Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 187(5): 1255-1277.e27, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38359819

RESUMO

Despite the successes of immunotherapy in cancer treatment over recent decades, less than <10%-20% cancer cases have demonstrated durable responses from immune checkpoint blockade. To enhance the efficacy of immunotherapies, combination therapies suppressing multiple immune evasion mechanisms are increasingly contemplated. To better understand immune cell surveillance and diverse immune evasion responses in tumor tissues, we comprehensively characterized the immune landscape of more than 1,000 tumors across ten different cancers using CPTAC pan-cancer proteogenomic data. We identified seven distinct immune subtypes based on integrative learning of cell type compositions and pathway activities. We then thoroughly categorized unique genomic, epigenetic, transcriptomic, and proteomic changes associated with each subtype. Further leveraging the deep phosphoproteomic data, we studied kinase activities in different immune subtypes, which revealed potential subtype-specific therapeutic targets. Insights from this work will facilitate the development of future immunotherapy strategies and enhance precision targeting with existing agents.


Assuntos
Neoplasias , Proteogenômica , Humanos , Terapia Combinada , Genômica , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/terapia , Proteômica , Evasão Tumoral
2.
Cell ; 187(16): 4389-4407.e15, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38917788

RESUMO

Fewer than 200 proteins are targeted by cancer drugs approved by the Food and Drug Administration (FDA). We integrate Clinical Proteomic Tumor Analysis Consortium (CPTAC) proteogenomics data from 1,043 patients across 10 cancer types with additional public datasets to identify potential therapeutic targets. Pan-cancer analysis of 2,863 druggable proteins reveals a wide abundance range and identifies biological factors that affect mRNA-protein correlation. Integration of proteomic data from tumors and genetic screen data from cell lines identifies protein overexpression- or hyperactivation-driven druggable dependencies, enabling accurate predictions of effective drug targets. Proteogenomic identification of synthetic lethality provides a strategy to target tumor suppressor gene loss. Combining proteogenomic analysis and MHC binding prediction prioritizes mutant KRAS peptides as promising public neoantigens. Computational identification of shared tumor-associated antigens followed by experimental confirmation nominates peptides as immunotherapy targets. These analyses, summarized at https://targets.linkedomics.org, form a comprehensive landscape of protein and peptide targets for companion diagnostics, drug repurposing, and therapy development.


Assuntos
Neoplasias , Proteogenômica , Humanos , Proteogenômica/métodos , Neoplasias/genética , Neoplasias/tratamento farmacológico , Neoplasias/terapia , Neoplasias/metabolismo , Terapia de Alvo Molecular , Imunoterapia/métodos , Antígenos de Neoplasias/metabolismo , Antígenos de Neoplasias/genética , Linhagem Celular Tumoral , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Peptídeos/metabolismo , Proteômica , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo
3.
Cell ; 187(1): 184-203.e28, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38181741

RESUMO

We performed comprehensive proteogenomic characterization of small cell lung cancer (SCLC) using paired tumors and adjacent lung tissues from 112 treatment-naive patients who underwent surgical resection. Integrated multi-omics analysis illustrated cancer biology downstream of genetic aberrations and highlighted oncogenic roles of FAT1 mutation, RB1 deletion, and chromosome 5q loss. Two prognostic biomarkers, HMGB3 and CASP10, were identified. Overexpression of HMGB3 promoted SCLC cell migration via transcriptional regulation of cell junction-related genes. Immune landscape characterization revealed an association between ZFHX3 mutation and high immune infiltration and underscored a potential immunosuppressive role of elevated DNA damage response activity via inhibition of the cGAS-STING pathway. Multi-omics clustering identified four subtypes with subtype-specific therapeutic vulnerabilities. Cell line and patient-derived xenograft-based drug tests validated the specific therapeutic responses predicted by multi-omics subtyping. This study provides a valuable resource as well as insights to better understand SCLC biology and improve clinical practice.


Assuntos
Neoplasias Pulmonares , Proteogenômica , Carcinoma de Pequenas Células do Pulmão , Humanos , Linhagem Celular , Neoplasias Pulmonares/química , Neoplasias Pulmonares/genética , Carcinoma de Pequenas Células do Pulmão/química , Carcinoma de Pequenas Células do Pulmão/genética , Xenoenxertos , Biomarcadores Tumorais/análise
4.
Am J Hum Genet ; 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39079539

RESUMO

A major fraction of loci identified by genome-wide association studies (GWASs) mediate alternative splicing, but mechanistic interpretation is hindered by the technical limitations of short-read RNA sequencing (RNA-seq), which cannot directly link splicing events to full-length protein isoforms. Long-read RNA-seq represents a powerful tool to characterize transcript isoforms, and recently, infer protein isoform existence. Here, we present an approach that integrates information from GWASs, splicing quantitative trait loci (sQTLs), and PacBio long-read RNA-seq in a disease-relevant model to infer the effects of sQTLs on the ultimate protein isoform products they encode. We demonstrate the utility of our approach using bone mineral density (BMD) GWAS data. We identified 1,863 sQTLs from the Genotype-Tissue Expression (GTEx) project in 732 protein-coding genes that colocalized with BMD associations (H4PP ≥ 0.75). We generated PacBio Iso-Seq data (N = ∼22 million full-length reads) on human osteoblasts, identifying 68,326 protein-coding isoforms, of which 17,375 (25%) were unannotated. By casting the sQTLs onto protein isoforms, we connected 809 sQTLs to 2,029 protein isoforms from 441 genes expressed in osteoblasts. Overall, we found that 74 sQTLs influenced isoforms likely impacted by nonsense-mediated decay and 190 that potentially resulted in the expression of unannotated protein isoforms. Finally, we functionally validated colocalizing sQTLs in TPM2, in which siRNA-mediated knockdown in osteoblasts showed two TPM2 isoforms with opposing effects on mineralization but exhibited no effect upon knockdown of the entire gene. Our approach should be to generalize across diverse clinical traits and to provide insights into protein isoform activities modulated by GWAS loci.

5.
Proc Natl Acad Sci U S A ; 121(6): e2204075121, 2024 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-38306482

RESUMO

Coastal Antarctic marine ecosystems are significant in carbon cycling because of their intense seasonal phytoplankton blooms. Southern Ocean algae are primarily limited by light and iron (Fe) and can be co-limited by cobalamin (vitamin B12). Micronutrient limitation controls productivity and shapes the composition of blooms which are typically dominated by either diatoms or the haptophyte Phaeocystis antarctica. However, the vitamin requirements and ecophysiology of the keystone species P. antarctica remain poorly characterized. Using cultures, physiological analysis, and comparative omics, we examined the response of P. antarctica to a matrix of Fe-B12 conditions. We show that P. antarctica is not auxotrophic for B12, as previously suggested, and identify mechanisms underlying its B12 response in cultures of predominantly solitary and colonial cells. A combination of proteomics and proteogenomics reveals a B12-independent methionine synthase fusion protein (MetE-fusion) that is expressed under vitamin limitation and interreplaced with the B12-dependent isoform under replete conditions. Database searches return homologues of the MetE-fusion protein in multiple Phaeocystis species and in a wide range of marine microbes, including other photosynthetic eukaryotes with polymorphic life cycles as well as bacterioplankton. Furthermore, we find MetE-fusion homologues expressed in metaproteomic and metatranscriptomic field samples in polar and more geographically widespread regions. As climate change impacts micronutrient availability in the coastal Southern Ocean, our finding that P. antarctica has a flexible B12 metabolism has implications for its relative fitness compared to B12-auxotrophic diatoms and for the detection of B12-stress in a more diverse set of marine microbes.


Assuntos
Diatomáceas , Haptófitas , Haptófitas/genética , 5-Metiltetra-Hidrofolato-Homocisteína S-Metiltransferase/metabolismo , Ecossistema , Fitoplâncton/metabolismo , Diatomáceas/genética , Vitaminas/metabolismo , Micronutrientes/metabolismo
6.
Mol Cell Proteomics ; 23(6): 100764, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38604503

RESUMO

Efforts to address the poor prognosis associated with esophageal adenocarcinoma (EAC) have been hampered by a lack of biomarkers to identify early disease and therapeutic targets. Despite extensive efforts to understand the somatic mutations associated with EAC over the past decade, a gap remains in understanding how the atlas of genomic aberrations in this cancer impacts the proteome and which somatic variants are of importance for the disease phenotype. We performed a quantitative proteomic analysis of 23 EACs and matched adjacent normal esophageal and gastric tissues. We explored the correlation of transcript and protein abundance using tissue-matched RNA-seq and proteomic data from seven patients and further integrated these data with a cohort of EAC RNA-seq data (n = 264 patients), EAC whole-genome sequencing (n = 454 patients), and external published datasets. We quantified protein expression from 5879 genes in EAC and patient-matched normal tissues. Several biomarker candidates with EAC-selective expression were identified, including the transmembrane protein GPA33. We further verified the EAC-enriched expression of GPA33 in an external cohort of 115 patients and confirm this as an attractive diagnostic and therapeutic target. To further extend the insights gained from our proteomic data, an integrated analysis of protein and RNA expression in EAC and normal tissues revealed several genes with poorly correlated protein and RNA abundance, suggesting posttranscriptional regulation of protein expression. These outlier genes, including SLC25A30, TAOK2, and AGMAT, only rarely demonstrated somatic mutation, suggesting post-transcriptional drivers for this EAC-specific phenotype. AGMAT was demonstrated to be overexpressed at the protein level in EAC compared to adjacent normal tissues with an EAC-selective, post-transcriptional mechanism of regulation of protein abundance proposed. Integrated analysis of proteome, transcriptome, and genome in EAC has revealed several genes with tumor-selective, posttranscriptional regulation of protein expression, which may be an exploitable vulnerability.


Assuntos
Adenocarcinoma , Biomarcadores Tumorais , Neoplasias Esofágicas , Regulação Neoplásica da Expressão Gênica , Proteômica , Humanos , Neoplasias Esofágicas/genética , Neoplasias Esofágicas/metabolismo , Neoplasias Esofágicas/patologia , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Proteômica/métodos , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Masculino , Feminino , Processamento Pós-Transcricional do RNA , Proteoma/metabolismo , Multiômica
7.
Mol Cell Proteomics ; 23(4): 100743, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38403075

RESUMO

Discovering noncanonical peptides has been a common application of proteogenomics. Recent studies suggest that certain noncanonical peptides, known as noncanonical major histocompatibility complex-I (MHC-I)-associated peptides (ncMAPs), that bind to MHC-I may make good immunotherapeutic targets. De novo peptide sequencing is a great way to find ncMAPs since it can detect peptide sequences from their tandem mass spectra without using any sequence databases. However, this strategy has not been widely applied for ncMAP identification because there is not a good way to estimate its false-positive rates. In order to completely and accurately identify immunopeptides using de novo peptide sequencing, we describe a unique pipeline called proteomics X genomics. In contrast to current pipelines, it makes use of genomic data, RNA-Seq abundance and sequencing quality, in addition to proteomic features to increase the sensitivity and specificity of peptide identification. We show that the peptide-spectrum match quality and genetic traits have a clear relationship, showing that they can be utilized to evaluate peptide-spectrum matches. From 10 samples, we found 24,449 canonical MHC-I-associated peptides and 956 ncMAPs by using a target-decoy competition. Three hundred eighty-seven ncMAPs and 1611 canonical MHC-I-associated peptides were new identifications that had not yet been published. We discovered 11 ncMAPs produced from a squirrel monkey retrovirus in human cell lines in addition to the two ncMAPs originating from a complementarity determining region 3 in an antibody thanks to the unrestricted search space assumed by de novo sequencing. These entirely new identifications show that proteomics X genomics can make the most of de novo peptide sequencing's advantages and its potential use in the search for new immunotherapeutic targets.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Peptídeos/metabolismo , Peptídeos/química , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Proteômica/métodos , RNA-Seq/métodos , Animais
8.
Mol Cell Proteomics ; 23(2): 100719, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38242438

RESUMO

Although the human gene annotation has been continuously improved over the past 2 decades, numerous studies demonstrated the existence of a "dark proteome", consisting of proteins that were critical for biological processes but not included in widely used gene catalogs. The Genotype-Tissue Expression project generated more than 15,000 RNA-seq datasets from multiple tissues, which modeled 30 million transcripts in the human genome. To provide a resource of high-confidence novel proteins from the dark proteome, we screened 50,000 mass spectrometry runs from over 900 projects to identify proteins translated from the Genotype-Tissue Expression transcript model with proteomic support. We also integrated 3.8 million common genetic variants from the gnomAD database to improve peptide identification. As a result, we identified 170,529 novel peptides with proteomic evidence, of which 6048 passed the strictest standard we defined and were supported by PepQuery. We provided a user-friendly website (https://ncorf.genes.fun/) for researchers to check the evidence of novel peptides from their studies. The findings will improve our understanding of coding genes and facilitate genomic data interpretation in biomedical research.


Assuntos
Proteogenômica , Humanos , Proteogenômica/métodos , Proteoma/metabolismo , Proteômica/métodos , Peptídeos/genética , Genoma Humano
9.
J Proteome Res ; 23(5): 1583-1592, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38651221

RESUMO

MD2 pineapple (Ananas comosus) is the second most important tropical crop that preserves crassulacean acid metabolism (CAM), which has high water-use efficiency and is fast becoming the most consumed fresh fruit worldwide. Despite the significance of environmental efficiency and popularity, until very recently, its genome sequence has not been determined and a high-quality annotated proteome has not been available. Here, we have undertaken a pilot proteogenomic study, analyzing the proteome of MD2 pineapple leaves using liquid chromatography-mass spectrometry (LC-MS/MS), which validates 1781 predicted proteins in the annotated F153 (V3) genome. In addition, a further 603 peptide identifications are found that map exclusively to an independent MD2 transcriptome-derived database but are not found in the standard F153 (V3) annotated proteome. Peptide identifications derived from these MD2 transcripts are also cross-referenced to a more recent and complete MD2 genome annotation, resulting in 402 nonoverlapping peptides, which in turn support 30 high-quality gene candidates novel to both pineapple genomes. Many of the validated F153 (V3) genes are also supported by an independent proteomics data set collected for an ornamental pineapple variety. The contigs and peptides have been mapped to the current F153 genome build and are available as bed files to display a custom gene track on the Ensembl Plants region viewer. These analyses add to the knowledge of experimentally validated pineapple genes and demonstrate the utility of transcript-derived proteomics to discover both novel genes and genetic structure in a plant genome, adding value to its annotation.


Assuntos
Ananas , Genoma de Planta , Proteínas de Plantas , Proteogenômica , Espectrometria de Massas em Tandem , Ananas/genética , Ananas/química , Proteogenômica/métodos , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Cromatografia Líquida , Proteoma/genética , Proteoma/análise , Anotação de Sequência Molecular , Folhas de Planta/genética , Folhas de Planta/química , Peptídeos/genética , Peptídeos/análise , Peptídeos/química
10.
Diabetologia ; 67(5): 783-797, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38345659

RESUMO

Precision diabetes medicine (PDM) aims to reduce errors in prevention programmes, diagnosis thresholds, prognosis prediction and treatment strategies. However, its advancement and implementation are difficult due to the heterogeneity of complex molecular processes and environmental exposures that influence an individual's disease trajectory. To address this challenge, it is imperative to develop robust screening methods for all areas of PDM. Innovative proteomic technologies, alongside genomics, have proven effective in precision cancer medicine and are showing promise in diabetes research for potential translation. This narrative review highlights how proteomics is well-positioned to help improve PDM. Specifically, a critical assessment of widely adopted affinity-based proteomic technologies in large-scale clinical studies and evidence of the benefits and feasibility of using MS-based plasma proteomics is presented. We also present a case for the use of proteomics to identify predictive protein panels for type 2 diabetes subtyping and the development of clinical prediction models for prevention, diagnosis, prognosis and treatment strategies. Lastly, we discuss the importance of plasma and tissue proteomics and its integration with genomics (proteogenomics) for identifying unique type 2 diabetes intra- and inter-subtype aetiology. We conclude with a call for action formed on advancing proteomics technologies, benchmarking their performance and standardisation across sites, with an emphasis on data sharing and the inclusion of diverse ancestries in large cohort studies. These efforts should foster collaboration with key stakeholders and align with ongoing academic programmes such as the Precision Medicine in Diabetes Initiative consortium.


Assuntos
Diabetes Mellitus Tipo 2 , Proteômica , Humanos , Proteômica/métodos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/terapia , Medicina de Precisão/métodos , Genômica/métodos , Prognóstico
11.
Breast Cancer Res ; 26(1): 76, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38745208

RESUMO

BACKGROUND: Breast cancer (BC) is the most commonly diagnosed cancer and the leading cause of cancer death among women globally. Despite advances, there is considerable variation in clinical outcomes for patients with non-luminal A tumors, classified as difficult-to-treat breast cancers (DTBC). This study aims to delineate the proteogenomic landscape of DTBC tumors compared to luminal A (LumA) tumors. METHODS: We retrospectively collected a total of 117 untreated primary breast tumor specimens, focusing on DTBC subtypes. Breast tumors were processed by laser microdissection (LMD) to enrich tumor cells. DNA, RNA, and protein were simultaneously extracted from each tumor preparation, followed by whole genome sequencing, paired-end RNA sequencing, global proteomics and phosphoproteomics. Differential feature analysis, pathway analysis and survival analysis were performed to better understand DTBC and investigate biomarkers. RESULTS: We observed distinct variations in gene mutations, structural variations, and chromosomal alterations between DTBC and LumA breast tumors. DTBC tumors predominantly had more mutations in TP53, PLXNB3, Zinc finger genes, and fewer mutations in SDC2, CDH1, PIK3CA, SVIL, and PTEN. Notably, Cytoband 1q21, which contains numerous cell proliferation-related genes, was significantly amplified in the DTBC tumors. LMD successfully minimized stromal components and increased RNA-protein concordance, as evidenced by stromal score comparisons and proteomic analysis. Distinct DTBC and LumA-enriched clusters were observed by proteomic and phosphoproteomic clustering analysis, some with survival differences. Phosphoproteomics identified two distinct phosphoproteomic profiles for high relapse-risk and low relapse-risk basal-like tumors, involving several genes known to be associated with breast cancer oncogenesis and progression, including KIAA1522, DCK, FOXO3, MYO9B, ARID1A, EPRS, ZC3HAV1, and RBM14. Lastly, an integrated pathway analysis of multi-omics data highlighted a robust enrichment of proliferation pathways in DTBC tumors. CONCLUSIONS: This study provides an integrated proteogenomic characterization of DTBC vs LumA with tumor cells enriched through laser microdissection. We identified many common features of DTBC tumors and the phosphopeptides that could serve as potential biomarkers for high/low relapse-risk basal-like BC and possibly guide treatment selections.


Assuntos
Biomarcadores Tumorais , Neoplasias da Mama , Proteogenômica , Humanos , Feminino , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Biomarcadores Tumorais/genética , Proteogenômica/métodos , Mutação , Microdissecção e Captura a Laser , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Proteômica/métodos , Prognóstico
12.
Int J Cancer ; 154(12): 2162-2175, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38353498

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a highly lethal cancer, often diagnosed at stages that dis-qualify for surgical resection. Neoadjuvant therapies offer potential tumor regression and improved resectability. Although features of the tumor biology (e.g., molecular markers) may guide adjuvant therapy, biological alterations after neoadjuvant therapy remain largely unexplored. We performed mass spectrometry to characterize the proteomes of 67 PDAC resection specimens of patients who received either neoadjuvant chemo (NCT) or chemo-radiation (NCRT) therapy. We employed data-independent acquisition (DIA), yielding a proteome coverage in excess of 3500 proteins. Moreover, we successfully integrated two publicly available proteome datasets of treatment-naïve PDAC to unravel proteome alterations in response to neoadjuvant therapy, highlighting the feasibility of this approach. We found highly distinguishable proteome profiles. Treatment-naïve PDAC was characterized by enrichment of immunoglobulins, complement and extracellular matrix (ECM) proteins. Post-NCT and post-NCRT PDAC presented high abundance of ribosomal and metabolic proteins as compared to treatment-naïve PDAC. Further analyses on patient survival and protein expression identified treatment-specific prognostic candidates. We present the first proteomic characterization of the residual PDAC mass after NCT and NCRT, and potential protein candidate markers associated with overall survival. We conclude that residual PDAC exhibits fundamentally different proteome profiles as compared to treatment-naïve PDAC, influenced by the type of neoadjuvant treatment. These findings may impact adjuvant or targeted therapy options.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Terapia Neoadjuvante , Proteínas Ribossômicas , Proteoma , Neoplasia Residual , Proteômica , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Ativação do Complemento , Metabolismo Energético
13.
Curr Issues Mol Biol ; 46(5): 4595-4608, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38785547

RESUMO

Proteogenomics represents a transformative intersection in nephrology, uniting genomics, transcriptomics, and proteomics to unravel the molecular intricacies of kidney diseases. This review encapsulates the methodological essence of proteogenomics and its profound implications in chronic kidney disease (CKD) research. We explore the proteogenomic pipeline, highlighting the integrated analysis of genomic, transcriptomic, and proteomic data and its pivotal role in enhancing our understanding of kidney pathologies. Through case studies, we showcase the application of proteogenomics in clear cell renal cell carcinoma (ccRCC) and Autosomal Recessive Polycystic Kidney Disease (ARPKD), emphasizing its potential in personalized treatment strategies and biomarker discovery. The review also addresses the challenges in proteogenomic analysis, including data integration complexities and bioinformatics limitations, and proposes solutions for advancing the field. Ultimately, this review underscores the prospective future of proteogenomics in nephrology, particularly in advancing personalized medicine and providing novel therapeutic insights.

14.
Clin Proteomics ; 21(1): 4, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38254014

RESUMO

BACKGROUND: Although uterine serous carcinoma (USC) represents a small proportion of all uterine cancer cases, patients with this aggressive subtype typically have high rates of chemotherapy resistance and disease recurrence that collectively result in a disproportionately high death rate. The goal of this study was to provide a deeper view of the tumor microenvironment of this poorly characterized uterine cancer variant through multi-region microsampling and quantitative proteomics. METHODS: Tumor epithelium, tumor-involved stroma, and whole "bulk" tissue were harvested by laser microdissection (LMD) from spatially resolved levels from nine USC patient tumor specimens and underwent proteomic analysis by mass spectrometry and reverse phase protein arrays, as well as transcriptomic analysis by RNA-sequencing for one patient's tumor. RESULTS: LMD enriched cell subpopulations demonstrated varying degrees of relatedness, indicating substantial intratumor heterogeneity emphasizing the necessity for enrichment of cellular subpopulations prior to molecular analysis. Known prognostic biomarkers were quantified with stable levels in both LMD enriched tumor and stroma, which were shown to be highly variable in bulk tissue. These USC data were further used in a comparative analysis with a data generated from another serous gynecologic malignancy, high grade serous ovarian carcinoma, and have been added to our publicly available data analysis tool, the Heterogeneity Analysis Portal ( https://lmdomics.org/ ). CONCLUSIONS: Here we identified extensive three-dimensional heterogeneity within the USC tumor microenvironment, with disease-relevant biomarkers present in both the tumor and the stroma. These data underscore the critical need for upfront enrichment of cellular subpopulations from tissue specimens for spatial proteogenomic analysis.

15.
Int J Mol Sci ; 25(2)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256255

RESUMO

SpliceProt 2.0 is a public proteogenomics database that aims to list the sequence of known proteins and potential new proteoforms in human, mouse, and rat proteomes. This updated repository provides an even broader range of computationally translated proteins and serves, for example, to aid with proteomic validation of splice variants absent from the reference UniProtKB/SwissProt database. We demonstrate the value of SpliceProt 2.0 to predict orthologous proteins between humans and murines based on transcript reconstruction, sequence annotation and detection at the transcriptome and proteome levels. In this release, the annotation data used in the reconstruction of transcripts based on the methodology of ternary matrices were acquired from new databases such as Ensembl, UniProt, and APPRIS. Another innovation implemented in the pipeline is the exclusion of transcripts predicted to be susceptible to degradation through the NMD pathway. Taken together, our repository and its applications represent a valuable resource for the proteogenomics community.


Assuntos
Proteogenômica , Proteômica , Ratos , Camundongos , Humanos , Animais , Bases de Dados de Proteínas , Bases de Conhecimento , Proteoma/genética
16.
Cancer Cell ; 42(3): 358-377.e8, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38215747

RESUMO

The evolutionary trajectory of glioblastoma (GBM) is a multifaceted biological process that extends beyond genetic alterations alone. Here, we perform an integrative proteogenomic analysis of 123 longitudinal glioblastoma pairs and identify a highly proliferative cellular state at diagnosis and replacement by activation of neuronal transition and synaptogenic pathways in recurrent tumors. Proteomic and phosphoproteomic analyses reveal that the molecular transition to neuronal state at recurrence is marked by post-translational activation of the wingless-related integration site (WNT)/ planar cell polarity (PCP) signaling pathway and BRAF protein kinase. Consistently, multi-omic analysis of patient-derived xenograft (PDX) models mirror similar patterns of evolutionary trajectory. Inhibition of B-raf proto-oncogene (BRAF) kinase impairs both neuronal transition and migration capability of recurrent tumor cells, phenotypic hallmarks of post-therapy progression. Combinatorial treatment of temozolomide (TMZ) with BRAF inhibitor, vemurafenib, significantly extends the survival of PDX models. This study provides comprehensive insights into the biological mechanisms of glioblastoma evolution and treatment resistance, highlighting promising therapeutic strategies for clinical intervention.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Proteogenômica , Animais , Humanos , Glioblastoma/genética , Proteínas Proto-Oncogênicas B-raf , Proteômica , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Modelos Animais de Doenças , Neoplasias Encefálicas/genética , Resistencia a Medicamentos Antineoplásicos , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Methods Mol Biol ; 2836: 3-17, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38995532

RESUMO

Proteogenomics has revealed the translation of unannotated open reading frames (ORFs) present in mRNAs and in noncoding RNAs (ncRNAs). OpenProt annotates all ORFs with a minimum of 30 codons in the transcriptome of several species and displays many functional features associated with the corresponding proteins. Two types of proteins are annotated: reference or canonical proteins which are proteins already annotated in UniProt, RefSeq, or Ensembl and noncanonical proteins. Noncanonical proteins form two groups: predicted novel isoforms that display a significant level of homology with a reference protein and alternative proteins that are new proteins with no significant homology to known proteins. This chapter describes how to check whether a gene and/or transcript contains multiple open reading frames and how to use OpenProt databases for the detection of alternative proteins and novel isoforms by mass spectrometry-based proteomics.


Assuntos
Espectrometria de Massas , Fases de Leitura Aberta , Proteoma , Espectrometria de Massas/métodos , Proteômica/métodos , Bases de Dados de Proteínas , Humanos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Anotação de Sequência Molecular , Proteogenômica/métodos
18.
Cancers (Basel) ; 16(6)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38539567

RESUMO

BACKGROUND: Lung cancer is associated with a high incidence of mortality worldwide. Molecular mechanisms governing the disease have been explored by genomic studies; however, several aspects remain elusive. The integration of genomic profiling with in-depth proteomic profiling has introduced a new dimension to lung cancer research, termed proteogenomics. The aim of this review article was to investigate proteogenomic approaches in lung cancer, focusing on how elucidation of proteogenomic features can evoke tangible clinical outcomes. METHODS: A strict methodological approach was adopted for study selection and key article features included molecular attributes, tumor biomarkers, and major hallmarks involved in oncogenesis. RESULTS: As a consensus, in all studies it becomes evident that proteogenomics is anticipated to fill significant knowledge gaps and assist in the discovery of novel treatment options. Genomic profiling unravels patient driver mutations, and exploration of downstream effects uncovers great variability in transcript and protein correlation. Also, emphasis is placed on defining proteogenomic traits of tumors of major histological classes, generating a diverse portrait of predictive markers and druggable targets. CONCLUSIONS: An up-to-date synthesis of landmark lung cancer proteogenomic studies is herein provided, underpinning the importance of proteogenomics in the landscape of personalized medicine for combating lung cancer.

19.
Cell Rep Methods ; 4(2): 100708, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38412834

RESUMO

Tumor deconvolution enables the identification of diverse cell types that comprise solid tumors. To date, however, both the algorithms developed to deconvolve tumor samples, and the gold-standard datasets used to assess the algorithms are geared toward the analysis of gene expression (e.g., RNA sequencing) rather than protein levels. Despite the popularity of gene expression datasets, protein levels often provide a more accurate view of rare cell types. To facilitate the use, development, and reproducibility of multiomic deconvolution algorithms, we introduce Decomprolute, a Common Workflow Language framework that leverages containerization to compare tumor deconvolution algorithms across multiomic datasets. Decomprolute incorporates the large-scale multiomic datasets produced by the Clinical Proteomic Tumor Analysis Consortium (CPTAC), which include matched mRNA expression and proteomic data from thousands of tumors across multiple cancer types to build a fully open-source, containerized proteogenomic tumor deconvolution benchmarking platform. http://pnnl-compbio.github.io/decomprolute.


Assuntos
Neoplasias , Proteômica , Humanos , Multiômica , Benchmarking , Reprodutibilidade dos Testes , Neoplasias/genética
20.
Biomolecules ; 14(6)2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38927095

RESUMO

As an essential component of modern drug discovery, the role of drug-target identification is growing increasingly prominent. Additionally, single-omics technologies have been widely utilized in the process of discovering drug targets. However, it is difficult for any single-omics level to clearly expound the causal connection between drugs and how they give rise to the emergence of complex phenotypes. With the progress of large-scale sequencing and the development of high-throughput technologies, the tendency in drug-target identification has shifted towards integrated multi-omics techniques, gradually replacing traditional single-omics techniques. Herein, this review centers on the recent advancements in the domain of integrated multi-omics techniques for target identification, highlights the common multi-omics analysis strategies, briefly summarizes the selection of multi-omics analysis tools, and explores the challenges of existing multi-omics analyses, as well as the applications of multi-omics technology in drug-target identification.


Assuntos
Descoberta de Drogas , Genômica , Proteômica , Humanos , Genômica/métodos , Descoberta de Drogas/métodos , Proteômica/métodos , Metabolômica/métodos , Biologia Computacional/métodos , Multiômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA