities, but also could guide the rational design of therapeutic or nutraceutical strategies to target a broad range of neurodegenerative and related aging diseases.


Assuntos
Doença de Alzheimer , Diabetes Mellitus Tipo 2 , Doença de Alzheimer/tratamento farmacológico , Peptídeos beta-Amiloides/metabolismo , Proteínas Amiloidogênicas/metabolismo , Animais , Antraquinonas , Catecóis/farmacologia , Catecóis/uso terapêutico , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/uso terapêutico , Oxirredução , Agregados Proteicos , Quinonas , Ratos
11.
Bioorg Chem ; 119: 105581, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34990933

RESUMO

The therapeutic indications for monoamine oxidases A and B (MAO-A and MAO-B) inhibitors that have emerged from biological studies on animal and cellular models of neurological and oncological diseases have focused drug discovery projects upon identifying reversible MAO inhibitors. Screening of our in-house academic compound library identified two hit compounds that inhibit MAO-B with IC50 values in micromolar range. Two series of indole (23 analogues) and 3-(benzyloxy)benzyl)piperazine (16 analogues) MAO-B inhibitors were derived from hits, and screened for their structure-activity relationships. Both series yielded low micromolar selective inhibitors of human MAO-B, namely indole 2 (IC50 = 12.63 ± 1.21 µM) and piperazine 39 (IC50 = 19.25 ± 4.89 µM), which is comparable to selective MAO-B inhibitor isatin (IC50 = 6.10 ± 2.81 µM), yet less potent in comparison to safinamide (IC50 = 0.029 ± 0.002 µM). Selective MAO-B inhibitors 2, 14, 38 and 39 exhibited favourable permeation of the blood-brain barrier and low cytotoxicity in the human neuroblastoma cell line SH-SY5Y.


Assuntos
Antineoplásicos/farmacologia , Indóis/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Monoaminoxidase/metabolismo , Piperazina/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/síntese química , Indóis/química , Camundongos , Modelos Moleculares , Estrutura Molecular , Inibidores da Monoaminoxidase/síntese química , Inibidores da Monoaminoxidase/química , Nitritos/análise , Piperazina/síntese química , Piperazina/química , Relação Estrutura-Atividade
12.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012203

RESUMO

The routine generation of enzymes with completely new active sites is a major unsolved problem in protein engineering. Advances in this field have thus far been modest, perhaps due, at least in part, to the widespread use of modern natural proteins as scaffolds for de novo engineering. Most modern proteins are highly evolved and specialized and, consequently, difficult to repurpose for completely new functionalities. Conceivably, resurrected ancestral proteins with the biophysical properties that promote evolvability, such as high stability and conformational diversity, could provide better scaffolds for de novo enzyme generation. Kemp elimination, a non-natural reaction that provides a simple model of proton abstraction from carbon, has been extensively used as a benchmark in de novo enzyme engineering. Here, we present an engineered ancestral ß-lactamase with a new active site that is capable of efficiently catalyzing Kemp elimination. The engineering of our Kemp eliminase involved minimalist design based on a single function-generating mutation, inclusion of an extra polypeptide segment at a position close to the de novo active site, and sharply focused, low-throughput library screening. Nevertheless, its catalytic parameters (kcat/KM~2·105 M-1 s-1, kcat~635 s-1) compare favorably with the average modern natural enzyme and match the best proton-abstraction de novo Kemp eliminases that are reported in the literature. The general implications of our results for de novo enzyme engineering are discussed.


Assuntos
Engenharia de Proteínas , Prótons , Catálise , Domínio Catalítico , beta-Lactamases/genética
13.
Development ; 145(4)2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29437832

RESUMO

Somites are periodically formed by segmentation of the anterior parts of the presomitic mesoderm (PSM). In the mouse embryo, this periodicity is controlled by the segmentation clock gene Hes7, which exhibits wave-like oscillatory expression in the PSM. Despite intensive studies, the exact mechanism of such synchronous oscillatory dynamics of Hes7 expression still remains to be analyzed. Detailed analysis of the segmentation clock has been hampered because it requires the use of live embryos, and establishment of an in vitro culture system would facilitate such analyses. Here, we established a simple and efficient method to generate mouse ES cell-derived PSM-like tissues, in which Hes7 expression oscillates like traveling waves. In these tissues, Hes7 oscillation is synchronized between neighboring cells, and the posterior-anterior axis is self-organized as the central-peripheral axis. This method is applicable to chemical-library screening and will facilitate the analysis of the molecular nature of the segmentation clock.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Padronização Corporal/genética , Células-Tronco Embrionárias/metabolismo , Mesoderma/metabolismo , Somitos/metabolismo , Animais , Relógios Biológicos , Técnicas de Cultura de Células , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Hibridização In Situ , Medições Luminescentes , Camundongos , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
14.
Planta ; 253(1): 12, 2021 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-33389204

RESUMO

MAIN CONCLUSION: Cadmium-sensitive yeast screening resulted in the isolation of protein translation factor SaeIF1 from the hyperaccumulator Sedum alfredii which has both general and special regulatory roles in controlling cadmium accumulation. The hyperaccumulator of Sedum alfredii has the extraordinary ability to hyperaccumulate cadmium (Cd) in shoots. To investigate its underlying molecular mechanisms of Cd hyperaccumulation, a cDNA library was generated from leaf tissues of S. alfredii. SaeIF1, belonging to the eukaryotic protein translation factor SUI1 family, was identified by screening Cd-sensitive yeast transformants with this library. The full-length cDNA of SaeIF1 has 582 bp and encodes a predicted protein with 120 amino acids. Transient expression assays showed subcellular localization of SaeIF1 in the cytoplasm. SaeIF1 was constitutively and highly expressed in roots and shoots of the hyperaccumulator of S. alfredii, while its transcript levels showed over 100-fold higher expression in the hyperaccumulator of S. alfredii relative to the tissues of a nonhyperaccumulating ecotype of S. alfredii. However, the overexpression of SaeIF1 in yeast cells increased Cd accumulation, but conferred more Cd sensitivity. Transgenic Arabidopsis thaliana expressing SaeIF1 accumulated more Cd in roots and shoots without changes in the ratio of Cd content in shoots and roots, but were more sensitive to Cd stress than wild type. Both special and general roles of SaeIF1 in Cd uptake, transportation, and detoxification are discussed, and might be responsible for the hyperaccumulation characteristics of S. alfredii.


Assuntos
Sedum , Cádmio/metabolismo , Ecótipo , Folhas de Planta/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Sedum/genética , Sedum/metabolismo , Poluentes do Solo/metabolismo
15.
Chemistry ; 27(9): 3130-3141, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33215746

RESUMO

New drugs aimed at novel targets are urgently needed to combat the increasing rate of drug-resistant tuberculosis (TB). Herein, the National Cancer Institute Developmental Therapeutic Program (NCI-DTP) chemical library was screened against a promising new target, ketol-acid reductoisomerase (KARI), the second enzyme in the branched-chain amino acid (BCAA) biosynthesis pathway. From this library, 6-hydroxy-2-methylthiazolo[4,5-d]pyrimidine-5,7(4H,6H)-dione (NSC116565) was identified as a potent time-dependent inhibitor of Mycobacterium tuberculosis (Mt) KARI with a Ki of 95.4 nm. Isothermal titration calorimetry studies showed that this inhibitor bound to MtKARI in the presence and absence of the cofactor, nicotinamide adenine dinucleotide phosphate (NADPH), which was confirmed by crystal structures of the compound in complex with closely related Staphylococcus aureus KARI. It is also shown that NSC116565 inhibits the growth of H37Ra and H37Rv strains of Mt with MIC50 values of 2.93 and 6.06 µm, respectively. These results further validate KARI as a TB drug target and show that NSC116565 is a promising lead for anti-TB drug development.


Assuntos
Antituberculosos/farmacologia , Cetol-Ácido Redutoisomerase/antagonistas & inibidores , Mycobacterium tuberculosis/enzimologia , Pirimidinonas/farmacologia , Linhagem Celular , Humanos , Cetol-Ácido Redutoisomerase/metabolismo , Mycobacterium tuberculosis/efeitos dos fármacos , NADP/metabolismo , Staphylococcus aureus/enzimologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia
16.
Molecules ; 26(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206124

RESUMO

Macrocyclic peptides are predominantly peptide structures bearing one or more rings and spanning multiple amino acid residues. Macrocyclization has become a common approach for improving the pharmacological properties and bioactivity of peptides. A variety of ribosomal-derived and non-ribosomal synthesized cyclization approaches have been established. The biosynthesis of backbone macrocyclic peptides using seven new emerging methodologies will be discussed with regard to the features and strengths of each platform rather than medicinal chemistry tools. The mRNA display variant, known as the random nonstandard peptide integrated discovery (RaPID) platform, utilizes flexible in vitro translation (FIT) to access macrocyclic peptides containing nonproteinogenic amino acids (NAAs). As a new discovery approach, the ribosomally synthesized and post-translationally modified peptides (RiPPs) method involves the combination of ribosomal synthesis and the phage screening platform together with macrocyclization chemistries to generate libraries of macrocyclic peptides. Meanwhile, the split-intein circular ligation of peptides and proteins (SICLOPPS) approach relies on the in vivo production of macrocyclic peptides. In vitro and in vivo peptide library screening is discussed as an advanced strategy for cyclic peptide selection. Specifically, biosynthetic bicyclic peptides are highlighted as versatile and attractive modalities. Bicyclic peptides represent another type of promising therapeutics that allow for building blocks with a heterotrimeric conjugate to address intractable challenges and enable multimer complexes via linkers. Additionally, we discuss the cell-free chemoenzymatic synthesis of macrocyclic peptides with a non-ribosomal catalase known as the non-ribosomal synthetase (NRPS) and chemo-enzymatic approach, with recombinant thioesterase (TE) domains. Novel insights into the use of peptide library tools, activity-based two-hybrid screening, structure diversification, inclusion of NAAs, combinatorial libraries, expanding the toolbox for macrocyclic peptides, bicyclic peptides, chemoenzymatic strategies, and future perspectives are presented. This review highlights the broad spectrum of strategy classes, novel platforms, structure diversity, chemical space, and functionalities of macrocyclic peptides enabled by emerging biosynthetic platforms to achieve bioactivity and for therapeutic purposes.


Assuntos
Peptídeo Sintases/metabolismo , Peptídeos Cíclicos/biossíntese , Ciclização , Humanos , Biblioteca de Peptídeos , Técnicas do Sistema de Duplo-Híbrido
17.
J Biol Chem ; 294(11): 4103-4118, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30591588

RESUMO

Pathways linking activation of the insulin receptor to downstream targets of insulin have traditionally been studied using a candidate gene approach. To elucidate additional pathways regulating insulin activity, we performed a forward chemical-genetics screen based on translocation of a glucose transporter 4 (Glut4) reporter expressed in murine 3T3-L1 adipocytes. To identify compounds with known targets, we screened drug-repurposing and natural product libraries. We identified, confirmed, and validated 64 activators and 65 inhibitors that acutely increase or rapidly decrease cell-surface Glut4 in adipocytes stimulated with submaximal insulin concentrations. These agents were grouped by target, chemical class, and mechanism of action. All groups contained multiple hits from a single drug class, and several comprised multiple structurally unrelated hits for a single target. Targets include the ß-adrenergic and adenosine receptors. Agonists of these receptors increased and inverse agonists/antagonists decreased cell-surface Glut4 independently of insulin. Additional activators include insulin sensitizers (thiazolidinediones), insulin mimetics, dis-inhibitors (the mTORC1 inhibitor rapamycin), cardiotonic steroids (the Na+/K+-ATPase inhibitor ouabain), and corticosteroids (dexamethasone). Inhibitors include heterocyclic amines (tricyclic antidepressants) and 21 natural product supplements and herbal extracts. Mechanisms of action include effects on Glut4 trafficking, signal transduction, inhibition of protein synthesis, and dissipation of proton gradients. Two pathways that acutely regulate Glut4 translocation were discovered: de novo protein synthesis and endocytic acidification. The mechanism of action of additional classes of activators (tanshinones, dalbergiones, and coumarins) and inhibitors (flavonoids and resveratrol) remains to be determined. These tools are among the most sensitive, responsive, and reproducible insulin-activity assays described to date.


Assuntos
Adipócitos/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Ensaios de Triagem em Larga Escala , Insulina/metabolismo , Células 3T3-L1 , Animais , Transportador de Glucose Tipo 4/genética , Transportador de Glucose Tipo 4/metabolismo , Camundongos
18.
Biochem Biophys Res Commun ; 533(2): 249-255, 2020 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-32444139

RESUMO

DEL selections are binding assays conducted with mixtures of chemically diverse DNA-tagged ligands and a screening target. DEL selections use DNA sequence counts to measure target binding, where ideally higher affinity ligands will have higher counts than weaker affinity ligands. However, there is not always a clear relationship between DNA sequence count (assay signal) and binding affinity. This disconnect may be due to the fidelity of library chemistry, where reactions often do not go to completion, and also to repetitive rounds of binding and elution that are standard practice in most DEL selection experiments. We describe here a strategy that addresses both of these issues and provides a means to calculate ligand affinity from primary selection data. The reaction yields of selected compounds during DEL library synthesis can also be predicted with this method.


Assuntos
DNA/química , Descoberta de Drogas , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Sítios de Ligação , Técnicas de Química Combinatória , DNA/síntese química , Humanos , Ligantes , Fosfotransferases/metabolismo , Ligação Proteica , Bibliotecas de Moléculas Pequenas/síntese química
19.
Cytometry A ; 97(8): 845-851, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31876358

RESUMO

In the last decade, screening compound libraries on live cells has become an important step in drug discovery. The abundance of compounds in these libraries requires effective high-throughput (HT) analyzing methods. Although current cell-based assay protocols are suitable for HT analyses, the analysis itself is often restrained to simple, singular outcomes. Incorporation of HT samplers on flow cytometers has provided an interesting approach to increase the number of measurable parameters and increase the sensitivity and specificity of analyses. Nonetheless, to date, the labor intensive and time-consuming strategies to detach and stain adherent cells before flow cytometric analysis has restricted use of HT flow cytometry (HTFC) to suspension cells. We have developed a universal "no-touch" HTFC antibody staining protocol in 384-well microplates to bypass washing and centrifuging steps of conventional flow cytometry protocols. Optimizing culture conditions, cell-detachment and staining strategies in 384-well microplates resulted in an HTFC protocol with an optimal stain index with minimal background staining. The method has been validated using six adherent cell lines and simultaneous staining of four parameters. This HT screening protocol allows for effective monitoring of multiple cellular markers simultaneously, thereby increasing informativity and cost-effectiveness of drug screening. © 2019 The Authors. Cytometry Part A published by Wiley Periodicals LLC. on behalf of International Society for Advancement of Cytometry.


Assuntos
Ensaios de Triagem em Larga Escala , Preparações Farmacêuticas , Avaliação Pré-Clínica de Medicamentos , Citometria de Fluxo , Coloração e Rotulagem
20.
Appl Microbiol Biotechnol ; 104(13): 6013-6022, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32367311

RESUMO

Directed evolution has become an important method to unleash the latent potential of enzymes to make them uniquely suited for human purposes. However, the need for a large reagent volume and sophisticated instrumentation hampers its broad implementation. In an attempt to address this problem, here we report a paper-based high-throughput screening approach that should find broad application in generating desired enzymes. As an example case, the dehalogenation reaction of the halohydrin dehalogenase was adopted for assay development. In addition to visual detection, quantitative measurements were performed by measuring the color intensity of an image that was photographed by a smartphone and processed using ImageJ free software. The proposed method was first validated using a gold standard method and then applied to mutagenesis library screening with reduced consumption of reagents (i.e., ≤ 10 µl per assay) and a shorter assay time. We identified two active mutants (P135A and G137A) with improved activities toward four tested substrates. The assay not only consumes less reagents but also eliminates the need for expensive instrumentation. The proposed method demonstrates the potential of paper-based whole-cell screening coupled with digital image colorimetry as a promising approach for the discovery of industrially important enzymes.Key Points• A frugal method was developed for directed enzyme evolution.• Mutagenesis libraries were successfully screened on a paper platform.• Smartphone imaging was efficiently used to measure enzyme activities.


Assuntos
Evolução Molecular Direcionada/métodos , Ensaios de Triagem em Larga Escala/métodos , Papel , Catálise , Colorimetria , Evolução Molecular Direcionada/economia , Evolução Molecular Direcionada/normas , Escherichia coli/genética , Escherichia coli/metabolismo , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/economia , Ensaios de Triagem em Larga Escala/normas , Hidrolases/genética , Hidrolases/metabolismo , Mutagênese , Mutação , Reprodutibilidade dos Testes , Smartphone
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA