RESUMO
SspH/IpaH bacterial effector E3 ubiquitin (Ub) ligases, unrelated in sequence or structure to eukaryotic E3s, are utilized by a wide variety of Gram-negative bacteria during pathogenesis. These E3s function in a eukaryotic environment, utilize host cell E2 ubiquitin-conjugating enzymes of the Ube2D family, and target host proteins for ubiquitylation. Despite several crystal structures, details of Ube2Dâ¼Ub binding and the mechanism of ubiquitin transfer are poorly understood. Here, we show that the catalytic E3 ligase domain of SspH1 can be divided into two subdomains: an N-terminal subdomain that harbors the active-site cysteine and a C-terminal subdomain containing the Ube2Dâ¼Ub-binding site. SspH1 mutations designed to restrict subdomain motions show rapid formation of an E3â¼Ub intermediate, but impaired Ub transfer to substrate. NMR experiments using paramagnetic spin labels reveal how SspH1 binds Ube2Dâ¼Ub and targets the E2â¼Ub active site. Unexpectedly, hydrogen/deuterium exchange MS shows that the E2â¼Ub-binding region is dynamic but stabilized in the E3â¼Ub intermediate. Our results support a model in which both subunits of an Ube2Dâ¼Ub clamp onto a dynamic region of SspH1, promoting an E3 conformation poised for transthiolation. A conformational change is then required for Ub transfer from E3â¼Ub to substrate.
Assuntos
Proteínas de Bactérias/química , Salmonella/enzimologia , Ubiquitina-Proteína Ligases/química , Ubiquitinação , Substituição de Aminoácidos , Proteínas de Bactérias/genética , Catálise , Mutação de Sentido Incorreto , Domínios Proteicos , Salmonella/genética , Ubiquitina-Proteína Ligases/genéticaRESUMO
Salmonella enterica serovar Typhimurium expresses two type III secretion systems, T3SS1 and T3SS2, which are encoded in Salmonella pathogenicity island 1 (SPI1) and SPI2, respectively. These are essential virulent factors that secrete more than 40 effectors that are translocated into host animal cells. This study focuses on three of these effectors, SlrP, SspH1, and SspH2, which are members of the NEL family of E3 ubiquitin ligases. We compared their expression, regulation, and translocation patterns, their role in cell invasion and intracellular proliferation, their ability to interact and ubiquitinate specific host partners, and their effect on cytokine secretion. We found that transcription of the three genes encoding these effectors depends on the virulence regulator PhoP. Although the three effectors have the potential to be secreted through T3SS1 and T3SS2, the secretion of SspH1 and SspH2 is largely restricted to T3SS2 due to their expression pattern. We detected a role for these effectors in proliferation inside fibroblasts that is masked by redundancy. The generation of chimeric proteins allowed us to demonstrate that the N-terminal part of these proteins, containing the leucine-rich repeat motifs, confers specificity towards ubiquitination targets. Furthermore, the polyubiquitination patterns generated were different for each effector, with Lys48 linkages being predominant for SspH1 and SspH2. Finally, our experiments support an anti-inflammatory role for SspH1 and SspH2.
Assuntos
Salmonella typhimurium , Ubiquitina-Proteína Ligases , Animais , Salmonella typhimurium/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sorogrupo , UbiquitinaçãoRESUMO
Salmonella Typhimurium (S.Tm) utilizes the chemotaxis receptor Tsr to exploit gut inflammation. However, the characteristics of this exploitation and the mechanism(s) employed by the pathogen to circumvent antimicrobial effects of inflammation are poorly defined. Here, using different naturally occurring S.Tm strains (SL1344 and 14028) and competitive infection experiments, we demonstrate that type-three secretion system (T3SS)-2 virulence is indispensable for the beneficial effects of Tsr-directed chemotaxis. The removal of the 14028-specific prophage Gifsy3, encoding virulence effectors, results in the loss of the Tsr-mediated fitness advantage in that strain. Surprisingly, without T3SS-2 effector secretion, chemotaxis toward the gut epithelium using Tsr becomes disadvantageous for either strain. Our findings reveal that luminal neutrophils recruited as a result of NLRC4 inflammasome activation locally counteract S.Tm cells exploiting the byproducts of the host immune response. This work highlights a mechanism by which S.Tm exploitation of gut inflammation for colonization relies on the coordinated effects of chemotaxis and T3SS activities.