Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(45): e2209910119, 2022 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-36322729

RESUMO

Understanding gene functions in marine invertebrates has been limited, largely due to the lack of suitable assay systems. Such a system requires investigative methods that are reproducible and can be quantitatively evaluated, such as a cell line, and a strong promoter that can drive high expression of a transgene. In this study, we established primary cell culture from a marine bivalve mollusc, Mizuhopecten yessoensis. Using scallop primary cells, we optimized electroporation conditions for transfection and carried out a luciferase-based promoter activity assay to identify strong promoter sequences that can drive expression of a gene of interest. We evaluated potential promoter sequences from genes of endogenous and exogenous origin and discovered a strong viral promoter derived from a bivalve-infectious virus, ostreid herpesvirus-1 (OsHV-1). This promoter, we termed OsHV-1 promoter, showed 24.7-fold and 16.1-fold higher activity than the cytomegalovirus immediate early (CMV IE) promoter and the endogenous EF1α promoter, the two most commonly used promoters in bivalves so far. Our GFP assays showed that the OsHV-1 promoter is active not only in scallop cells but also in HEK293 cells and zebrafish embryos. The OsHV-1 promoter practically enables functional analysis of marine molluscan genes, which can contribute to unveiling gene-regulatory networks underlying astonishing regeneration, adaptation, reproduction, and aging in marine invertebrates.


Assuntos
Bivalves , Peixe-Zebra , Animais , Humanos , Células HEK293 , Regiões Promotoras Genéticas/genética
2.
Appl Environ Microbiol ; 88(8): e0236021, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35348387

RESUMO

Contamination of oysters with a variety of viruses is one key pathway to trigger outbreaks of massive oyster mortality as well as human illnesses, including gastroenteritis and hepatitis. Much effort has gone into examining the fate of viruses in contaminated oysters, yet the current state of knowledge of nonlinear virus-oyster interactions is not comprehensive because most studies have focused on a limited number of processes under a narrow range of experimental conditions. A framework is needed for describing the complex nonlinear virus-oyster interactions. Here, we introduce a mathematical model that includes key processes for viral dynamics in oysters, such as oyster filtration, viral replication, the antiviral immune response, apoptosis, autophagy, and selective accumulation. We evaluate the model performance for two groups of viruses, those that replicate in oysters (e.g., ostreid herpesvirus) and those that do not (e.g., norovirus), and show that this model simulates well the viral dynamics in oysters for both groups. The model analytically explains experimental findings and predicts how changes in different physiological processes and environmental conditions nonlinearly affect in-host viral dynamics, for example, that oysters at higher temperatures may be more resistant to infection by ostreid herpesvirus. It also provides new insight into food treatment for controlling outbreaks, for example, that depuration for reducing norovirus levels is more effective in environments where oyster filtration rates are higher. This study provides the foundation of a modeling framework to guide future experiments and numerical modeling for better prediction and management of outbreaks. IMPORTANCE The fate of viruses in contaminated oysters has received a significant amount of attention in the fields of oyster aquaculture, food quality control, and public health. However, intensive studies through laboratory experiments and in situ observations are often conducted under a narrow range of experimental conditions and for a specific purpose in their respective fields. Given the complex interactions of various processes and nonlinear viral responses to changes in physiological and environmental conditions, a theoretical framework fully describing the viral dynamics in oysters is warranted to guide future studies from a top-down design. Here, we developed a process-based, in-host modeling framework that builds a bridge for better communications between different disciplines studying virus-oyster interactions.


Assuntos
Gastroenterite , Herpesviridae , Norovirus , Ostreidae , Animais , Vírus de DNA , Gastroenterite/epidemiologia , Humanos
3.
Fish Shellfish Immunol ; 122: 225-233, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35150830

RESUMO

Ostreid herpesvirus 1 (OsHV-1) infection caused mortalities with relevant economic losses in bivalve aquaculture industry worldwide. Initially described as an oyster pathogen, OsHV-1 can infect other bivalve species, like the blood clam Scapharca broughtonii. However, at present, little is known about the molecular interactions during OsHV-1 infection in the blood clam. We produced paired miRNA and total RNA-seq data to investigate the blood clam transcriptional changes from 0 to 72 h after experimental infection with OsHV-1. High-throughput miRNA sequencing of 24 libraries revealed 580 conserved and 270 new blood clam miRNAs, whereas no genuine miRNA was identified for OsHV-1. Total 88-203 differently expressed miRNAs were identified per time point, mostly up-regulated and mainly targeting metabolic pathways. Most of the blood clam mRNAs, in contrast, were down-regulated up to 60 h post-injection, with the trend analysis revealing the activation of immune genes only when comparing the early and latest stage of infection. Taken together, paired short and long RNA data suggested a miRNA-mediated down-regulation of host metabolic and energetic processes as a possible antiviral strategy during early infection stages, whereas antiviral pathways appeared upregulated only at late infection.


Assuntos
Crassostrea , Herpesviridae , MicroRNAs , Scapharca , Animais , Crassostrea/genética , Vírus de DNA/fisiologia , Mecanismos de Defesa , Herpesviridae/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Scapharca/genética , Análise de Sequência de RNA
4.
J Invertebr Pathol ; 183: 107601, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33964304

RESUMO

French commercial hatcheries are massively producing Crassostrea gigas selected for their higher resistance to OsHV-1, and soon should also implement selection for increasing resistance to Vibrio aestuarianus. The first objective of this study was to optimize the breeding programs for dual resistance to OsHV-1 and V. aestuarianus to determine the earliest life stage for which oysters are able to develop disease resistance. Wild stocks and selected families were tested using experimental infections by both pathogens at the larval, spat and juvenile stages. Oyster families could be evaluated for OsHV-1 as soon as the larval stage by a bath method, but this only highlighted the most resistant families; those that showed the highest resistance to V. aestuarianus could be determined using the cohabitation method at the juvenile stage. The second objective of this study was to determine if selection to increase/decrease the resistance to OsHV-1 and V. aestuarianus could have an impact on other major pathogens currently detected in hatchery at the larval stage, and in nursery and field at the spat/juveniles stages (V. coralliilyticus, V. crassostreae, V. tasmaniensis, V. neptunius, V. europaeus, V. harveyi, V. chagasi). No relationship was found between mortality caused by V. aestuarianus/OsHV-1 and the mortality caused by the other virulent bacterial strains tested regardless the stages, except between OsHV-1 and V. tasmaniensis at the juvenile stage. Finally, miscellaneous findings were evidenced such as (1) bath for bacterial challenges was not adapted for spat, (2) the main pathogens at the larval stage were OsHV-1 and V. coralliilyticus using bath, while it was V. coralliilyticus, V. europaeus, and V. neptunius at the juvenile stage by injection, and (4) variation in mortality was observed among families/wild controls for all pathogens at larval and juvenile stages, except for V. harveyi for larvae.


Assuntos
Crassostrea/microbiologia , Vírus de DNA/isolamento & purificação , Vibrio/isolamento & purificação , Animais , Aquicultura , Crassostrea/crescimento & desenvolvimento , Crassostrea/virologia , Larva/crescimento & desenvolvimento , Larva/microbiologia , Larva/virologia
5.
J Invertebr Pathol ; 183: 107553, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33596434

RESUMO

The ostreid herpes virus (OsHV-1), associated with massive mortalities in the bivalve Crassostrea gigas, was detected for the first time in the cephalopod Octopus vulgaris. Wild adult animals from a natural breeding area in Spain showed an overall prevalence of detection of 87.5% between 2010 and 2015 suggesting an environmental source of viral material uptake. Overall positive PCR detections were significantly higher in adult animals (p = 0.031) compared to newly hatched paralarvae (62%). Prevalence in embryos reached 65%. Sequencing of positive amplicons revealed a match with the variant OsHV-1 µVar showing the genomic features that distinguish this variant in the ORF4. Gill tissues from adult animals were also processed for in situ hybridization and revealed positive labelling. Experimental exposure trials in octopus paralarvae were carried out by cohabitation with virus injected oysters and by immersion in viral suspension observing a significant decrease in paralarval survival in both experiments. An increase in the number of OsHV-1 positive animals was detected in dead paralarvae after cohabitation with virus injected oysters. No signs of viral replication were observed based on lack of viral gene expression or visualization of viral structures by transmission electron microscopy. The octopus response against OsHV-1 was evaluated by gene expression of previously reported transcripts involved in immune response in C. gigas suggesting that immune defences in octopus are also activated after exposure to OsHV-1.


Assuntos
Vírus de DNA/isolamento & purificação , Octopodiformes/virologia , Animais , Sequência de Bases , Genoma Viral , Larva/crescimento & desenvolvimento , Larva/virologia , Octopodiformes/crescimento & desenvolvimento , Alinhamento de Sequência
6.
BMC Genomics ; 21(1): 620, 2020 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-32912133

RESUMO

BACKGROUND: Since 2008, the aquaculture production of Crassostrea gigas was heavily affected by mass mortalities associated to Ostreid herpesvirus 1 (OsHV-1) microvariants worldwide. Transcriptomic studies revealed the major antiviral pathways of the oyster immune response while other findings suggested that also small non-coding RNAs (sncRNA) such as microRNAs might act as key regulators of the oyster response against OsHV-1. To explore the explicit connection between small non-coding and protein-coding transcripts, we performed paired whole transcriptome analysis of sncRNA and messenger RNA (mRNA) in six oysters selected for different intensities of OsHV-1 infection. RESULTS: The mRNA profiles of the naturally infected oysters were mostly governed by the transcriptional activity of OsHV-1, with several differentially expressed genes mapping to the interferon, toll, apoptosis, and pro-PO pathways. In contrast, miRNA profiles suggested more complex regulatory mechanisms, with 15 differentially expressed miRNAs (DE-miRNA) pointing to a possible modulation of the host response during OsHV-1 infection. We predicted 68 interactions between DE-miRNAs and oyster 3'-UTRs, but only few of them involved antiviral genes. The sncRNA reads assigned to OsHV-1 rather resembled mRNA degradation products, suggesting the absence of genuine viral miRNAs. CONCLUSIONS: We provided data describing the miRNAome during OsHV-1 infection in C. gigas. This information can be used to understand the role of miRNAs in healthy and diseased oysters, to identify new targets for functional studies and, eventually to disentangle cause and effect relationships during viral infections in marine mollusks.


Assuntos
Crassostrea/genética , Redes Reguladoras de Genes , MicroRNAs/genética , RNA Mensageiro/genética , Animais , Crassostrea/virologia , Vírus de DNA/patogenicidade , Resistência à Doença , MicroRNAs/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
7.
BMC Genomics ; 21(1): 63, 2020 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-31959106

RESUMO

BACKGROUND: As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). RESULTS: We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. CONCLUSIONS: We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.


Assuntos
Crassostrea/genética , Crassostrea/microbiologia , Animais , Crassostrea/imunologia , Crassostrea/metabolismo , Genes , RNA-Seq , Estresse Fisiológico/genética , Transcriptoma
8.
J Exp Biol ; 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34005719

RESUMO

Among all the environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to the pathogens in ectothermic animals. In France, massive mortality of Pacific oysters Crassostrea gigas caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA-sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to apoptotic process, synaptic signaling, and protein processes at 29°C. Concomitantly, the expression of genes associated to catabolism, metabolites transport, macromolecules synthesis and cell growth remained low since the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate the host-pathogen interactions.

9.
J Exp Biol ; 223(Pt 20)2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32816959

RESUMO

Of all environmental factors, seawater temperature plays a decisive role in triggering marine diseases. Like fever in vertebrates, high seawater temperature could modulate the host response to pathogens in ectothermic animals. In France, massive mortality of Pacific oysters, Crassostrea gigas, caused by the ostreid herpesvirus 1 (OsHV-1) is markedly reduced when temperatures exceed 24°C in the field. In the present study we assess how high temperature influences the host response to the pathogen by comparing transcriptomes (RNA sequencing) during the course of experimental infection at 21°C (reference) and 29°C. We show that high temperature induced host physiological processes that are unfavorable to the viral infection. Temperature influenced the expression of transcripts related to the immune process and increased the transcription of genes related to the apoptotic process, synaptic signaling and protein processes at 29°C. Concomitantly, the expression of genes associated with catabolism, metabolite transport, macromolecule synthesis and cell growth remained low from the first stage of infection at 29°C. Moreover, viral entry into the host might have been limited at 29°C by changes in extracellular matrix composition and protein abundance. Overall, these results provide new insights into how environmental factors modulate host-pathogen interactions.


Assuntos
Crassostrea , Herpesviridae , Animais , Crassostrea/genética , França , Herpesviridae/genética , Temperatura , Transcriptoma
10.
Fish Shellfish Immunol ; 103: 32-36, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32334127

RESUMO

Maternal immune priming is the transfer of immunity from mother to offspring, which may reduce the offspring's risk of disease from a pathogen that previously infected its mother. Maternal immune priming has been described in at least 25 invertebrate taxa, including Crassostrea gigas. Larvae of C. gigas have improved survival to Ostreid herpesvirus (OsHV-1) if their mothers are either infected with OsHV-1 or were injected with a virus mimic called poly(I:C). However, fitness costs associated with maternal immune priming in C. gigas are unknown. Here, we show C. gigas larvae produced from poly(I:C)-treated mothers are smaller, and have higher total bacteria and Vibrio loads compared to control larvae. These results suggest that the improved offspring survival of C. gigas to OsHV-1 due to maternal immune priming with poly(I:C) is potentially traded off with other important life history traits, such as larval growth rate and destabilisation of the microbiome.


Assuntos
Crassostrea/imunologia , Vírus de DNA/fisiologia , Aptidão Genética/genética , Tolerância Imunológica , Imunidade Inata/genética , Animais , Crassostrea/genética , Herança Materna , Poli I-C/farmacologia
11.
J Invertebr Pathol ; 169: 107299, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31786248

RESUMO

OsHV-1 is an epidemic pathogen of molluscs, and temperature has been recognized as a decisive environmental factor in its pathogenicity. In recent years, ark clam, Scapharca broughtonii, emerged as a host for OsHV-1. In the north of China, massive summer mortalities of ark clams infected with OsHV-1 have been continuously reported since 2012. However, the interaction between temperature and the pathogenicity of OsHV-1 was unknown in ark clams. In this study, the effect of temperature (10 °C to 18 °C stepped by 2 °C) on the occurrence of OsHV-1 disease in ark clams was analyzed. OsHV-1 infection led to gill erosion but not below the critical low temperature (between 12 °C and 14 °C). However, OsHV-1 persisted for more than 2 weeks at 12 °C post inoculation and replication was reactivated when the temperature was elevated to 18 °C. No significant reduction of OsHV-1 DNA load was found when the temperature descended to 12 °C from 18 °C, while the gill erosion remained unchanged. Ark clams failed to show the capability of effective clearance of OsHV-1 below the critical low temperature. Our results demonstrated that the pathogenicity of OsHV-1 was influenced significantly by temperature. Moreover, high temperature favored infection, which could provide more information to understand summer mortality of ark clams.


Assuntos
Arcidae/virologia , Vírus de DNA/fisiologia , Interações Hospedeiro-Patógeno , Temperatura Alta , Animais
12.
Dis Aquat Organ ; 138: 185-194, 2020 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-32213666

RESUMO

In bivalve mollusk aquaculture, massive disease outbreaks with high mortality and large economic losses can occur, as in northwest Mexico in the 1990s. A range of pathogens can affect bivalves; one of great concern is ostreid herpesvirus 1 (OsHV-1), of which there are several strains. This virus has been detected in the Gulf of California in occasional or sporadic samplings, but to date, there have been few systematic studies. Monthly samples of Crassostrea gigas, water, and sediment were taken in the La Cruz coastal lagoon and analyzed by PCR. The native mollusk, Dosinia ponderosa, which lives outside the lagoon, was sampled as a control. The virus was found throughout the year only in C. gigas, with prevalence up to 60%. In total, 9 genotype variants were detected, and genetic analysis suggests that linear genotypic evolution has occurred from strain JF894308, present in La Cruz in 2011. There has been no evidence of the entry of new viral genotypes in the recent past, thus confinement of the virus within the lagoons of the Gulf of California could promote a native genotypic diversity in the short term.


Assuntos
Crassostrea , Animais , California , Vírus de DNA , Genótipo , México , Prevalência
13.
Dis Aquat Organ ; 138: 137-144, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32162612

RESUMO

Economically devastating mortality events of farmed and wild shellfish due to infectious disease have been reported globally. Currently, one of the most significant disease threats to Pacific oyster Crassostrea gigas culture is the ostreid herpesvirus 1 (OsHV-1), in particular the emerging OsHV-1 microvariant genotypes. OsHV-1 microvariants (OsHV-1 µvars) are spreading globally, and concern is high among growers in areas unaffected by OsHV-1. No study to date has compared the relative virulence among variants. We provide the first challenge study comparing survival of naïve juvenile Pacific oysters exposed to OsHV-1 µvars from Australia (AUS µvar) and France (FRA µvar). Oysters challenged with OsHV-1 µvars had low survival (2.5% exposed to AUS µvar and 10% to FRA µvar), and high viral copy number as compared to control oysters (100% survival and no virus detected). As our study was conducted in a quarantine facility located ~320 km from the ocean, we also compared the virulence of OsHV-1 µvars using artificial seawater made from either facility tap water (3782 µmol kg-1 seawater total alkalinity) or purchased distilled water (2003 µmol kg-1). Although no differences in survival or viral copy number were detected in oysters exposed to seawater made using tap or distilled water, more OsHV-1 was detected in tanks containing the lower-alkalinity seawater, indicating that water quality may be important for virus transmission, as it may influence the duration of viral viability outside of the host.


Assuntos
Herpesviridae , Animais , Austrália , Crassostrea , DNA Viral , França , Água do Mar
14.
Int J Mol Sci ; 21(18)2020 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-32917059

RESUMO

The Ostreid herpesvirus 1 species affects shellfish, contributing significantly to high economic losses during production. To counteract the threat related to mortality, there is a need for the development of novel point-of-care testing (POCT) that can be implemented in aquaculture production to prevent disease outbreaks. In this study, a simple, rapid and specific colorimetric loop-mediated isothermal amplification (LAMP) assay has been developed for the detection of Ostreid herpesvirus1 (OsHV-1) and its variants infecting Crassostrea gigas (C. gigas). The LAMP assay has been optimized to use hydroxynaphthol blue (HNB) for visual colorimetric distinction of positive and negative templates. The effect of an additional Tte UvrD helicase enzyme used in the reaction was also evaluated with an improved reaction time of 10 min. Additionally, this study provides a robust workflow for optimization of primers for uncultured viruses using designed target plasmid when DNA availability is limited.


Assuntos
Vírus de DNA/isolamento & purificação , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Animais , Crassostrea/virologia , DNA Helicases , Naftalenossulfonatos
15.
BMC Evol Biol ; 19(1): 149, 2019 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-31337330

RESUMO

BACKGROUND: Adenosine deaminase enzymes of the ADAR family are conserved in metazoans. They convert adenine into inosine in dsRNAs and thus alter both structural properties and the coding potential of their substrates. Acting on exogenous dsRNAs, ADAR1 exerts a pro- or anti-viral role in vertebrates and Drosophila. RESULTS: We traced 4 ADAR homologs in 14 lophotrochozoan genomes and we classified them into ADAD, ADAR1 or ADAR2, based on phylogenetic and structural analyses of the enzymatic domain. Using RNA-seq and quantitative real time PCR we demonstrated the upregulation of one ADAR1 homolog in the bivalve Crassostrea gigas and in the gastropod Haliotis diversicolor supertexta during Ostreid herpesvirus-1 or Haliotid herpesvirus-1 infection. Accordingly, we demonstrated an extensive ADAR-mediated editing of viral RNAs. Single nucleotide variation (SNV) profiles obtained by pairing RNA- and DNA-seq data from the viral infected individuals resulted to be mostly compatible with ADAR-mediated A-to-I editing (up to 97%). SNVs occurred at low frequency in genomic hotspots, denoted by the overlapping of viral genes encoded on opposite DNA strands. The SNV sites and their upstream neighbor nucleotide indicated the targeting of selected adenosines. The analysis of viral sequences suggested that, under the pressure of the ADAR editing, the two Malacoherpesviridae genomes have evolved to reduce the number of deamination targets. CONCLUSIONS: We report, for the first time, evidence of an extensive editing of Malacoherpesviridae RNAs attributable to host ADAR1 enzymes. The analysis of base neighbor preferences, structural features and expression profiles of molluscan ADAR1 supports the conservation of the enzyme function among metazoans and further suggested that ADAR1 exerts an antiviral role in mollusks.


Assuntos
Antivirais/metabolismo , Vírus de DNA/genética , Moluscos/virologia , Edição de RNA/genética , RNA Viral/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Teorema de Bayes , Vírus de DNA/fisiologia , Regulação da Expressão Gênica , Genoma Viral , Modelos Moleculares , Moluscos/genética , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Domínios Proteicos , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Transcriptoma/genética
16.
Dis Aquat Organ ; 135(2): 97-106, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31342911

RESUMO

The Pacific oyster Crassostrea gigas is currently being impacted by a polymicrobial disease that involves early viral infection by ostreid herpesvirus-1 (OsHV-1) followed by a secondary bacterial infection leading to death. A widely used method of inducing infection consists of placing specific pathogen-free oysters ('recipients') in cohabitation in the laboratory with diseased oysters that were naturally infected in the field ('donors'). With this method, we evaluated the temporal dynamics of pathogen release in seawater and the cohabitation time necessary for disease transmission and expression. We showed that OsHV-1 and Vibrio spp. in the seawater peaked concomitantly during the first 48 h and decreased thereafter. We found that 1.5 h of cohabitation with donors was enough time to transmit pathogens to recipients and to induce mortality later, reflecting the highly contagious nature of the disease. Finally, mortality of recipients was associated with increasing cohabitation time with donors until reaching a plateau at 20%. This reflects the cumulative effect of exposure to pathogens. The optimal cohabitation time was 5-6 d, the mortality of recipients occurring 1-2 d earlier.


Assuntos
Herpesviridae , Vibrio , Animais , Crassostrea , DNA Viral , Água do Mar
17.
J Gen Virol ; 99(5): 693-703, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29580370

RESUMO

The surveillance activities for abnormal bivalve mortality events in Italy include the diagnosis of ostreid herpesvirus type 1 (OsHV-1) in symptomatic oysters. OsHV-1-positive oysters (Crassostrea gigas) were used as a source for in vivo virus propagation and a virus-rich sample was selected to perform shotgun sequencing based on Illumina technology. Starting from this unpurified supernatant sample from gills and mantle, we generated 3.5 million reads (2×300 bp) and de novo assembled the whole genome of an Italian OsHV-1 microvariant (OsHV-1-PT). The OsHV-1-PT genome encodes 125 putative ORFs, 7 of which had not previously been predicted in other sequenced Malacoherpesviridae. Overall, OsHV-1-PT displays typical microvariant OsHV-1 genome features, while few polymorphisms (0.08 %) determine its uniqueness. As little is known about the genetic determinants of OsHV-1 virulence, comparing complete OsHV-1 genomes supports a better understanding of the virus pathogenicity and provides new insights into virus-host interactions.


Assuntos
Crassostrea/virologia , Vírus de DNA/classificação , Genoma Viral , Animais , Vírus de DNA/isolamento & purificação , Vírus de DNA/patogenicidade , DNA Viral/isolamento & purificação , Itália , Fases de Leitura Aberta , Filogenia , Polimorfismo Genético
18.
Fish Shellfish Immunol ; 82: 554-564, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30165154

RESUMO

The ark shell, Scapharca (Anadara) broughtonii, is an economically important marine shellfish species in Northwestern Pacific. Mass mortalities of ark shell adults related to Ostreid herpesvirus-1 (OsHV-1) infection have occurred frequently since 2012. However, due to the lack of transcriptomic resource of ark shells, the molecular mechanisms underpinning the virus-host interaction remains largely undetermined. In the present study, we resolved the dual transcriptome changes of OsHV-1 infected ark shell with Illumina sequencing. A total of 44 M sequence reads were generated, of which 67,119 reads were mapped to the OsHV-1 genome. De novo assembly of host reads resulted in 276,997 unigenes. 74,529 (26.90%), 47,653 (17.20%) and 19, 611 (7.07%) unigenes were annotated into GO, KOG and KEGG database, respectively. According to RSEM expression values, we identified 2998 differentially expressed genes (DEGs) between control and challenged groups, which included 2065 up-regulated unigenes and 933 down-regulated unigenes. Further analysis of functional pathways indicated that OsHV-1 could inhibit host cell apoptosis mainly by the up-regulation of inhibitor of apoptosis protein (IAP), and thus facilitating its successful replication. While host hemoglobins could induce oxidative burst by suppressing its peroxidase activity, and thus defense against OsHV-1 infection. Although we reported a narrow expression of the OsHV-1 genome compared to Crassostrea gigas infection, we highlighted several common viral genes highly expressed in the two hosts, suggesting an important functional role. This study offers insights into the pathogenesis mechanisms of OsHV-1 infection in bivalve mollusks of the Arcidae family.


Assuntos
Apoptose/genética , Vírus de DNA/fisiologia , Regulação da Expressão Gênica , Scapharca/genética , Transcriptoma , Animais , Perfilação da Expressão Gênica , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Explosão Respiratória , Scapharca/virologia
19.
J Fish Dis ; 41(11): 1759-1769, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30151980

RESUMO

The acute course of disease in young oysters infected by OsHV-1 and the rapid tissue degradation often preclude histological examination of specimens collected during outbreaks in field. Herein, live spat originated from two geographical areas were sampled just at the onset of a mortality event that occurred in Normandy (France) in June 2016. The lesions, associated with high OsHV-1 DNA quantities, were characterized by severe and diffuse haemocytosis mainly involving blast-like cells, myocyte degeneration and large, irregularly shaped degenerate eosinophilic cells in the connective tissue. The herpesvirus was identified by negative staining TEM and real-time PCR. Sequencing of the C region and ORFs 42/43 confirmed that the variants met the definition of OsHV-1 µVar. We sequenced 30 other ORFs in twenty OsHV-1-positive individuals and compared them to the µVar specimens isolated between 2009 and 2011. The ORFs encoding putative membrane proteins showed the highest number of variations. Seven different genotypes were identified, confirming the presence of relevant genetic diversity. Phylogenetic analysis provided evidence for a well-separated µVar new group, with an evolutionary divergence estimated at 0.0013 from the other µVar variants. The geographical distribution of these newly described variants and their effective virulence should be investigated in future.


Assuntos
Crassostrea/virologia , Vírus de DNA/fisiologia , Animais , Vírus de DNA/classificação , Vírus de DNA/genética , DNA Viral/análise , França , Microscopia Eletrônica de Transmissão , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA
20.
Fish Shellfish Immunol ; 71: 127-135, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28986219

RESUMO

The Ostreid herpes virus type 1 (OsHV-1) is one of the most devastating pathogen in oyster cultures. Among several factors, as food limitation, oxygen depletion, salinity and temperature variations, episodes of "summer mortality" of the Pacific oyster Crassostrea gigas have also been associated with OsHV-1 infection. Mortalities of C. gigas spat and juveniles have increased significantly in Europe, and contemporary mortality records of this mollusk in México have been associated with the occurrence of OsHV-1. In the present study, the expression of the heat shock protein 70 gene from the Pacific oyster correlates with the abundance of DNA polymerase transcripts from the OsHV-1. This may suggest that the induction on the expression of the Pacific oyster hsp70 may potentially participate in the immune response against the virus. Furthermore, this study reports for the first time a TEM representative image of the OsHV-1 in aqueous solution, which possesses an icosahedral shape with a diameter of 70 nm × 100 nm. Finally, the examined sequence encoding the ORF4 of the OsHV-1 isolate from northwest Mexico showed specific sequence variations when compared with OsHV-1 isolates from distant geographical areas.


Assuntos
Crassostrea/genética , Crassostrea/imunologia , Vírus de DNA/fisiologia , Regulação da Expressão Gênica , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/imunologia , Imunidade Inata , Animais , Crassostrea/virologia , Variação Genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA