Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 70
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(47): e2307529120, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37956293

RESUMO

Marine reserves are considered essential for sustainable fisheries, although their effectiveness compared to traditional fisheries management is debated. The effect of marine reserves is mostly studied on short ecological time scales, whereas fisheries-induced evolution is a well-established consequence of harvesting. Using a size-structured population model for an exploited fish population of which individuals spend their early life stages in a nursery habitat, we show that marine reserves will shift the mode of population regulation from low size-selective survival late in life to low, early-life survival due to strong resource competition. This shift promotes the occurrence of rapid ecological cycles driven by density-dependent recruitment as well as much slower evolutionary cycles driven by selection for the optimal body to leave the nursery grounds, especially with larger marine reserves. The evolutionary changes increase harvesting yields in terms of total biomass but cause disproportionately large decreases in yields of larger, adult fish. Our findings highlight the importance of carefully considering the size of marine reserves and the individual life history of fish when managing eco-evolutionary marine systems to ensure both population persistence as well as stable fisheries yields.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Peixes , Biomassa , Pesqueiros , Dinâmica Populacional
2.
Ecol Appl ; 33(7): e2895, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37282356

RESUMO

Trophic downgrading destabilizes ecosystems and can drive large-scale shifts in ecosystem state. While restoring predatory interactions in marine reserves can reverse anthropogenic-driven shifts, empirical evidence of increased ecosystem stability and persistence in the presence of predators is scant. We compared temporal variation in rocky reef ecosystem state in New Zealand's oldest marine reserve to nearby fished reefs to examine whether protection of predators led to more persistent and stable reef ecosystem states in the marine reserve. Contrasting ecosystem states were found between reserve and fished sites, and this persisted over the 22-year study period. Fished sites were predominantly urchin barrens but occasionally fluctuated to short-lived turfs and mixed algal forests, while reserve sites displayed unidirectional successional trajectories toward stable kelp forests (Ecklonia radiata) taking up to three decades following protection. This provides empirical evidence that long-term protection of predators facilitates kelp forest recovery, resists shifts to denuded alternate states, and enhances kelp forest stability.


Assuntos
Ecossistema , Kelp , Animais , Cadeia Alimentar , Ouriços-do-Mar , Florestas
3.
Conserv Biol ; 37(2): e14008, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36178033

RESUMO

Larval dispersal is an important component of marine reserve networks. Two conceptually different approaches to incorporate dispersal connectivity into spatial planning of these networks exist, and it is an open question as to when either is most appropriate. Candidate reserve sites can be selected individually based on local properties of connectivity or on a spatial dependency-based approach of selecting clusters of strongly connected habitat patches. The first acts on individual sites, whereas the second acts on linked pairs of sites. We used a combination of larval dispersal simulations representing different seascapes and case studies of biophysical larval dispersal models in the Coral Triangle region and the province of Southeast Sulawesi, Indonesia, to compare the performance of these 2 methods in the spatial planning software Marxan. We explored the reserve design performance implications of different dispersal distances and patterns based on the equilibrium settlement of larvae in protected and unprotected areas. We further assessed different assumptions about metapopulation contributions from unprotected areas, including the case of 100% depletion and more moderate scenarios. The spatial dependency method was suitable when dispersal was limited, a high proportion of the area of interest was substantially degraded, or the target amount of habitat protected was low. Conversely, when subpopulations were well connected, the 100% depletion was relaxed, or more habitat was protected, protecting individual sites with high scores in metrics of connectivity was a better strategy. Spatial dependency methods generally produced more spatially clustered solutions with more benefits inside than outside reserves compared with site-based methods. Therefore, spatial dependency methods potentially provide better results for ecological persistence objectives over enhancing fisheries objectives, and vice versa. Different spatial prioritization methods of using connectivity are appropriate for different contexts, depending on dispersal characteristics, unprotected area contributions, habitat protection targets, and specific management objectives. Comparación entre los métodos de priorización de la conservación espacial con sitio y la conectividad espacial basada en la dependencia.


La dispersión larval es un componente importante de las redes de reservas marinas. Existen dos estrategias conceptualmente distintas para incorporar la conectividad de la dispersión en la planeación espacial de estas redes y es una pregunta abierta cuándo alguna de las dos es la más apropiada. Los sitios candidatos a reserva pueden ser seleccionados individualmente con base en las propiedades locales de la conectividad o en la estrategia espacial basada en la dependencia que consiste en seleccionar grupos de fragmentos de hábitat con un vínculo fuerte. La primera estrategia actúa sobre sitios individuales, mientras que la segunda actúa sobre pares de sitios vinculados. Usamos una combinación de simulaciones de dispersión larval que representaban a diferentes paisajes marinos y estudios de caso de modelos biofísicos de dispersión larval en la región del Triángulo de Coral y en la provincia de Sulawesi Sudoriental, Indonesia, para comparar el desempeño de estos dos métodos en el software de planeación espacial Marxan. Exploramos las implicaciones del desempeño del diseño de la reserva de diferentes distancias y patrones de dispersión basados en el establecimiento del equilibrio de larvas en las áreas protegidas y sin protección. Además, analizamos las suposiciones sobre las contribuciones metapoblacionales de las áreas sin protección, incluyendo el caso de la reducción al 100% y escenarios más moderados. El método de la dependencia espacial fue adecuado cuando la dispersión estuvo limitada, una proporción elevada del área de interés estaba sustancialmente degradada o era baja la cantidad meta de hábitat protegido. Al contrario, cuando las subpoblaciones estaban bien conectadas, la reducción al 100% estuvo relajada, o si una mayor parte del hábitat estaba protegido, la protección de los sitios individuales con altos puntajes en las medidas de conectividad fue una mejor estrategia. Los métodos de dependencia espacial generalmente produjeron soluciones con una agrupación más espacial y con más beneficios dentro que fuera de las reservas en comparación con los métodos basados sitios. Por lo tanto, los métodos de dependencia espacial tienen el potencial de proporcionar mejores resultados para los objetivos de persistencia ecológica por encima de los objetivos de mejora de las pesquerías, y viceversa. Los diferentes métodos de priorización espacial que usan la conectividad son apropiados para contextos diferentes, dependiendo de las características de dispersión, las contribuciones del área sin protección, las metas de protección del hábitat y los objetivos específicos del manejo.


Assuntos
Conservação dos Recursos Naturais , Peixes , Animais , Conservação dos Recursos Naturais/métodos , Ecossistema , Pesqueiros , Larva
4.
Conserv Biol ; 37(3): e14038, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36478610

RESUMO

Larval dispersal connectivity is typically integrated into spatial conservation decisions at regional or national scales, but implementing agencies struggle with translating these methods to local scales. We used larval dispersal connectivity at regional (hundreds of kilometers) and local (tens of kilometers) scales to aid in design of networks of no-take reserves in Southeast Sulawesi, Indonesia. We used Marxan with Connectivity informed by biophysical larval dispersal models and remotely sensed coral reef habitat data to design marine reserve networks for 4 commercially important reef species across the region. We complemented regional spatial prioritization with decision trees that combined network-based connectivity metrics and habitat quality to design reserve boundaries locally. Decision trees were used in consensus-based workshops with stakeholders to qualitatively assess site desirability, and Marxan was used to identify areas for subsequent network expansion. Priority areas for protection and expected benefits differed among species, with little overlap in reserve network solutions. Because reef quality varied considerably across reefs, we suggest reef degradation must inform the interpretation of larval dispersal patterns and the conservation benefits achievable from protecting reefs. Our methods can be readily applied by conservation practitioners, in this region and elsewhere, to integrate connectivity data across multiple spatial scales.


Integración de la conectividad larval al proceso de toma de decisiones en la conservación marina en escalas espaciales Resumen Comúnmente se integra la conectividad de la dispersión larval a las decisiones de conservación espacial a escalas regionales o nacionales, pero las agencias de implementación luchan con la transferencia de estos métodos a las escalas locales. Usamos la conectividad de la dispersión larval a escalas regionales (cientos de kilómetros) y locales (decenas de kilómetros) para ayudar en el diseño de redes de reservas con protección total en Sulawesi Sudoriental, Indonesia. Usamos Marxan con la conectividad guiada por los modelos biofísicos de dispersión larval y detectamos a distancia los datos de hábitat de los arrecifes de coral para diseñar redes de reservas marinas para cuatro especies de importancia comercial en la región. Complementamos la priorización espacial regional con árboles de decisión que combinaron medidas de conectividad basadas en las redes y la calidad del hábitat para diseñar localmente los límites de la reserva. Usamos los árboles de decisión con los actores en talleres basados en el consenso para evaluar cualitativamente la conveniencia del sitio. También usamos Marxan para identificar áreas para la expansión subsecuente de la red. Las áreas prioritarias para la protección y los beneficios esperados difirieron entre especies, con un traslape reducido en las soluciones de la red de reservas. Ya que la calidad del arrecife varió considerablemente entre los arrecifes, sugerimos que la degradación de estos debe orientar la interpretación de los patrones de dispersión larval y los beneficios de conservación alcanzables con la protección de los arrecifes. Los practicantes de la conservación pueden aplicar nuestros métodos inmediatamente, en esta región o en cualquier otra, para integrar los datos de conectividad en varias escalas espaciales.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Larva , Recifes de Corais , Indonésia
5.
Proc Natl Acad Sci U S A ; 117(41): 25595-25600, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989139

RESUMO

Well-managed and enforced no-take marine reserves generate important larval subsidies to neighboring habitats and thereby contribute to the long-term sustainability of fisheries. However, larval dispersal patterns are variable, which leads to temporal fluctuations in the contribution of a single reserve to the replenishment of local populations. Identifying management strategies that mitigate the uncertainty in larval supply will help ensure the stability of recruitment dynamics and minimize the volatility in fishery catches. Here, we use genetic parentage analysis to show extreme variability in both the dispersal patterns and recruitment contribution of four individual marine reserves across six discrete recruitment cohorts for coral grouper (Plectropomus maculatus) on the Great Barrier Reef. Together, however, the asynchronous contributions from multiple reserves create temporal stability in recruitment via a connectivity portfolio effect. This dampening effect reduces the variability in larval supply from individual reserves by a factor of 1.8, which effectively halves the uncertainty in the recruitment contribution of individual reserves. Thus, not only does the network of four marine reserves generate valuable larval subsidies to neighboring habitats, the aggregate effect of individual reserves mitigates temporal fluctuations in dispersal patterns and the replenishment of local populations. Our results indicate that small networks of marine reserves yield previously unrecognized stabilizing benefits that ensure a consistent larval supply to replenish exploited fish stocks.


Assuntos
Distribuição Animal/fisiologia , Organismos Aquáticos/fisiologia , Bass/fisiologia , Conservação dos Recursos Naturais , Animais , Ecossistema , Pesqueiros , Larva/fisiologia
6.
J Anim Ecol ; 91(11): 2192-2202, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36039030

RESUMO

Infectious disease is an important potential driver of population cycles but must occur through delayed density-dependent infection and resulting fitness effects. Delayed density-dependent infection by baculoviruses can be caused by environmental persistence of viral occlusion bodies (OBs), which can be influenced by environmental factors. Specifically, ultraviolet radiation is potentially important in reducing the environmental persistence of viruses by inactivating OBs. Delayed density-dependent viral infection has rarely been observed empirically at the population level although theory predicts that it is necessary for pathogens to drive population cycles. Similarly, field studies have not examined the effects of ultraviolet radiation on viral infection rates in natural animal populations. We tested if viral infection is delayed density-dependent with the potential to drive cyclic dynamics and if ultraviolet radiation influences viral infection levels. We censused 18 Ranchman's tiger moth (Arctia virginalis) populations across 9° of latitude over 2 years and quantified the effects of direct and delayed density and ultraviolet radiation on proportion infected by baculovirus, infection severity and survival to adulthood. Caterpillars were collected from field populations and reared in the laboratory. Baculovirus has not previously been described infecting A. virginalis, and we used genetic methods to confirm the identity of the virus. We found that proportion infected, infection severity and survival to adulthood exhibited delayed density dependence. Ultraviolet radiation in the previous summer decreased infection severity, which increased caterpillar survival probability. Structural equation modelling indicated that the effect of lagged density on caterpillar survival was mediated through proportion infected and infection severity and was 2.5-fold stronger than the indirect effect of ultraviolet. We successfully amplified polh, lef-8 and lef-9 viral genes from caterpillars, and BLAST results confirmed that the virus was a nucleopolyhedrovirus. Our findings provide clear evidence that delayed density-dependent mortality can arise through viral infection rate and severity in insects, which supports the role of viral disease as a mechanism, among others, that may drive insect population cycles. Furthermore, our findings support predictions that ultraviolet radiation can modify viral disease dynamics in insect populations, most likely through attenuating viral persistence in the environment.


Assuntos
Mariposas , Nucleopoliedrovírus , Animais , Raios Ultravioleta , Nucleopoliedrovírus/genética , Baculoviridae
7.
Conserv Biol ; 36(2): e13815, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34342040

RESUMO

Preserving biodiversity over time is a pressing challenge for conservation science. A key goal of marine protected areas (MPAs) is to maintain stability in species composition, via reduced turnover, to support ecosystem function. Yet, this stability is rarely measured directly under different levels of protection. Rather, evaluations of MPA efficacy generally consist of static measures of abundance, species richness, and biomass, and rare measures of turnover are limited to short-term studies involving pairwise (beta diversity) comparisons. Zeta diversity is a recently developed metric of turnover that allows for measurement of compositional similarity across multiple assemblages and thus provides more comprehensive estimates of turnover. We evaluated the effectiveness of MPAs at preserving fish zeta diversity across a network of marine reserves over 10 years in Batemans Marine Park, Australia. Snorkel transect surveys were conducted across multiple replicated and spatially interspersed sites to record fish species occurrence through time. Protection provided by MPAs conferred greater stability in fish species turnover. Marine protected areas had significantly shallower decline in zeta diversity compared with partially protected and unprotected areas. The retention of harvested species was four to six times greater in MPAs compared with partially protected and unprotected areas, and the stabilizing effects of protection were observable within 4 years of park implementation. Conversely, partial protection offered little to no improvement in stability, compared with unprotected areas. These findings support the efficacy of MPAs for preserving temporal fish diversity stability. The implementation of MPAs helps stabilize fish diversity and may, therefore, support biodiversity resilience under ongoing environmental change.


Impactos de las Áreas Protegidas Marinas sobre la Estabilidad Temporal de la Diversidad de Especies de Peces Resumen A medida que avanza el tiempo, la conservación de la biodiversidad es un reto apremiante para las ciencias de la conservación. Un objetivo importante de las áreas marinas protegidas (AMP) es mantener la estabilidad de la composición de especies, por medio de rotaciones reducidas, para así ayudar a la función del ecosistema. Sin embargo, esta estabilidad casi no se mide directamente bajo diferentes niveles de protección. En su lugar, las evaluaciones de eficiencia de las AMP generalmente consisten en medidas estáticas de abundancia, riqueza de especies y biomasa, y las pocas medidas de la rotación están limitadas a los estudios a corto plazo que involucran comparaciones por pares (diversidad beta). La diversidad zeta es una medida recientemente desarrollada de la rotación, la cual permite la medición de las similitudes en la composición en múltiples ensamblajes, proporcionando así estimaciones más completas de la rotación. Evaluamos la efectividad que tienen las AMP en la conservación de la diversidad zeta de los peces en una red de reservas marinas durante diez años en el Parque Marino Bateman, Australia. Se realizaron censos en transecto con snorkel en varios sitios replicados e intercalados espacialmente para registrar la presencia de especies de peces a lo largo del tiempo. La protección proporcionada por las AMP otorgó una mayor estabilidad en la rotación de especies de peces. Las áreas marinas protegidas tuvieron una declinación significativamente más baja de la diversidad zeta que las áreas parcialmente protegidas o desprotegidas. La retención de especies pescadas fue 4-6 veces mayor en las AMP que en las áreas desprotegidas o parcialmente protegidas, y los efectos estabilizadores de la protección fueron observables a partir de cuatro años de la implementación del parque. De manera opuesta, la protección parcial ofreció poca o ninguna estabilidad, comparada con las áreas desprotegidas. Estos descubrimientos respaldan la eficiencia que tienen las AMP en la conservación de la estabilidad temporal de la diversidad de especies de peces. La implementación de las AMP ayuda a estabilizar la diversidad de peces y por lo tanto puede fomentar la resiliencia de la biodiversidad frente al cambio ambiental en curso.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Austrália , Biodiversidade , Peixes
8.
J Environ Manage ; 301: 113889, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34610560

RESUMO

With the rapid global increase in the number and extent of marine protected areas (MPAs), there is a need for methods that enable an assessment of their actual contribution to biodiversity conservation. In Brazil, where MPAs have been designated to replenish biodiversity, there is a lack of regional-scale analysis of MPA impacts and the factors related to positive ecological change. This study aims to quantify the magnitude of the ecological effects of Brazilian MPAs and test whether some study and MPA characteristics (e.g., taxonomic group studied, exploitation level of species, MPA area, protection time, management effectiveness, level of connectedness, etc.) were underlying factors associated with their performance. We conducted a structured search in a database of scientific articles, selecting comparative studies of direct biodiversity metrics inside and outside MPAs offering different protection levels (i.e., fully- or partially-protected MPAs) or within MPAs with distinct zones. We then carried out a meta-analysis based on 424 observations found in 18 articles. Averaged across all studies, we found that MPAs had a 17% increase in the abundance of species, length of individuals, and community diversity. When compared to open-access areas, fully-protected MPAs increased biodiversity by 45%. However, MPAs offering partial protection had variable effects, ranging from significant positive to significant negative effects. MPA effects depended on the taxonomic group and exploitation level of species, with the strongest positive effects seen on exploited fish species and benthic invertebrates. Partially-protected MPAs that reported strong positive effects required long time of protection (>15years) and high level of connectivity. Conversely, fully-protected MPAs (i.e., no-take ones) could be effective even when small, under intense fishing pressure in their surroundings, and regardless of their level of connectivity. We used the Brazilian MPAs as a case study, but these results can contribute to a more comprehensive assessment of the association between ecological impacts of MPAs and drivers of conservation success, and offer key information to consolidate MPA networks that sustain biodiversity.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Oceano Atlântico , Biodiversidade , Brasil
9.
Proc Biol Sci ; 288(1945): 20203061, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33593185

RESUMO

In marine ecosystems, fishing often targets predators, which can drive direct and indirect effects on entire food webs. Marine reserves can induce trophic cascades by increasing predator density and body size, thereby increasing predation pressure on populations of herbivores, such as sea urchins. In California's northern Channel Islands, two species of sea urchins are abundant: the red urchin Mesocentrotus franciscanus, which is targeted by an economically valuable fishery, and the virtually unfished purple urchin Strongylocentrotus purpuratus. We hypothesized that urchin populations inside marine reserves would be depressed by higher predation, but that red urchins would be less affected due to fishing outside reserves. Instead, our analyses revealed that purple urchin populations were unaffected by reserves, and red urchin biomass significantly increased in response to protection. Therefore, urchin biomass overall has increased inside reserves, and we found no evidence that giant kelp is positively affected by reserves. Our results reveal the overwhelming direct effect of protecting fished species in marine reserves over indirect effects that are often predicted but seldom clearly documented. Indirect effects due to marine reserves may eventually occur in some cases, but very effective predators, large reserves or extended time periods may be needed to induce them.


Assuntos
Ecossistema , Cadeia Alimentar , Animais , Pesqueiros , Comportamento Predatório , Ouriços-do-Mar
10.
Glob Chang Biol ; 27(15): 3432-3447, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34015863

RESUMO

Marine reserves are a key tool for the conservation of marine biodiversity, yet only ~2.5% of the world's oceans are protected. The integration of marine reserves into connected networks representing all habitats has been encouraged by international agreements, yet the benefits of this design has not been tested empirically. Australia has one of the largest systems of marine reserves, providing a rare opportunity to assess how connectivity influences conservation success. An Australia-wide dataset was collected using baited remote underwater video systems deployed across a depth range from 0 to 100 m to assess the effectiveness of marine reserves for protecting teleosts subject to commercial and recreational fishing. A meta-analytical comparison of 73 fished species within 91 marine reserves found that, on average, marine reserves had 28% greater abundance and 53% greater biomass of fished species compared to adjacent areas open to fishing. However, benefits of protection were not observed across all reserves (heterogeneity), so full subsets generalized additive modelling was used to consider factors that influence marine reserve effectiveness, including distance-based and ecological metrics of connectivity among reserves. Our results suggest that increased connectivity and depth improve the aforementioned marine reserve benefits and that these factors should be considered to optimize such benefits over time. We provide important guidance on factors to consider when implementing marine reserves for the purpose of increasing the abundance and size of fished species, given the expected increase in coverage globally. We show that marine reserves that are highly protected (no-take) and designed to optimize connectivity, size and depth range can provide an effective conservation strategy for fished species in temperate and tropical waters within an overarching marine biodiversity conservation framework.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Animais , Austrália , Ecossistema , Pesqueiros , Peixes , Oceanos e Mares
11.
Conserv Biol ; 35(5): 1473-1483, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33909928

RESUMO

By 2004, Belize was exhibiting classic fishing down of the food web. Groupers (Serranidae) and snappers (Lutjanidae) were scarce and fisheries turned to parrotfishes (Scarinae), leading to a 41% decline in their biomass. Several policies were enacted in 2009-2010, including a moratorium on fishing parrotfish and a new marine park with no-take areas. Using a 20-year time series on reef fish and benthos, we evaluated the impact of these policies approximately 10 years after their implementation. Establishment of the Southwater Caye Marine Reserve led to a recovery of snapper at 2 out of 3 sites, but there was no evidence of recovery outside the reserve. Snapper populations in an older reserve continued to increase, implying that at least 9 years is required for their recovery. Despite concerns over the feasibility of banning parrotfish harvest once it has become a dominant fin fishery, parrotfishes returned and exceeded biomass levels prior to the fishery. The majority of these changes involved an increase in parrotfish density; species composition and adult body size generally exhibited little change. Recovery occurred equally well in reserves and areas open to other forms of fishing, implying strong compliance. Temporal trends in parrotfish grazing intensity were strongly negatively associated with the cover of macroalgae, which by 2018 had fallen to the lowest levels observed since measurements began in 1998. Coral populations remained resilient and continued to exhibit periods of net recovery after disturbance. We found that a moratorium on parrotfish harvesting is feasible and appears to help constrain macroalgae, which can otherwise impede coral resilience.


Reservas Marinas, Vedas Pesqueras y 20 Años de Cambios Positivos en un Ecosistema de Arrecife de Coral Resumen Para el año 2004, Belice estaba exhibiendo la clásica pesca de los niveles más bajos de las cadenas alimenticias marinas. Los meros (Serranidae) y los pargos (Lutjanidae) eran escasos y las pesquerías comenzaron a consumir a los peces loro (Scarinae), lo que resultó en una declinación del 41% de su biomasa. Entre el 2009 y el 2010 se promulgaron varias políticas, incluyendo una moratoria para la pesca del pez loro y un nuevo parque marino con zonas de no consumo. Mediante una serie temporal de 20 años para los peces de arrecifes y el bentos, evaluamos el impacto de estas políticas aproximadamente diez años después de su implementación. La creación de la Reserva Marina del Cayo Southwater resultó en la recuperación del pargo en dos de tres sitios, pero no hubo evidencias de la recuperación fuera de la reserva. Las poblaciones de pargos en una reserva más vieja continuaron su incremento, lo que implica que se requieren al menos nueve años para su recuperación. A pesar de la preocupación por la viabilidad de la veda para el pez loro una vez que se haya convertido en una pesquería dominante, los peces loro regresaron al sitio de pesca y excedieron los niveles de biomasa previos a la pesquería. La mayoría de estos cambios involucró un incremento en la densidad de los peces loro; la composición de especies y la talla corporal adulta generalmente exhibieron pocos cambios. La recuperación ocurrió equitativamente bien en las reservas y en las áreas abiertas a otras formas de pesca, lo que implica un estricto cumplimiento de las restricciones. Las tendencias temporales en la intensidad de pastoreo de los peces loro estuvieron fuertemente asociadas de manera negativa con la cobertura de macroalgas, la cual para el 2018 había caído a los niveles más bajos observados desde que se comenzó a medir en 1998. Las poblaciones coralinas permanecieron resilientes y continuaron exhibiendo periodos de recuperación neta después de la perturbación. Descubrimos que una moratoria para la pesca de pez loro es viable y parece ayudar a restringir las macroalgas, las cuales de otra forma pueden impedir la resiliencia del coral.


Assuntos
Antozoários , Recifes de Corais , Animais , Conservação dos Recursos Naturais , Ecossistema , Pesqueiros , Peixes
12.
Ecotoxicol Environ Saf ; 215: 112122, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-33725489

RESUMO

The human ingestion of mercury (Hg) from sea food is of big concern worldwide due to adverse health effects, and more specifically if shark consumption constitutes a regular part of the human diet. In this study, the total mercury (THg) concentration in muscle tissue were determined in six sympatric shark species found in a fishing vessel seized in the Galapagos Marine Reserve in 2017. The THg concentrations in shark muscle samples (n = 73) varied from 0.73 mg kg-1 in bigeye thresher sharks (Alopias superciliosus) to 8.29 mg kg-1 in silky sharks (Carcharhinus falciformis). A typical pattern of Hg bioaccumulation was observed for all shark species, with significant correlation between THg concentration and shark size for bigeye thresher sharks, pelagic thresher sharks (Alopias pelagicus) and silky sharks. Regarding human health concerns, the THg mean concentration exceeded the maximum weekly intake fish serving in all the studied species. Mass-Dependent Fractionation (MDF, δ202Hg values) and Mass-Independent Fractionation (MIF, Δ199Hg values) of Hg in whitetip sharks (Carcharhinus longimanus) and silky sharks, ranged from 0.70‰ to 1.08‰, and from 1.97‰ to 2.89‰, respectively. These high values suggest that both species are feeding in the epipelagic zone (i.e. upper 200 m of the water column). While, blue sharks (Prionace glauca), scalloped hammerhead sharks (Shyrna lewini) and thresher sharks were characterized by lower Δ199Hg and δ202Hg values, indicating that these species may focus their foraging behavior on prey of mesopelagic zone (i.e. between 200 and 1000 m depth). In conclusion, the determination of THg concentration provides straight-forward evidence of the human health risks associated with shark consumption, while mercury isotopic compositions constitute a powerful tool to trace the foraging strategies of these marine predators. CAPSULE: A double approach combining Hg concentrations with stable isotopes ratios allowed to assess ontogeny in common shark species in the area of the Galapagos Marine Reserve and the human health risks concern associated to their consumption.


Assuntos
Mercúrio/metabolismo , Tubarões/metabolismo , Poluentes Químicos da Água/metabolismo , Animais , Bioacumulação , Monitoramento Ambiental/métodos , Comportamento Alimentar , Humanos , Isótopos , Mercúrio/análise , Isótopos de Mercúrio , Músculos/química , Alimentos Marinhos , Tubarões/fisiologia , Poluentes Químicos da Água/análise
13.
Glob Chang Biol ; 26(6): 3251-3267, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32222010

RESUMO

Climate change is increasingly impacting marine protected areas (MPAs) and MPA networks, yet adaptation strategies are rarely incorporated into MPA design and management plans according to the primary scientific literature. Here we review the state of knowledge for adapting existing and future MPAs to climate change and synthesize case studies (n = 27) of how marine conservation planning can respond to shifting environmental conditions. First, we derive a generalized conservation planning framework based on five published frameworks that incorporate climate change adaptation to inform MPA design. We then summarize examples from the scientific literature to assess how conservation goals were defined, vulnerability assessments performed and adaptation strategies incorporated into the design and management of existing or new MPAs. Our analysis revealed that 82% of real-world examples of climate change adaptation in MPA planning derive from tropical reefs, highlighting the need for research in other ecosystems and habitat types. We found contrasting recommendations for adaptation strategies at the planning stage, either focusing only on climate refugia, or aiming for representative protection of areas encompassing the full range of expected climate change impacts. Recommendations for MPA management were more unified and focused on adaptative management approaches. Lastly, we evaluate common barriers to adopting climate change adaptation strategies based on reviewing studies which conducted interviews with MPA managers and other conservation practitioners. This highlights a lack of scientific studies evaluating different adaptation strategies and shortcomings in current governance structures as two major barriers, and we discuss how these could be overcome. Our review provides a comprehensive synthesis of planning frameworks, case studies, adaptation strategies and management actions which can inform a more coordinated global effort to adapt existing and future MPA networks to continued climate change.


Assuntos
Mudança Climática , Ecossistema , Aclimatação , Biodiversidade , Conservação dos Recursos Naturais , Refúgio de Vida Selvagem
14.
Ecol Appl ; 30(3): e02070, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31903628

RESUMO

Marine protected areas (MPAs) are increasingly implemented as a conservation tool worldwide. In many cases, they are managed adaptively: the abundance of target species is monitored, and observations are compared to some model-based expectation for the trajectory of population recovery to ensure that the MPA is achieving its goals. Most previous analyses of the transient (short-term) response of populations to the cessation of fishing inside MPAs have dealt only with gonochore (fixed-sex) species. However, many important fishery species are protogynous hermaphrodites (female-to-male sex-changing). Because size-selective harvest will predominantly target males in these species, harvesting not only reduces abundance but also skews the sex ratio toward females. Thus the response to MPA implementation will involve changes in both survival and sex ratio, and ultimately reproductive output. We used an age-structured model of a generic sex-changing fish population to compare transient population dynamics after MPA implementation to those of an otherwise similar gonochore population and examine how different features of sex-changing life history affect those dynamics. We examined both demographically open (most larval recruitment comes from outside the MPA) and demographically closed (most larval recruitment is locally produced) dynamics. Under both scenarios, population recovery of protogynous species takes longer when fishing was more intense pre-MPA (as in gonochores), but also depends heavily on the mating function, the degree to which the sex ratio affects reproduction. If few males are needed and reproduction is not affected by a highly female-biased sex ratio, then population recovery is much faster; if males are a limiting resource, then increases in abundance after MPA implementation are much slower than for gonochores. Unfortunately, the mating function is largely unknown for fishes. In general, we expect that most protogynous species with haremic mating systems will be in the first category (few males needed), though there is at least one example of a fish species (though not a sex-changing species) for which males are limiting. Thus a better understanding of the importance of male fish to population dynamics is needed for the adaptive management of MPAs.


Assuntos
Conservação dos Recursos Naturais , Pesqueiros , Animais , Feminino , Peixes , Masculino , Dinâmica Populacional , Reprodução
15.
Ecol Appl ; 30(1): e02008, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31550393

RESUMO

Quantifying the role of biophysical and anthropogenic drivers of coral reef ecosystem processes can inform management strategies that aim to maintain or restore ecosystem structure and productivity. However, few studies have examined the combined effects of multiple drivers, partitioned their impacts, or established threshold values that may trigger shifts in benthic cover. Inshore fringing reefs of the Great Barrier Reef Marine Park (GBRMP) occur in high-sediment, high-nutrient environments and are under increasing pressure from multiple acute and chronic stressors. Despite world-leading management, including networks of no-take marine reserves, relative declines in hard coral cover of 40-50% have occurred in recent years, with localized but persistent shifts from coral to macroalgal dominance on some reefs. Here we use boosted regression tree analyses to test the relative importance of multiple biophysical drivers on coral and macroalgal cover using a long-term (12-18 yr) data set collected from reefs at four island groups. Coral and macroalgal cover were negatively correlated at all island groups, and particularly when macroalgal cover was above 20%. Although reefs at each island group had different disturbance-and-recovery histories, degree heating weeks (DHW) and routine wave exposure consistently emerged as common drivers of coral and macroalgal cover. In addition, different combinations of sea-surface temperature, nutrient and turbidity parameters, exposure to high turbidity (primary) floodwater, depth, grazing fish density, farming damselfish density, and management zoning variously contributed to changes in coral and macroalgal cover at each island group. Clear threshold values were apparent for multiple drivers including wave exposure, depth, and degree heating weeks for coral cover, and depth, degree heating weeks, chlorophyll a, and cyclone exposure for macroalgal cover, however, all threshold values were variable among island groups. Our findings demonstrate that inshore coral reef communities are typically structured by broadscale climatic perturbations, superimposed upon unique sets of local-scale drivers. Although rapidly escalating climate change impacts are the largest threat to coral reefs of the GBRMP and globally, our findings suggest that proactive management actions that effectively reduce chronic stressors at local scales should contribute to improved reef resistance and recovery potential following acute climatic disturbances.


Assuntos
Antozoários , Animais , Clorofila A , Recifes de Corais , Ecossistema , Peixes
16.
J Fish Biol ; 97(4): 1165-1176, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32785930

RESUMO

Understanding the spatial and environmental variation in demographic processes of fisheries target species, such as coral grouper (Genus: Plectropomus), is important for establishing effective management and conservation strategies. Herein we compare the demography of Plectropomus leopardus and P. laevis between Australia's Great Barrier Reef Marine Park (GBRMP), which has been subject to sustained and extensive fishing pressure, and the oceanic atolls of Australia's Coral Sea Marine Park (CSMP), where there is very limited fishing for reef fishes. Coral grouper length-at-age data from contemporary and historical otolith collections across 9.4 degrees of latitude showed little difference in lifetime growth between GBRMP and CSMP regions. Plectropomus laevis populations in GBRMP reefs had significantly higher rates of total mortality than populations in the CSMP. Mean maximum lengths and mean maximum ages of P. laevis were also smaller in the GBRMP than in the CSMP, even when considering populations sampled within GBRMP no-take marine reserves (NTMRs). Plectropomus leopardus, individuals were on average smaller on fished reefs than NTMRs in the GBRMP, but all other aspects of demography were broadly similar between regions despite the negligible levels of fishing pressure in the CSMP. Similarities between regions in growth profiles and length-at-age comparisons of P. laevis and P. leopardus suggest that the environmental differences between the CSMP and the GBRMP may not have significant impacts on lifetime growth. Our results show that fishing may have influenced the demography of coral grouper on the GBR, particularly for the slower growing and longer lived species, P. laevis.


Assuntos
Bass/classificação , Pesqueiros , Animais , Austrália , Bass/crescimento & desenvolvimento , Conservação dos Recursos Naturais , Recifes de Corais , Demografia , Pesqueiros/estatística & dados numéricos , Oceanos e Mares
17.
Ecol Appl ; 29(4): e01890, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30929286

RESUMO

Marine protected areas (MPAs) are important conservation tools that can support the resilience of marine ecosystems. Many countries, including Canada, have committed to protecting at least 10% of their marine areas under the Convention on Biological Diversity's Aichi Target 11, which includes connectivity as a key aspect. Connectivity, the movement of individuals among habitats, can enhance population stability and resilience within and among MPAs. However, little is known about regional spatial patterns of marine ecological connectivity, particularly adult movement. We developed a method to assess and design MPA networks that maximize inferred connectivity within habitat types for adult movement when ecological data are limited. We used the Northern Shelf Bioregion in British Columbia, Canada, to explore two different approaches: (1) evaluating sites important for inferred regional connectivity (termed hotspots) and (2) assessing MPA network configurations based on their overlap with connectivity hotspots and interconnectedness between MPAs. To assess inferred connectivity via adult movement, we used two different threshold distances (15 and 50 km) to capture moderate home ranges, which are most appropriate to consider in MPA design. We applied graph theory to assess inferred connectivity within 16 habitat and depth categories (proxies for distinct ecological communities), and used novel multiplex network methodologies to perform an aggregated assessment of inferred connectivity. We evaluated inferred regional connectivity hotspots based on betweenness and eigenvector centrality metrics, finding that the existing MPA network overlapped a moderate proportion of these regional hotspots and identified key areas to be considered as candidate MPAs. Network density among existing MPAs was low within the individual habitat networks, as well as the multiplex. This work informs an ongoing MPA planning process, and approaches for incorporating connectivity into MPA design when data are limited, with lessons for other contexts.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Animais , Biodiversidade , Colúmbia Britânica , Peixes
18.
Glob Chang Biol ; 24(2): e671-e691, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29274104

RESUMO

Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Aquecimento Global , Modelos Biológicos , Distribuição Animal , Animais , California , Pesqueiros , Peixes , Larva/fisiologia , Plâncton/fisiologia
19.
Ecol Appl ; 28(4): 910-925, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29421847

RESUMO

To design effective marine reserves and support fisheries, more information on fishing patterns and impacts for targeted species is needed, as well as better understanding of their key habitats. However, fishing impacts vary geographically and are difficult to disentangle from other factors that influence targeted fish distributions. We developed a set of fishing effort and habitat layers at high resolution and employed machine learning techniques to create regional-scale seascape models and predictive maps of biomass and body length of targeted reef fishes for the main Hawaiian Islands. Spatial patterns of fishing effort were shown to be highly variable and seascape models indicated a low threshold beyond which targeted fish assemblages were severely impacted. Topographic complexity, exposure, depth, and wave power were identified as key habitat variables that influenced targeted fish distributions and defined productive habitats for reef fisheries. High targeted reef fish biomass and body length were found in areas not easily accessed by humans, while model predictions when fishing effort was set to zero showed these high values to be more widely dispersed among suitable habitats. By comparing current targeted fish distributions with those predicted when fishing effort was removed, areas with high recovery potential on each island were revealed, with average biomass recovery of 517% and mean body length increases of 59% on Oahu, the most heavily fished island. Spatial protection of these areas would aid recovery of nearshore coral reef fisheries.


Assuntos
Biomassa , Recifes de Corais , Pesqueiros , Peixes , Modelos Teóricos , Animais , Tamanho Corporal , Havaí
20.
J Fish Biol ; 93(4): 586-596, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29956313

RESUMO

Marine protected areas are considered a useful tool to preserve and recover the biodiversity of ecosystems. It is suggested that fisheries not only affect populations of target and bycatch species but also their parasite communities. Parasites can indicate fishery effects on host species and also on the whole local community, but the effects of fisheries and protection measures on parasite communities are relatively unknown. This study analyses parasite communities of the white seabream Diplodus sargus sargus in order to assess potential effects exerted by protection measures within and by fisheries outside a reserve in the western Mediterranean Sea. This small scale analysis offered the opportunity to study different degrees of fishery effects on parasite infracommunities, without considering climatic effects as an additional factor. Parasite infracommunities of fishes from the no-take zone (NTZ) differed in their composition and structure compared with areas completely or partially open to fisheries. The detected spatial differences in the infracommunities derived from generalist parasites and varied slightly between transmission strategies. Monoxenous parasites were richer and more diverse in both fished areas, but more abundant in the no-take, whereas richness and abundance of heteroxenous parasites were higher for the NTZ. In addition to host body size as one factor explaining these spatial variations, differences within parasite infracommunities between the areas may also be linked to increased host densities and habitat quality since the implementation of the NTZ and its protection measures.


Assuntos
Biodiversidade , Interações Hospedeiro-Parasita , Parasitos/classificação , Dourada/parasitologia , Animais , Tamanho Corporal , Ecossistema , Pesqueiros , Ilhas , Mar Mediterrâneo , Parasitos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA