Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 248
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(26): e2201141119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35733252

RESUMO

Construction and remodeling of the bacterial peptidoglycan (PG) cell wall must be carefully coordinated with cell growth and division. Central to cell wall construction are hydrolases that cleave bonds in peptidoglycan. These enzymes also represent potential new antibiotic targets. One such hydrolase, the amidase LytH in Staphylococcus aureus, acts to remove stem peptides from PG, controlling where substrates are available for insertion of new PG strands and consequently regulating cell size. When it is absent, cells grow excessively large and have division defects. For activity, LytH requires a protein partner, ActH, that consists of an intracellular domain, a large rhomboid protease domain, and three extracellular tetratricopeptide repeats (TPRs). Here, we demonstrate that the amidase-activating function of ActH is entirely contained in its extracellular TPRs. We show that ActH binding stabilizes metals in the LytH active site and that LytH metal binding in turn is needed for stable complexation with ActH. We further present a structure of a complex of the extracellular domains of LytH and ActH. Our findings suggest that metal cofactor stabilization is a general strategy used by amidase activators and that ActH houses multiple functions within a single protein.


Assuntos
Proteínas de Bactérias , Proteínas de Membrana , Metais , N-Acetil-Muramil-L-Alanina Amidase , Proteínas de Bactérias/química , Parede Celular/química , Ativação Enzimática , Estabilidade Enzimática , Proteínas de Membrana/química , Metais/química , N-Acetil-Muramil-L-Alanina Amidase/química , Peptidoglicano/química , Ligação Proteica , Domínios Proteicos
2.
J Bacteriol ; 206(3): e0045623, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38426722

RESUMO

Actinoplanes missouriensis is a filamentous bacterium that differentiates into terminal sporangia, each containing a few hundred spores. Previously, we reported that a cell wall-hydrolyzing N-acetylglucosaminidase, GsmA, is required for the maturation process of sporangiospores in A. missouriensis; sporangia of the gsmA null mutant (ΔgsmA) strain released chains of 2-20 spores under sporangium dehiscence-inducing conditions. In this study, we identified and characterized a putative cell wall hydrolase (AsmA) that is also involved in sporangiospore maturation. AsmA was predicted to have a signal peptide for the general secretion pathway and an N-acetylmuramoyl-l-alanine amidase domain. The transcript level of asmA increased during the early stages of sporangium formation. The asmA null mutant (ΔasmA) strain showed phenotypes similar to those of the wild-type strain, but sporangia of the ΔgsmAΔasmA double mutant released longer spore chains than those from the ΔgsmA sporangia. Furthermore, a weak interaction between AsmA and GsmA was detected in a bacterial two-hybrid assay using Escherichia coli as the host. Based on these results, we propose that AsmA is an enzyme that hydrolyzes peptidoglycan at septum-forming sites to separate adjacent spores during sporangiospore maturation in cooperation with GsmA in A. missouriensis.IMPORTANCEActinoplanes missouriensis produces sporangiospores as dormant cells. The spores inside the sporangia are assumed to be formed from prespores generated by the compartmentalization of intrasporangium hyphae via septation. Previously, we identified GsmA as a cell wall hydrolase responsible for the separation of adjacent spores inside sporangia. However, we predicted that an additional cell wall hydrolase(s) is inevitably involved in the maturation process of sporangiospores because the sporangia of the gsmA null mutant strain released not only tandemly connected spore chains (2-20 spores) but also single spores. In this study, we successfully identified a putative cell wall hydrolase (AsmA) that is involved in sporangiospore maturation in A. missouriensis.


Assuntos
Actinoplanes , N-Acetil-Muramil-L-Alanina Amidase , Esporos , Hidrolases , Parede Celular
3.
J Lipid Res ; 65(3): 100520, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38369184

RESUMO

Lipid amidases of therapeutic relevance include acid ceramidase (AC), N-acylethanolamine-hydrolyzing acid amidase, and fatty acid amide hydrolase (FAAH). Although fluorogenic substrates have been developed for the three enzymes and high-throughput methods for screening have been reported, a platform for the specific detection of these enzyme activities in intact cells is lacking. In this article, we report on the coumarinic 1-deoxydihydroceramide RBM1-151, a 1-deoxy derivative and vinilog of RBM14-C12, as a novel substrate of amidases. This compound is hydrolyzed by AC (appKm = 7.0 µM; appVmax = 99.3 nM/min), N-acylethanolamine-hydrolyzing acid amidase (appKm = 0.73 µM; appVmax = 0.24 nM/min), and FAAH (appKm = 3.6 µM; appVmax = 7.6 nM/min) but not by other ceramidases. We provide proof of concept that the use of RBM1-151 in combination with reported irreversible inhibitors of AC and FAAH allows the determination in parallel of the three amidase activities in single experiments in intact cells.


Assuntos
Amidoidrolases , Corantes Fluorescentes , Etanolaminas/química , Lipídeos
4.
Int J Mol Sci ; 25(14)2024 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-39062935

RESUMO

The endocannabinoid system, known for its regulatory role in various physiological processes, relies on the activities of several hydrolytic enzymes, such as fatty acid amide hydrolase (FAAH), N-acylethanolamine-hydrolyzing acid amidase (NAAA), monoacylglycerol lipase (MAGL), and α/ß-hydrolase domains 6 (ABHD6) and 12 (ABHD12), to maintain homeostasis. Accurate measurement of these enzymes' activities is crucial for understanding their function and for the development of potential therapeutic agents. Fluorometric assays, which offer high sensitivity, specificity, and real-time monitoring capabilities, have become essential tools in enzymatic studies. This review provides a comprehensive overview of the principles behind these assays, the various substrates and fluorophores used, and advances in assay techniques used not only for the determination of the kinetic mechanisms of enzyme reactions but also for setting up kinetic assays for the high-throughput screening of each critical enzyme involved in endocannabinoid degradation. Through this comprehensive review, we aim to highlight the strengths and limitations of current fluorometric assays and suggest future directions for improving the measurement of enzyme activity in the endocannabinoid system.


Assuntos
Amidoidrolases , Endocanabinoides , Ensaios Enzimáticos , Endocanabinoides/metabolismo , Humanos , Ensaios Enzimáticos/métodos , Amidoidrolases/metabolismo , Amidoidrolases/antagonistas & inibidores , Hidrólise , Monoacilglicerol Lipases/metabolismo , Monoacilglicerol Lipases/antagonistas & inibidores , Animais , Fluorometria/métodos , Fluorescência , Cinética , Corantes Fluorescentes/química , Inibidores Enzimáticos/farmacologia
5.
Angew Chem Int Ed Engl ; : e202404492, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38948941

RESUMO

While plastics like polyethylene terephthalate can already be degraded efficiently by the activity of hydrolases, other synthetic polymers like polyurethanes (PUs) and polyamides (PAs) largely resist biodegradation. In this study, we solved the first crystal structure of the metagenomic urethanase UMG-SP-1, identified highly flexible loop regions to comprise active site residues, and targeted a total of 20 potential hot spots by site-saturation mutagenesis. Engineering campaigns yielded variants with single mutations, exhibiting almost 3- and 8-fold improved activity against highly stable N-aryl urethane and amide bonds, respectively. Furthermore, we demonstrated the release of the corresponding monomers from a thermoplastic polyester-PU and a PA (nylon 6) by the activity of a single, metagenome-derived urethanase after short incubation times. Thereby, we expanded the hydrolysis profile of UMG-SP-1 beyond the reported low-molecular weight carbamates. Together, these findings promise advanced strategies for the bio-based degradation and recycling of plastic materials and waste, aiding efforts to establish a circular economy for synthetic polymers.

6.
Adv Exp Med Biol ; 1415: 521-526, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37440081

RESUMO

Peptidoglycan (PGN) recognition protein 2 (PGRP2; N-acetylmuramyl-L-alanine amidase (NAMAA)) activity in corneal epithelial cells is thought to inhibit corneal inflammation by reducing the PGN-induced cytokines. PGRP2 has not been reported in human retinal pigment epithelial (RPE) cells. RPE cell lysate NAMAA activity was measured densitometrically via cleavage of FITC-tagged muramyl dipeptide (FITCMDP). RPE lysate degradation of the cytopathic activity of nucleotide-binding oligomerization domain (NOD) receptor agonists was assessed by caspase-3 activation and DNA ladder detection and quantitation. PGRP2/NAMAA protein was detected in RPE cells by immunofluorescent antibody assay. RPE lysate NAMAA cleaved FITCMDP in a dose- and time-dependent manner. RPE lysate selectively inhibited PGN cytopathic activity of NOD1 agonists containing D-γ-glutamyl-meso-diaminopimelic acid and NOD2 containing L-alanyl-D-isoglutamine. The results suggest RPE PGRP2 amidase selectively degrades PGN that stimulate NOD-mediated cytopathic activity. The failure of RPE NAMAA to degrade pro-inflammatory PGN may play a role in bacterial retinopathies.


Assuntos
Citocinas , Peptidoglicano , Humanos , Peptidoglicano/química , Peptidoglicano/metabolismo , Fluoresceína-5-Isotiocianato , Citocinas/metabolismo , Acetilmuramil-Alanil-Isoglutamina/metabolismo , Acetilmuramil-Alanil-Isoglutamina/farmacologia , Amidoidrolases/metabolismo , Retina/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo
7.
J Struct Biol ; 214(2): 107859, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35439644

RESUMO

The nitrilase superfamily enzymes from Pyrococcus abyssi and Pyrococcus horikoshii hydrolyze several different amides. No nitriles that we tested were hydrolyzed by either enzyme. Propionamide and acetamide were the most rapidly hydrolyzed of all the substrates tested. Amide substrate docking studies on the wild-type and C146A variant P. horikoshii enzymes suggest a sequence in which the incoming amide substrate initially hydrogen bonds to the amino group of Lys-113 and the backbone carbonyl of Asn-171. When steric hindrance is relieved by replacing the cysteine with alanine, the amide then docks such that the amino group of Lys-113 and the backbone amide of Phe-147 are hydrogen-bonded to the substrate carbonyl oxygen, while the backbone carbonyl oxygen of Asn-171 and the carboxyl oxygen of Glu-42 are hydrogen-bonded to the amino group of the substrate. Here, we confirm the location of the acetamide and glutaramide ligands experimentally in well-resolved crystal structures of the C146A mutant of the enzyme from P. horikoshii. This ligand location suggests that there is no direct interaction between the substrate amide and the other active site glutamate, Glu-120, and supports an active-site geometry leading to the formation of the thioester intermediate via an attack on the si-face of the amide by the sulfhydryl of the active site cysteine.


Assuntos
Pyrococcus horikoshii , Acetamidas , Amidas , Amidoidrolases/química , Amidoidrolases/genética , Cisteína/química , Hidrogênio , Ligantes , Oxigênio , Especificidade por Substrato
8.
J Biol Chem ; 296: 100519, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33684445

RESUMO

Endo-ß-N-acetylmuramidases, commonly known as lysozymes, are well-characterized antimicrobial enzymes that catalyze an endo-lytic cleavage of peptidoglycan; i.e., they hydrolyze the ß-1,4-glycosidic bonds connecting N-acetylmuramic acid (MurNAc) and N-acetylglucosamine (GlcNAc). In contrast, little is known about exo-ß-N-acetylmuramidases, which catalyze an exo-lytic cleavage of ß-1,4-MurNAc entities from the non-reducing ends of peptidoglycan chains. Such an enzyme was identified earlier in the bacterium Bacillus subtilis, but the corresponding gene has remained unknown so far. We now report that ybbC of B. subtilis, renamed namZ, encodes the reported exo-ß-N-acetylmuramidase. A ΔnamZ mutant accumulated specific cell wall fragments and showed growth defects under starvation conditions, indicating a role of NamZ in cell wall turnover and recycling. Recombinant NamZ protein specifically hydrolyzed the artificial substrate para-nitrophenyl ß-MurNAc and the peptidoglycan-derived disaccharide MurNAc-ß-1,4-GlcNAc. Together with the exo-ß-N-acetylglucosaminidase NagZ and the exo-muramoyl-l-alanine amidase AmiE, NamZ degraded intact peptidoglycan by sequential hydrolysis from the non-reducing ends. A structure model of NamZ, built on the basis of two crystal structures of putative orthologs from Bacteroides fragilis, revealed a two-domain structure including a Rossmann-fold-like domain that constitutes a unique glycosidase fold. Thus, NamZ, a member of the DUF1343 protein family of unknown function, is now classified as the founding member of a new family of glycosidases (CAZy GH171; www.cazy.org/GH171.html). NamZ-like peptidoglycan hexosaminidases are mainly present in the phylum Bacteroidetes and less frequently found in individual genomes within Firmicutes (Bacilli, Clostridia), Actinobacteria, and γ-proteobacteria.


Assuntos
Acetilglucosamina/metabolismo , Bacillus subtilis/enzimologia , Glicosídeo Hidrolases/metabolismo , Ácidos Murâmicos/metabolismo , Peptidoglicano/metabolismo , Cristalografia por Raios X , Glicosídeo Hidrolases/química , Hidrólise , Conformação Proteica
9.
Infect Immun ; 90(3): e0048521, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35225652

RESUMO

The human-restricted pathogen Neisseria meningitidis, which is best known for causing invasive meningococcal disease, has a nonpathogenic lifestyle as an asymptomatic colonizer of the human naso- and oropharyngeal space. N. meningitidis releases small peptidoglycan (PG) fragments during growth. It was demonstrated previously that N. meningitidis releases low levels of tripeptide PG monomer, which is an inflammatory molecule recognized by the human intracellular innate immune receptor NOD1. In the present study, we demonstrated that N. meningitidis released more PG-derived peptides than PG monomers. Using a reporter cell line overexpressing human NOD1, we showed that N. meningitidis activates NOD1 using PG-derived peptides. The generation of such peptides required the presence of the periplasmic N-acetylmuramyl-l-alanine amidase AmiC and the outer membrane lipoprotein NlpD. AmiC and NlpD were found to function in cell separation, and mutation of either amiC or nlpD resulted in large clumps of unseparated N. meningitidis cells instead of the characteristic diplococci. Using stochastic optical reconstruction microscopy, we demonstrated that FLAG epitope-tagged NlpD localized to the septum, while similarly tagged AmiC was found at the septum in some diplococci but was distributed around the cell in most cases. In a human whole-blood infection assay, an nlpD mutant was severely attenuated and showed particular sensitivity to complement. Thus, in N. meningitidis, the cell separation proteins AmiC and NlpD are necessary for NOD1 stimulation and survival during infection of human blood.


Assuntos
Proteínas de Bactérias , Lipoproteínas , Neisseria meningitidis , Proteína Adaptadora de Sinalização NOD1 , Peptidoglicano , Proteínas de Bactérias/metabolismo , Separação Celular , Parede Celular/metabolismo , Humanos , Lipoproteínas/metabolismo , Infecções Meningocócicas/metabolismo , Infecções Meningocócicas/microbiologia , Neisseria meningitidis/metabolismo , Proteína Adaptadora de Sinalização NOD1/agonistas , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD1/metabolismo , Peptidoglicano/metabolismo
10.
Gastroenterology ; 160(3): 941-945.e8, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197449

RESUMO

The increasing incidence of primary and recurring Clostridioides difficile infections (CDI), which evade current treatment strategies, reflects the changing biology of C difficile. Here, we describe a putative plasmid-mediated mechanism potentially driving decreased sensitivity of C difficile to vancomycin treatment. We identified a broad host range transferable plasmid in a C difficile strain associated with lack of adequate response to vancomycin treatment. The transfer of this plasmid to a vancomycin-susceptible C difficile isolate decreased its susceptibility to vancomycin in vitro and resulted in more severe disease in a humanized mouse model. Our findings suggest plasmid acquisition in the gastrointestinal tract to be a possible mechanism underlying vancomycin treatment failure in patients with CDI, but further work is needed to characterize the mechanism by which plasmid genes determine vancomycin susceptibility in C difficile.


Assuntos
Antibacterianos/farmacologia , Clostridioides difficile/genética , Infecções por Clostridium/tratamento farmacológico , Plasmídeos/genética , Vancomicina/farmacologia , Animais , Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Farmacorresistência Bacteriana/genética , Vida Livre de Germes , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Plasmídeos/isolamento & purificação , Vancomicina/uso terapêutico , Sequenciamento Completo do Genoma
11.
Appl Environ Microbiol ; 88(11): e0054322, 2022 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-35579476

RESUMO

Phenazines are an important class of secondary metabolites and are primarily named for their heterocyclic phenazine cores, including phenazine-1-carboxylic acid (PCA) and its derivatives, such as phenazine-1-carboxamide (PCN) and pyocyanin (PYO). Although several genes involved in the degradation of PCA and PYO have been reported so far, the genetic foundations of PCN degradation remain unknown. In this study, a PCN-degrading bacterial strain, Sphingomonas histidinilytica DS-9, was isolated. The gene pcnH, encoding a novel amidase responsible for the initial step of PCN degradation, was cloned by genome comparison and subsequent experimental validation. PcnH catalyzed the hydrolysis of the amide bond of PCN to produce PCA, which shared low identity (only 26 to 33%) with reported amidases. The Km and kcat values of PcnH for PCN were 33.22 ± 5.70 µM and 18.71 ± 0.52 s-1, respectively. PcnH has an Asp-Lys-Cys motif, which is conserved among amidases of the isochorismate hydrolase-like (IHL) superfamily. The replacement of Asp37, Lys128, and Cys163 with alanine in PcnH led to the complete loss of enzymatic activity. Furthermore, the genes pcaA1A2A3A4 and pcnD were found to encode PCA 1,2-dioxygenase and 1,2-dihydroxyphenazine (2OHPC) dioxygenase, which were responsible for the subsequent degradation steps of PCN. The PCN-degradative genes were highly conserved in some bacteria of the genus Sphingomonas, with slight variations in the sequence identities. IMPORTANCE Phenazines have been widely acknowledged as a natural antibiotic for more than 150 years, but their degradation mechanisms are still not completely elucidated. Compared with the studies on the degradation mechanism of PCA and PYO, little is known regarding PCN degradation by far. Previous studies have speculated that its initial degradation step may be catalyzed by an amidase, but no further studies have been conducted. This study identified a novel amidase, PcnH, that catalyzed the hydrolysis of PCN to PCA. In addition, the PCA 1,2-dioxygenase PcaA1A2A3A4 and 2OHPC dioxygenase PcnD were also found to be involved in the subsequent degradation steps of PCN in S. histidinilytica DS-9. And the genes responsible for PCN catabolism are highly conserved in some strains of Sphingomonas. These results deepen our understanding of the PCN degradation mechanism.


Assuntos
Dioxigenases , Sphingomonas , Amidoidrolases , Fenazinas/metabolismo , Piocianina , Sphingomonas/metabolismo
12.
J Biol Inorg Chem ; 27(1): 175-187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34981207

RESUMO

In a quest to discover new formulations for the treatment of various parasitic diseases, a series of heteroleptic triorganobismuth(V) biscarboxylates of type [BiR3(O2CR')2], where R=C6H5 for 1-4 and p-CH3C6H4 for 5-8, were synthesized, characterized and evaluated for their biological potential against L. tropica. All the synthesized complexes were fully characterized by elemental analysis, FT-IR, multinuclear (1H and 13C) NMR spectroscopy and X-ray crystallography. The crystal structures for [BiPh3(O2CC6H4(o-Br))2] (1), [BiPh3(O2CC2H2C6H4)2] (2), [BiPh3(O2CC6H4(m-NO2))2] (3) and [BiPh3(O2CC6H4(2-OH,3-CH3))2] (4) were determined and found to have a distorted pentagonal bipyramidal molecular geometry with seven coordinated bismuth center for 1-3 and for 4 distorted octahedral geometry, respectively. All the synthesized complexes demonstrated a moderate to significant activity against leishmania parasites. A broad analytical approach was followed to testify the stability for (1-8) in solid state as well as in solution and in leishmanial culture M199, ensuring them to be stable enough to exert a significant antileishmanial effect with promising results. Cytotoxicity profile suggests that tris(tolyl) derivatives show lower toxicity against isolated lymphocytes with higher antileishmanial potential. Molecular docking studies were carried out to reveal the binding modes for (1-8) targeting the active site of trypanothione reductase (TR) (PDB ID: 4APN) and Trypanothione Synthetase-Amidase structure (PDB ID 2vob).


Assuntos
Antiprotozoários , Bismuto , Antiprotozoários/química , Antiprotozoários/farmacologia , Bismuto/química , Ácidos Carboxílicos/química , Ácidos Carboxílicos/farmacologia , Simulação de Acoplamento Molecular , Espectroscopia de Infravermelho com Transformada de Fourier
13.
Anal Biochem ; 644: 114084, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33347861

RESUMO

The asparaginase II pathway consists of an asparagine transaminase [l-asparagine + α-keto acid ⇆ α-ketosuccinamate + l-amino acid] coupled to ω-amidase [α-ketosuccinamate + H2O → oxaloacetate + NH4+]. The net reaction is: l-asparagine + α-keto acid + H2O → oxaloacetate + l-amino acid + NH4+. Thus, in the presence of a suitable α-keto acid substrate, the asparaginase II pathway generates anaplerotic oxaloacetate at the expense of readily dispensable asparagine. Several studies have shown that the asparaginase II pathway is important in photorespiration in plants. However, since its discovery in rat tissues in the 1950s, this pathway has been almost completely ignored as a conduit for asparagine metabolism in mammals. Several mammalian transaminases can catalyze transamination of asparagine, one of which - alanine-glyoxylate aminotransferase type 1 (AGT1) - is important in glyoxylate metabolism. Glyoxylate is a precursor of oxalate which, in the form of its calcium salt, is a major contributor to the formation of kidney stones. Thus, transamination of glyoxylate with asparagine may be physiologically important for the removal of potentially toxic glyoxylate. Asparaginase has been the mainstay treatment for certain childhood leukemias. We suggest that an inhibitor of ω-amidase may potentiate the therapeutic benefits of asparaginase treatment.


Assuntos
Asparaginase , Asparagina , Aminoácidos , Animais , Asparaginase/metabolismo , Asparagina/química , Asparagina/metabolismo , Mamíferos/metabolismo , Ácido Oxaloacético , Ratos
14.
Anal Biochem ; 644: 114083, 2022 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33352190

RESUMO

In rapidly dividing cells, including many cancer cells, l-glutamine is a major energy source. Utilization of glutamine is usually depicted as: l-glutamine → l-glutamate (catalyzed by glutaminase isozymes; GLS1 and GLS2), followed by l-glutamate → α-ketoglutarate [catalyzed by glutamate-linked aminotransferases or by glutamate dehydrogenase (GDH)]. α-Ketoglutarate is a major anaplerotic component of the tricarboxylic acid (TCA) cycle. However, the glutaminase II pathway also converts l-glutamine to α-ketoglutarate. This pathway consists of a glutamine transaminase coupled to ω-amidase [Net reaction: l-Glutamine + α-keto acid + H2O → α-ketoglutarate + l-amino acid + NH4+]. This review focuses on the biological importance of the glutaminase II pathway, especially in relation to metabolism of cancer cells. Our studies suggest a component enzyme of the glutaminase II pathway, ω-amidase, is utilized by tumor cells to provide anaplerotic carbon. Inhibitors of GLS1 are currently in clinical trials as anti-cancer agents. However, this treatment will not prevent the glutaminase II pathway from providing anaplerotic carbon derived from glutamine. Specific inhibitors of ω-amidase, perhaps in combination with a GLS1 inhibitor, may provide greater therapeutic efficacy.


Assuntos
Glutamina , Ácidos Cetoglutáricos , Carbono , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Ácidos Cetoglutáricos/metabolismo , Transaminases/metabolismo
15.
Pharmacol Res ; 182: 106338, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35781057

RESUMO

The lysosomal cysteine hydrolase N-acylethanolamine acid amidase (NAAA) deactivates palmitoylethanolamide (PEA), a lipid-derived PPAR-α agonist that is critically involved in the control of pain and inflammation. In this study, we asked whether NAAA-regulated PEA signaling might contribute to dopamine neuron degeneration and parkinsonism induced by the mitochondrial neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In vitro experiments showed that 6-OHDA and MPTP enhanced NAAA expression and lowered PEA content in human SH-SY5Y cells. A similar effect was observed in mouse midbrain dopamine neurons following intra-striatal 6-OHDA injection. Importantly, deletion of the Naaa gene or pharmacological inhibition of NAAA activity substantially attenuated both dopamine neuron death and parkinsonian symptoms in mice treated with 6-OHDA or MPTP. Moreover, NAAA expression was elevated in postmortem brain cortex and premortem blood-derived exosomes from persons with Parkinson's disease compared to age-matched controls. The results identify NAAA-regulated PEA signaling as a molecular control point for dopaminergic neuron survival and a potential target for neuroprotective intervention.


Assuntos
Neuroblastoma , Transtornos Parkinsonianos , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina , Amidoidrolases , Animais , Modelos Animais de Doenças , Dopamina , Neurônios Dopaminérgicos/metabolismo , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Degeneração Neural/tratamento farmacológico , Neuroblastoma/tratamento farmacológico , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/tratamento farmacológico
16.
Pharmacol Res ; 185: 106491, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36244543

RESUMO

Psoriasis is an incurable autoimmune disease that affects 2-3% of the world's population. Limited understanding of its pathogenesis hinders the development of therapies for the disease. Herein, we reported that N-acylethanolamine acid amidase (NAAA), a cysteine enzyme that catalyzes the hydrolysis of fatty acid ethanolamides (FAEs), was upregulated in psoriasis patients and imiquimod (IMQ)-induced mouse model of psoriasis. The upregulated NAAA contributes to the progression of psoriasis via enhancing dendritic cell (DCs) maturation. Transgenic expression of NAAA in mice accelerated the development of psoriasis, whereas genetic ablation of NAAA or local administration of NAAA inhibitor F96 ameliorated psoriasis. NAAA expressed in dendritic cells (DCs), but not in macrophages, T cells, or keratinocytes plays a critical role in psoriasis development. In addition, the results showed that NAAA degrades palmitoylethanolamide (PEA) and reduces PEA-PPARα-mediated dissociation of NF-κB p65 from Sirtuin 1 (SIRT1), subsequently, repressing the acetylation of p65 and down-regulating IL10 production. The decreased IL10 then leads to the maturation of DCs, thus promoting the development of psoriasis. These results provide new insights into the pathophysiological mechanism of psoriasis and identify NAAA as a novel target for the treatment of psoriasis.


Assuntos
Interleucina-10 , Psoríase , Camundongos , Animais , Inibidores Enzimáticos/farmacologia , Amidoidrolases , Inflamação , Psoríase/tratamento farmacológico , Células Dendríticas/metabolismo
17.
Appl Microbiol Biotechnol ; 106(9-10): 3431-3438, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35536404

RESUMO

Urethanase (EC 3.5.1.75) can reduce ethyl carbamate (EC), a group 2A carcinogen found in foods and liquor. However, it is not yet commercially available. Urethanase has been detected as an intracellular enzyme from yeast, filamentous fungi, and bacteria. Based on the most recent progress in the sequence analysis of this enzyme, it was observed that amidase-type enzyme can degrade EC. All five enzymes had highly conserved sequences of amidase signature family, and their molecular masses were in the range of 52-62 kDa. The enzymes of Candida parapsilosis and Aspergillus oryzae formed a homotetramer, and that of Rhodococcus equi strain TB-60 existed as a monomer. Most urethanases exhibited amidase activity, and those of C. parapsilosis and A. oryzae also demonstrated high activity against acrylamide, which is a group 2A carcinogen. It was recently reported that urease and esterase also exhibited urethanase activity. Although research on the enzymatic degradation of EC has been very limited, recently some sequences of EC-degrading enzyme have been elucidated, and it is anticipated that new enzymes would be developed and applied into practical use. KEY POINTS: • Recently, some urethanase sequences have been elucidated • The amino acid residues that formed the catalytic triad were conserved • Urethanase shows amidase activity and can also degrade acrylamide.


Assuntos
Amidoidrolases , Uretana , Acrilamidas , Amidoidrolases/metabolismo , Carcinógenos , Saccharomyces cerevisiae/metabolismo , Uretana/metabolismo
18.
Int J Mol Sci ; 23(19)2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36232508

RESUMO

Sclerotinia sclerotiorum is one of the most notorious and ubiquitous soilborne plant pathogens, causing serious economic losses to a large number of hosts worldwide. Although virulence factors have been identified in this filamentous fungus, including various cell-wall-degrading enzymes, toxins, oxalic acids and effectors, our understanding of its virulence strategies is far from complete. To explore novel factors contributing to disease, a new pipeline combining forward genetic screening and next-generation sequencing was utilized in this study. Analysis of a hypovirulent mutant revealed that a mutation in an amidase-encoding gene, Sscle_10g079050, resulted in reduced virulence. This is a first report on the contribution of an amidase to fungal virulence, likely through affecting oxalic acid homeostasis.


Assuntos
Ácido Oxálico , Fatores de Virulência , Amidoidrolases/genética , Ascomicetos , Doenças das Plantas/microbiologia , Virulência/genética , Fatores de Virulência/genética
19.
Int J Mol Sci ; 23(19)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36232364

RESUMO

Peptidoglycan recognition proteins (PGRPs) are a family of pattern recognition receptors (PRRs) involved in host antibacterial responses, and their functions have been characterized in most invertebrate and vertebrate animals. However, little information is available regarding the potential function of PGRPs in the giant triton snail Charonia tritonis. In this study, a short-type PGRP gene (termed Ct-PGRP-S1) was identified in C. tritonis. Ct-PGRP-S1 was predicted to contain several structural features known in PGRPs, including a typical PGRP domain (Amidase_2) and Src homology-3 (SH3) domain. The Ct-PGRP-S1 gene was constitutively expressed in all tissues examined except in proboscis, with the highest expression level observed in the liver. As a typical PRR, Ct-PGRP-S1 has an ability to degrade peptidoglycan (PGN) and was proven to have non-Zn2+-dependent amidase activity and antibacterial activity against Vibrioalginolyticus and Staphylococcus aureus. It is the first report to reveal the peptidoglycan recognition protein in C. tritonis, and these results suggest that peptidoglycan recognition protein Ct-PGRP-S1 is an important effector of C. tritonis that modulates bacterial infection resistance of V. alginolyticus and S. aureus, and this study may provide crucial basic data for the understanding of an innate immunity system of C. tritonis.


Assuntos
Peptidoglicano , Infecções Estafilocócicas , Amidoidrolases/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas de Transporte , Clonagem Molecular , Imunidade Inata , Peptidoglicano/metabolismo , Receptores de Reconhecimento de Padrão/metabolismo , Caramujos/genética , Staphylococcus aureus/metabolismo
20.
Indian J Microbiol ; 62(4): 618-626, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36458220

RESUMO

Geobacillus thermoleovorans MTCC 13131, an amide hydrolyzing bacteria was isolated from a hot spring in Himachal Pradesh and identified through 16S rRNA gene sequence analysis. The amidase derived from this bacterium exhibited hydrolyzing catalytic ability against aliphatic and aromatic amides. The isolate was characterized for morphological and biochemical properties. Further, the production of amidase enzyme from this isolate was evaluated using approach of one-variable-at-a-time and response surface method. The Response Surface Methodology based study indicated the importance of nitrogen sources and growth period for amidase production. Optimal production was achieved at a temperature 55 °C, and production pH 7.5 in the production medium comprising diammonium hydrogen phosphate (0.4%), peptone (0.45%) and yeast extract (0.3%). The wide substrate affinity of the strain suggests its potential role in biotransformation of amides to corresponding acids of industrial significance along with its strong capacity to degrade the toxic amide in polluted environmental samples. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-022-01042-9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA