Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 181
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Med Microbiol Immunol ; 213(1): 15, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39008129

RESUMO

Chlamydiae are a large group of obligate endosymbionts of eukaryotes that includes the Chlamydiaceae family, comprising several animal pathogens. Among Chlamydiaceae, Chlamydia trachomatis causes widespread ocular and urogenital infections in humans. Like many bacterial pathogens, all Chlamydiae manipulate host cells by injecting them with type III secretion effector proteins. We previously characterized the C. trachomatis effector CteG, which localizes at the host cell Golgi and plasma membrane during distinct phases of the chlamydial infectious cycle. Here, we show that CteG is a Chlamydiaceae-specific effector with over 60 homologs phylogenetically categorized into two distinct clades (CteG I and CteG II) and exhibiting several inparalogs and outparalogs. Notably, cteG I homologs are syntenic to C. trachomatis cteG, whereas cteG II homologs are syntenic among themselves but not with C. trachomatis cteG. This indicates a complex evolution of cteG homologs, which is unique among C. trachomatis effectors, marked by numerous events of gene duplication and loss. Despite relatively modest sequence conservation, nearly all tested CteG I and CteG II proteins were identified as type III secretion substrates using Yersinia as a heterologous bacterial host. Moreover, most of the type III secreted CteG I and CteG II homologs were delivered by C. trachomatis into host cells, where they localized at the Golgi region and cell periphery. Overall, this provided insights into the evolution of bacterial effectors and revealed a Chlamydiaceae family of type III secreted proteins that underwent substantial divergence during evolution while conserving the capacity to localize at specific host cell compartments.


Assuntos
Proteínas de Bactérias , Chlamydia trachomatis , Filogenia , Sistemas de Secreção Tipo III , Humanos , Chlamydia trachomatis/genética , Chlamydia trachomatis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas de Secreção Tipo III/metabolismo , Sistemas de Secreção Tipo III/genética , Fatores de Virulência/metabolismo , Fatores de Virulência/genética , Células HeLa , Yersinia/genética , Yersinia/metabolismo , Transporte Proteico , Interações Hospedeiro-Patógeno , Evolução Molecular , Chlamydiaceae/genética , Chlamydiaceae/metabolismo , Chlamydiaceae/classificação
2.
BMC Vet Res ; 17(1): 328, 2021 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-34645426

RESUMO

BACKGROUND: Chlamydia-like organisms (CLO) have been found to be present in many environmental niches, including human sewage and agricultural run-off, as well as in a number of aquatic species worldwide. Therefore, monitoring their presence in sentinel wildlife species may be useful in assessing the wider health of marine food webs in response to habitat loss, pollution and disease. We used nasal swabs from live (n = 42) and dead (n = 50) pre-weaned grey seal pups and samples of differing natal substrates (n = 8) from an off-shore island devoid of livestock and permanent human habitation to determine if CLO DNA is present in these mammals and to identify possible sources. RESULTS: We recovered CLO DNA from 32/92 (34.7%) nasal swabs from both live (n = 17) and dead (n = 15) seal pups that clustered most closely with currently recognised species belonging to three chlamydial families: Parachlamydiaceae (n = 22), Rhabdochlamydiaceae (n = 6), and Simkaniaceae (n = 3). All DNA positive sediment samples (n = 7) clustered with the Rhabdochlamydiaceae. No difference was found in rates of recovery of CLO DNA in live versus dead pups suggesting the organisms are commensal but their potential as opportunistic secondary pathogens could not be determined. CONCLUSION: This is the first report of CLO DNA being found in marine mammals. This identification warrants further investigation in other seal populations around the coast of the UK and in other areas of the world to determine if this finding is unique or more common than shown by this data. Further investigation would also be warranted to determine if they are present as purely commensal organisms or whether they could also be opportunistic pathogens in seals, as well as to investigate possible sources of origin, including whether they originated as a result of anthropogenic impacts, including human waste and agricultural run-off.


Assuntos
Chlamydiaceae/isolamento & purificação , Microbiologia Ambiental , Cavidade Nasal/microbiologia , Focas Verdadeiras/microbiologia , Animais , Chlamydiaceae/classificação , Chlamydiaceae/genética , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Humanos , Filogenia , Escócia , Resíduos
3.
BMC Microbiol ; 20(1): 182, 2020 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-32590949

RESUMO

BACKGROUND: Bats are hosts for a variety of microorganisms, however, little is known about the presence of Chlamydiales and hemotropic mycoplasmas. This study investigated 475 captive and free-living bats from Switzerland, Germany, and Costa Rica for Chlamydiales and hemotropic mycoplasmas by PCR to determine the prevalence and phylogeny of these organisms. RESULTS: Screening for Chlamydiales resulted in a total prevalence of 31.4%. Positive samples originated from captive and free-living bats from all three countries. Sequencing of 15 samples allowed the detection of two phylogenetically distinct groups. These groups share sequence identities to Chlamydiaceae, and to Chlamydia-like organisms including Rhabdochlamydiaceae and unclassified Chlamydiales from environmental samples, respectively. PCR analysis for the presence of hemotropic mycoplasmas resulted in a total prevalence of 0.7%, comprising free-living bats from Germany and Costa Rica. Phylogenetic analysis revealed three sequences related to other unidentified mycoplasmas found in vampire bats and Chilean bats. CONCLUSIONS: Bats can harbor Chlamydiales and hemotropic mycoplasmas and the newly described sequences in this study indicate that the diversity of these bacteria in bats is much larger than previously thought. Both, Chlamydiales and hemotropic mycoplasmas are not restricted to certain bat species or countries and captive and free-living bats can be colonized. In conclusion, bats represent another potential host or vector for novel, previously unidentified, Chlamydiales and hemotropic mycoplasmas.


Assuntos
Quirópteros/microbiologia , Chlamydiaceae/classificação , Mycoplasma/classificação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Animais , Chile , Chlamydiaceae/genética , Chlamydiaceae/isolamento & purificação , Costa Rica , DNA Bacteriano/genética , DNA Ribossômico/genética , Alemanha , Mycoplasma/genética , Mycoplasma/isolamento & purificação , Filogenia , Filogeografia , Prevalência
4.
Biochemistry ; 58(6): 714-726, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571096

RESUMO

Murine antibodies S25-23, S25-26, and S25-5 derive from a common germ-line origin, and all bind the Chlamydiaceae family-specific epitope αKdo(2→8)αKdo(2→4)αKdo (where Kdo is 3-deoxy-α-d- manno-oct-2-ulosonic acid) with high affinity and specificity. These antibodies recognize the entire trisaccharide antigen in a linkage-dependent manner via a groove composed largely of germ-line residues. Despite sharing identical heavy and light chain genes, S25-23 binds the family-specific epitope with nanomolar affinity, which is an order of magnitude higher than that of S25-26, while S25-5 displays an affinity between those of S25-23 and S25-26. We determined the high-resolution crystal structures of S25-23 and S25-5 antigen binding fragments in complex with a pentasaccharide derived from the LPS of Chlamydia and measured the affinity of S25-5 for chlamydial LPS antigens using isothermal titration microcalorimetry. The 1.75 Å resolution structure of S25-23 shows how subtle conservative mutations Arg(L)-27E to lysine and Ser(H)-56 to threonine lead to an order of magnitude increase in affinity. Importantly, comparison between previous S25-26 structures and the 1.99 and 2.05 Å resolution liganded and unliganded structures of S25-5, respectively, shows how a Ser(L)-27E mutation results in an intermediate affinity due to the reduced enthalpic penalty associated with complex formation that would otherwise be required for arginine in this position. This strategy allows for subtle adjustments in the combining site via affinity maturation that have dramatic consequences for the affinity of an antibody for its antigen.


Assuntos
Anticorpos Monoclonais Murinos/metabolismo , Chlamydiaceae/imunologia , Epitopos/metabolismo , Oligossacarídeos/metabolismo , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais Murinos/química , Anticorpos Monoclonais Murinos/imunologia , Afinidade de Anticorpos , Sítios de Ligação de Anticorpos , Epitopos/imunologia , Ligação de Hidrogênio , Camundongos , Oligossacarídeos/imunologia , Ligação Proteica , Alinhamento de Sequência
5.
Vet Pathol ; 56(2): 248-258, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30355149

RESUMO

Bovine abortion is a worldwide problem, but despite extensive histopathologic and molecular investigations, the cause of abortion remains unclear in about 70% of cases. Cellular debris is a commonly observed histopathologic finding in the fetal placenta and is often interpreted as necrosis. In this study, the nature of this cellular debris was characterized, and histologic changes in the normal fetal placenta during pregnancy and after delivery were assessed. In addition, the presence of the most common abortifacient pathogens in Switzerland ( Chlamydiaceae, Coxiella burnetii, Neospora caninum) was tested by polymerase chain reaction. We collected 51 placentomes and 235 cotyledons from 41 and from 50 cows, respectively. In total, cellular debris was present in 48 of 51 (94%) placentomes and in 225 of 235 (96%) cotyledons, inflammation occurred in 1 of 51 (2%) placentomes and in 46 of 235 (20%) cotyledons, vasculitis was seen in 1 of 51 (2%) placentomes and 46 of 235 (20%) cotyledons, and 18 of 51 (35%) placentomes and 181 of 235 (77%) cotyledons had mineralization. The amount of cellular debris correlated with areas of positive signals for cleaved caspase 3 and lamin A. Therefore, this finding was interpreted as an apoptotic process. In total, 10 of 50 cotyledons (20%) were positive for C. burnetii DNA, most likely representing subclinical infections. The results of our study indicate that histologic features in the fetal placenta such as cellular debris, inflammation, vasculitis, and mineralization must be considered physiological processes during pregnancy and after delivery. Therefore, their presence in placentae of aborted fetuses must be interpreted with caution and might not be necessarily linked to an infectious cause of abortion.


Assuntos
Placenta/anatomia & histologia , Animais , Caspase 3/metabolismo , Bovinos , Chlamydiaceae , Coxiella burnetii , Feminino , Lamina Tipo A/metabolismo , Neospora , Placenta/microbiologia , Placenta/ultraestrutura , Período Pós-Parto , Gravidez , Reação em Cadeia da Polimerase em Tempo Real
6.
J Biol Regul Homeost Agents ; 32(1): 177-184, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29504385

RESUMO

An early double case of acute Ophthalmia neonatorum in 3-day-old twins is reported. Culture of eye swabs showed a wide bacterial polymorphism, in which common bacteria, such as Klebsiella pneumoniae, Streptococcus pneumoniae, Corynebacterium ulcerans and other Enterobacteriaceae, coexisted with atypical Mycoplasmataceae and Chlamydiaceae from resident cervical-vaginal maternal microbiota. The neonates were in an apparently healthy state, but showed red eyes with abundant greenish-yellow secretion, mild chemosis and lid edema. The maternal cervical-vaginal ecosystem resulted differently positive to the same common cultivable, atypical bacteria culturally and molecularly determined. This suggested a direct maternal-foetal transmission or a further foetal contamination before birth. An extended culture analysis for common bacteria to atypical ones was decisive to describe the involvement of Mycoplasmas (M. hominis and U. urealyticum) within the scenario of the Ophthalmia neonatorum in a Caucasian couple. The introduction of a routine PCR molecular analysis for Chlamydiaceae and N. gonorrhoeae allowed to establish which of these were present at birth, and contributed to determine the correct laboratory diagnosis and to define an adequate therapeutic protocol obtaining a complete resolution after one year for culture and atypical bacteria controls. This study suggests to improve the quality of laboratory diagnosis as unavoidable support to a correct clinical diagnosis and therapy, in a standardized modality both for swabbing and scraping, to check the new-born microbial programming starting in uterus, overtaking the cultural age to the molecular age, and to revise the WHO guidelines of SAFE Strategy for trachoma eye disease, transforming it into SAFES Strategy where the S letter is the acronym of Sexual ecosystem and behavioural valuation/education.


Assuntos
Infecções por Chlamydiaceae , Chlamydiaceae/genética , DNA Bacteriano/genética , Neisseria gonorrhoeae/genética , Oftalmia Neonatal , Reação em Cadeia da Polimerase , Infecções por Chlamydiaceae/diagnóstico , Infecções por Chlamydiaceae/genética , Infecções por Chlamydiaceae/microbiologia , Infecções por Chlamydiaceae/terapia , Feminino , Humanos , Recém-Nascido , Oftalmia Neonatal/diagnóstico , Oftalmia Neonatal/genética , Oftalmia Neonatal/microbiologia , Oftalmia Neonatal/terapia , Gêmeos
7.
Antonie Van Leeuwenhoek ; 111(6): 785-799, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29058138

RESUMO

These are exciting times for PVC researchers! The PVC superphylum is composed of the bacterial phyla Planctomycetes, Verrucomicrobia, Chlamydiae (those three founders giving it its name), Lentisphaerae and Kirimatiellaeota as well as some uncultured candidate phyla, such as the Candidatus Omnitrophica (previously known as OP3). Despite early debates, most of the disagreements that surround this group of bacteria have been recently resolved. In this article, we review the history of the study of PVC bacteria, with a particular focus on the misinterpretations that emerged early in the field and their resolution. We begin with a historical perspective that describes the relevant facts of PVC research from the early times when they were not yet termed PVC. Those were controversial times and we refer to them as the "discovery age" of the field. We continue by describing new discoveries due to novel techniques and data that combined with the reinterpretations of old ones have contributed to solve most of the discordances and we refer to these times as the "illumination age" of PVC research. We follow by arguing that we are just entering the "golden age" of PVC research and that the future of this growing community is looking bright. We finish by suggesting a few of the directions that PVC researches might take in the future.


Assuntos
Chlamydiaceae/genética , Evolução Molecular , Planctomycetales/genética , Bactérias Anaeróbias/genética , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Verrucomicrobia/genética
8.
Int J Mol Sci ; 19(12)2018 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-30545112

RESUMO

The family of Chlamydiaceae contains a group of obligate intracellular bacteria that can infect a wide range of hosts. The evolutionary trend of members in this family is a hot topic, which benefits our understanding of the cross-infection of these pathogens. In this study, 14 whole genomes of 12 Chlamydia species were used to investigate the nucleotide, codon, and amino acid usage bias by synonymous codon usage value and information entropy method. The results showed that all the studied Chlamydia spp. had A/T rich genes with over-represented A or T at the third positions and G or C under-represented at these positions, suggesting that nucleotide usages influenced synonymous codon usages. The overall codon usage trend from synonymous codon usage variations divides the Chlamydia spp. into four separate clusters, while amino acid usage divides the Chlamydia spp. into two clusters with some exceptions, which reflected the genetic diversity of the Chlamydiaceae family members. The overall codon usage pattern represented by the effective number of codons (ENC) was significantly positively correlated to gene GC3 content. A negative correlation exists between ENC and the codon adaptation index for some Chlamydia species. These results suggested that mutation pressure caused by nucleotide composition constraint played an important role in shaping synonymous codon usage patterns. Furthermore, codon usage of T3ss and Pmps gene families adapted to that of the corresponding genome. Taken together, analyses help our understanding of evolutionary interactions between nucleotide, synonymous codon, and amino acid usages in genes of Chlamydiaceae family members.


Assuntos
Chlamydiaceae/genética , Códon/genética , Evolução Molecular , Adaptação Fisiológica/genética , Aminoácidos/genética , Composição de Bases/genética , Genes Bacterianos , Variação Genética , Família Multigênica , Análise de Componente Principal , Seleção Genética
9.
J Zoo Wildl Med ; 49(1): 108-115, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29517435

RESUMO

Chlamydiaceae bacteria infect many vertebrate hosts, and previous reports based on polymerase chain reaction (PCR) assays and serologic assays that are prone to cross-reaction among chlamydial organisms have been used to describe the prevalence of either DNA fragments or antibodies to Chlamydia spp. in wild raptorial populations. This study reports the PCR-based prevalence of Chlamydiaceae DNA that does not 100% match any avian or mammalian Chlamydiaceae in wild populations of hawks in California Buteo species. In this study, multimucosal swab samples ( n = 291) for quantitative PCR (qPCR) and plasma ( n = 78) for serology were collected from wild hawks. All available plasma samples were negative for antibodies using a C. psittaci-specific elementary body agglutination test (EBA; n = 78). For IgY antibodies all 51 available samples were negative using the indirect immunofluorescent assay. The overall prevalence of Chlamydiaceae DNA detection in wild Buteo species sampled was 1.37% (4/291) via qPCR-based analysis. Two fledgling Swainson's hawks ( Buteo swainsoni) and two juvenile red-tailed hawks ( Buteo jamaicensis) were positive by qPCR-based assay for an atypical chlamydial sequence that did not 100% match any known C. psittaci genotype. Positive swab samples from these four birds were sequenced based on the ompA gene and compared by high-resolution melt analysis with all known avian and mammalian Chlamydiaceae. The amplicon sequence did not 100% match any known avian chlamydial sequence; however, it was most similar (98.6%) to C. psittaci M56, a genotype that is typically found in muskrats and hares. Culture and full genome sequence analysis of Chlamydia spp. isolated from diseased hawks will be necessary to classify this organism and to better understand its epizootiology and potential health impact on wild Buteo populations in California.


Assuntos
Doenças das Aves/microbiologia , Infecções por Chlamydiaceae/veterinária , Chlamydiaceae/isolamento & purificação , Falcões/microbiologia , Animais , Doenças das Aves/epidemiologia , California/epidemiologia , Infecções por Chlamydiaceae/epidemiologia , Infecções por Chlamydiaceae/microbiologia , Estudos Soroepidemiológicos
10.
J Infect Dis ; 215(8): 1303-1311, 2017 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-27578848

RESUMO

Background: Amoebic keratitis is a potentially blinding eye infection caused by ubiquitous, free-living, environmental acanthamoebae, which are known to harbor bacterial endosymbionts. A Chlamydia-like endosymbiont has previously enhanced Acanthamoeba virulence in vitro. We investigated the potential effect of Acanthamoeba-endosymbiont coinfection in a human corneal tissue model representing clinical amoebic keratitis infection. Methods: Environmental and corneal Acanthamoeba isolates from the American Type Culture Collection were screened for endosymbionts by amplifying and sequencing bacterial 16S as well as Chlamydiales-specific DNA. Each Acanthamoeba isolate was used to infect EpiCorneal cells, a 3-dimensional human corneal tissue model. EpiCorneal cells were then treated with azithromycin, doxycycline, or control medium to determine whether antibiotics targeting common classes of bacterial endosymbionts attenuated Acanthamoeba virulence, as indicated by decreased observed cytopathic effect and inflammatory biomarker production. Results: A novel endosymbiont closely related to Mycobacterium spp. was identified in Acanthamoeba polyphaga 50495. Infection of EpiCorneal cells with Acanthamoeba castellanii 50493 and A. polyphaga 50372 led to increased production of inflammatory cytokines and cytopathic effects visible under microscopy. These increases were attenuated by azithromycin and doxycycline. Conclusions: Our findings suggest that azithromycin and doxycycline may be effective adjuvants to standard antiacanthamoebal chemotherapy by potentially abrogating virulence-enhancing properties of bacterial endosymbionts.


Assuntos
Acanthamoeba/patogenicidade , Azitromicina/farmacologia , Chlamydiaceae/efeitos dos fármacos , Córnea/parasitologia , Doxiciclina/farmacologia , Ceratite/parasitologia , Amebíase/tratamento farmacológico , Biomarcadores/análise , Células Cultivadas , Chlamydiaceae/genética , Córnea/patologia , Citocinas/metabolismo , Humanos , RNA Ribossômico 16S/genética , Simbiose/efeitos dos fármacos , Virulência/efeitos dos fármacos
11.
Acta Vet Hung ; 65(1): 29-40, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28244339

RESUMO

During a general annual fish health survey in natural waters and ponds, epitheliocystis infections were recorded in fingerlings of two cyprinid fish species, the cultured common carp and the wild gibel carp. Benign and heavy infections were equally observed without mortality. In addition to the general health inspection of fish, histopathological examinations of infected gills and molecular biological investigations of separated epitheliocysts were performed. Epitheliocysts were formed both in the interlamellar epithelial cells and in the lamella-free multilayered epithelium of the gill filaments. At the early stage of infection darkstaining inclusion bodies densely stuffed with some pathogenic agents were located at the centre of the cell, while in a progressive stage of the process inclusion bodies within the host cells were disseminated in the cytoplasm and stained pale. Molecular studies demonstrated three different agents related to Neochlamydia, Protochlamydia and Piscichlamydia based on sequence analysis of short regions of the 16S rRNA gene. Among them, Piscichlamydia is a primary fish pathogen, while Neochlamydia and Protochlamydia mostly infect free-living amoebae but have adapted thoroughly to fish.


Assuntos
Carpas , Infecções por Chlamydiaceae/veterinária , Chlamydiaceae/isolamento & purificação , Doenças dos Peixes/microbiologia , Brânquias/microbiologia , Carpa Dourada , Animais , Aquicultura , Infecções por Chlamydiaceae/microbiologia , Células Epiteliais/microbiologia , Brânquias/citologia , Filogenia
12.
Cytometry A ; 89(5): 451-60, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26849001

RESUMO

Chlamydiaceae is a family of intracellular bacteria causing a range of diverse pathological outcomes. The most devastating human diseases are ocular infections with C. trachomatis leading to blindness and genital infections causing pelvic inflammatory disease with long-term sequelae including infertility and chronic pelvic pain. In order to enable the comparison of experiments between laboratories investigating host-chlamydia interactions, the infectious titer has to be determined. Titer determination of chlamydia is most commonly performed via microscopy of host cells infected with a serial dilution of chlamydia. However, other methods including fluorescent ELISpot (Fluorospot) and DNA Chip Scanning Technology have also been proposed to enumerate chlamydia-infected cells. For viruses, flow cytometry has been suggested as a superior alternative to standard titration methods. In this study we compared the use of flow cytometry with microscopy and Fluorospot for the titration of C. suis as a representative of other intracellular bacteria. Titer determination via Fluorospot was unreliable, while titration via microscopy led to a linear read-out range of 16 - 64 dilutions and moderate reproducibility with acceptable standard deviations within and between investigators. In contrast, flow cytometry had a vast linear read-out range of 1,024 dilutions and the lowest standard deviations given a basic training in these methods. In addition, flow cytometry was faster and material costs were lower compared to microscopy. Flow cytometry offers a fast, cheap, precise, and reproducible alternative for the titration of intracellular bacteria like C. suis. © 2016 International Society for Advancement of Cytometry.


Assuntos
Chlamydiaceae/isolamento & purificação , Células Epiteliais/microbiologia , Citometria de Fluxo/métodos , Linhagem Celular , Humanos , Microscopia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
13.
Cell Microbiol ; 17(7): 959-66, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25930206

RESUMO

Chlamydiae and chlamydiae-related organisms are obligate intracellular bacterial pathogens. They reside in a membrane-bound compartment termed the inclusion and have evolved sophisticated mechanisms to interact with cellular organelles. This review focuses on the nature, the function(s) and the consequences of chlamydiae-inclusion interaction with the endoplasmic reticulum (ER). The inclusion membrane establishes very close contact with the ER at specific sites termed ER-inclusion membrane contact sites (MCSs). These MCSs are constituted of a specific set of factors, including the C. trachomatis effector protein IncD and the host cell proteins CERT and VAPA/B. Because CERT and VAPA/B have a demonstrated role in the non-vesicular trafficking of lipids between the ER and the Golgi, it was proposed that Chlamydia establish MCSs with the ER to acquire host lipids. However, the recruitment of additional factors to ER-inclusion MCSs, such as the ER calcium sensor STIM1, may suggest additional functions unrelated to lipid acquisition. Finally, chlamydiae interaction with the ER appears to induce the ER stress response, but this response is quickly dampened by chlamydiae to promote host cell survival.


Assuntos
Chlamydiaceae/crescimento & desenvolvimento , Interações Hospedeiro-Patógeno , Corpos de Inclusão/metabolismo , Corpos de Inclusão/microbiologia , Fagócitos/microbiologia , Fatores de Virulência/metabolismo , Chlamydiaceae/imunologia , Retículo Endoplasmático/metabolismo , Retículo Endoplasmático/microbiologia , Humanos , Modelos Biológicos , Fagócitos/imunologia
14.
Antonie Van Leeuwenhoek ; 109(3): 457-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26809281

RESUMO

Strain DG7B(T) was isolated from a soil sample collected in Seoul, Republic of Korea and was observed to be a gram-negative, short-rod shaped and non-motile bacterium. Its 16S rRNA gene sequence is closely related to those of Hymenobacter terrae DG7A(T) (97.8 % similarity), H. soli PB17(T) (97.5 %), H. glaciei VUG-A130(T) (96.4 %), H. saemangeumensis GSR0100(T) (95.7 %), H. ruber PB156(T) (95.3 %), and H. antarcticus VUG-A42aa(T) (95.3 %). The low levels of DNA-DNA relatedness (<50.3 %) with the above species identified strain DG7B(T) as a novel species in the genus Hymenobacter. The genomic DNA G+C content was determined to be 54.9 %. Growth of strain DG7B(T) was observed at 12-30 °C (optimum at 25 °C) and pH 6.0-11.0 (optimum at pH 7). The cells tolerate <0.5 % NaCl. A UV-visible scan of an ethanol extract of the whole cell pigment showed absorbance peaks at 264.5, 320.0, and 481.5 nm, so the pigment type was determined to be 2'-hydroxyflexixanthin. Chemotaxonomic data showed that strain DG7B(T) possesses menaquinone-7 as the predominant isoprenoid quinone, sym-homospermidine as the major polyamine, phosphatidylethanolamine as the predominant polar lipid and iso-C15:0, anteiso-C15:0 and summed feature 3 (C16:1 ω7c/C16:1 ω7c) as the major fatty acids. Strain DG7B(T) showed low-level resistance to ultraviolet C. Based on the polyphasic analysis, it is concluded that strain DG7B(T) (=KCTC 32553(T) = KEMB 9004-166(T) = JCM 30008(T)) should be classified as the type strain of a novel Hymenobacter species, for which the name Hymenobacter rubidus sp. nov. is proposed.


Assuntos
Chlamydiaceae/classificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , Chlamydiaceae/genética , Chlamydiaceae/isolamento & purificação , Chlamydiaceae/efeitos da radiação , Genoma Bacteriano , Viabilidade Microbiana/efeitos da radiação , Fenótipo , Filogenia , RNA Ribossômico 16S/genética , Tolerância a Radiação/efeitos da radiação , Análise de Sequência de DNA , Raios Ultravioleta
15.
Mol Biol Evol ; 31(11): 2890-904, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25069652

RESUMO

Gene loss, gain, and transfer play an important role in shaping the genomes of all organisms; however, the interplay of these processes in isolated populations, such as in obligate intracellular bacteria, is less understood. Despite a general trend towards genome reduction in these microbes, our phylogenomic analysis of the phylum Chlamydiae revealed that within the family Parachlamydiaceae, gene family expansions have had pronounced effects on gene content. We discovered that the largest gene families within the phylum are the result of rapid gene birth-and-death evolution. These large gene families are comprised of members harboring eukaryotic-like ubiquitination-related domains, such as F-box and BTB-box domains, marking the largest reservoir of these proteins found among bacteria. A heterologous type III secretion system assay suggests that these proteins function as effectors manipulating the host cell. The large disparity in copy number of members in these families between closely related organisms suggests that nonadaptive processes might contribute to the evolution of these gene families. Gene birth-and-death evolution in concert with genomic drift might represent a previously undescribed mechanism by which isolated bacterial populations diversify.


Assuntos
Sistemas de Secreção Bacterianos/genética , Chlamydiaceae/genética , Evolução Molecular , Genoma Bacteriano , Família Multigênica , Ubiquitinação/genética , Chlamydiaceae/classificação , Chlamydiaceae/metabolismo , Dosagem de Genes , Variação Genética , Modelos Genéticos , Filogenia , Estrutura Terciária de Proteína
16.
Proc Biol Sci ; 282(1804): 20150065, 2015 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-25740895

RESUMO

Hosts are expected to incur several physiological costs in defending against parasites. These include constitutive energetic (or other resource) costs of a defence system, facultative resource costs of deploying defences when parasites strike, and immunopathological costs of collateral damage. Here, we investigate the evolution of host recovery rates, varying the source and magnitude of immune costs. In line with previous work, we find that hosts paying facultative resource costs evolve faster recovery rates than hosts paying constitutive costs. However, recovery rate is more sensitive to changes in facultative costs, potentially explaining why constitutive costs are hard to detect empirically. Moreover, we find that immunopathology costs which increase with recovery rate can erode the benefits of defence, promoting chronicity of infection. Immunopathology can also lead to hosts evolving low recovery rate in response to virulent parasites. Furthermore, when immunopathology reduces fecundity as recovery rate increases (e.g. as for T-cell responses to urogenital chlamydiosis), then recovery and reproductive rates do not covary as predicted in eco-immunology. These results suggest that immunopathological and resource costs have qualitatively different effects on host evolution and that embracing the complexity of immune costs may be essential for explaining variability in immune defence in nature.


Assuntos
Evolução Biológica , Interações Hospedeiro-Patógeno , Chlamydiaceae/fisiologia , Infecções por Chlamydiaceae/imunologia , Infecções por Chlamydiaceae/microbiologia , Feminino , Doenças Urogenitais Femininas/imunologia , Doenças Urogenitais Femininas/microbiologia , Humanos , Modelos Biológicos , Reprodução , Linfócitos T/imunologia
17.
Arch Microbiol ; 197(2): 311-8, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25416125

RESUMO

Certain wrasse species (Labridae) are used as cleaner fish in salmon farms on the Norwegian coast, reducing salmon louse intensities. The pathogen repertoire of wrasse in Norway is poorly known, and the objective of the present study is to describe a novel intracellular bacterium detected in Norwegian Labrus bergylta. Histological examination of gill tissues from ballan wrasse, L. bergylta, revealed epitheliocysts occurring basally to the secondary lamellae in the interlamellar epithelium. Ultrastructurally, these had bacteria-filled inclusions with thickened membranes and radiating ray-like structures (actinae). 16S rRNA gene sequences from the gill bacteria showed the highest (97.1 %) similarity to Candidatus Similichlamydia latridicola from the gills of the latrid marine fish Latris lineata in Australia and 94.9 % similarity to Candidatus Actinochlamydia clariae, causing epitheliocystis in the freshwater catfish Clarias gariepinus in Uganda. A total of 47 gill samples from L. bergylta from Western Norway were screened by real time RT-PCR with an assay targeting Candidatus Actinochlamydiaceae 16S rRNA. Prevalence was 100 %. We propose the name Candidatus Similichlamydia labri sp. nov. for this new agent producing gill epitheliocysts in L. bergylta.


Assuntos
Infecções por Chlamydiaceae/veterinária , Chlamydiaceae/classificação , Doenças dos Peixes/microbiologia , Brânquias/microbiologia , Perciformes/microbiologia , Animais , Chlamydiaceae/genética , Chlamydiaceae/isolamento & purificação , Infecções por Chlamydiaceae/epidemiologia , Infecções por Chlamydiaceae/microbiologia , Doenças dos Peixes/epidemiologia , Espaço Intracelular/microbiologia , Noruega/epidemiologia , Prevalência , RNA Ribossômico 16S/genética , Especificidade da Espécie
18.
Crit Rev Microbiol ; 40(4): 313-28, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23134414

RESUMO

Chlamydiales are obligate intracellular parasites of eukaryotic cells. They can be distinguished from other Gram-negative bacteria through their characteristic developmental cycle, in addition to special biochemical and physical adaptations to subvert the eukaryotic host cell. The host spectrum includes humans and other mammals, fish, birds, reptiles, insects and even amoeba, causing a plethora of diseases. The first part of this review focuses on the specific chlamydial infection biology and metabolism. As resistance to classical antibiotics is emerging among Chlamydiae as well, the second part elaborates on specific compounds and tools to block chlamydial virulence traits, such as adhesion and internalization, Type III secretion and modulation of gene expression.


Assuntos
Infecções por Chlamydiaceae/microbiologia , Chlamydiaceae/fisiologia , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Chlamydiaceae/efeitos dos fármacos , Chlamydiaceae/patogenicidade , Infecções por Chlamydiaceae/tratamento farmacológico , Farmacorresistência Bacteriana , Humanos , Virulência/efeitos dos fármacos , Virulência/genética , Fatores de Virulência
19.
Dis Aquat Organ ; 108(1): 71-81, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24492056

RESUMO

Sera from free-ranging Atlantic bottlenose dolphins Tursiops truncatus inhabiting the Indian River Lagoon (IRL), Florida, and coastal waters of Charleston (CHS), South Carolina, USA, were tested for antibodies to Chlamydiaceae as part of a multidisciplinary study of individual and population health. A suite of clinicoimmunopathologic variables was evaluated in Chlamydiaceae-seropositive dolphins (n = 43) and seronegative healthy dolphins (n = 83). Fibrinogen, lactate dehydrogenase, amylase, and absolute numbers of neutrophils, lymphocytes, and basophils were significantly higher, and serum bicarbonate, total alpha globulin, and alpha-2 globulin were significantly lower in dolphins with positive Chlamydiaceae titers compared with seronegative healthy dolphins. Several differences in markers of innate and adaptive immunity were also found. Concanavalin A-induced T lymphocyte proliferation, lipopolysaccharide-induced B lymphocyte proliferation, and granulocytic phagocytosis were significantly lower, and absolute numbers of mature CD 21 B lymphocytes, natural killer cell activity and lysozyme concentration were significantly higher in dolphins with positive Chlamydiaceae antibody titers compared to seronegative healthy dolphins. Additionally, dolphins with positive Chlamydiaceae antibody titers had significant increases in ELISA antibody titers to Erysipelothrix rhusiopathiae. These data suggest that Chlamydiaceae infection may produce subclinical clinicoimmunopathologic perturbations that impact health. Any potential subclinical health impacts are important for the IRL and CHS dolphin populations, as past studies have indicated that both dolphin populations are affected by other complex infectious and neoplastic diseases, often associated with immunologic perturbations and anthropogenic contaminants.


Assuntos
Anticorpos Antibacterianos/sangue , Golfinho Nariz-de-Garrafa , Infecções por Chlamydiaceae/veterinária , Chlamydiaceae/imunologia , Animais , Infecções por Chlamydiaceae/sangue , Infecções por Chlamydiaceae/imunologia , Feminino , Masculino
20.
Vet Microbiol ; 291: 110027, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430716

RESUMO

Chlamydiaceae are a family of obligate intracellular bacterial pathogens that affect both humans and animals. Recently, a new species named Chlamydia (C.) buteonis was isolated from hawks. In this study, we aimed to investigate the prevalence of Chlamydiaceae in 60 falcons that underwent a routine health check at a specialized clinic in Dubai, United Arab Emirates. Using real-time PCR, we analyzed cloacal and tracheal swabs from these birds and found that 39 of them tested positive for Chlamydiaceae. Subsequent real-time PCR assays specific for C. psittaci, C. abortus, C. avium, and C. gallinacea yielded negative results, while testing positive for C. buteonis. Analysis of ompA and MLST sequences indicated a highly conserved group of strains within this set of samples, but with sequences distinct from the C. buteonis RSHA reference strains and other C. buteonis strains isolated from hawks in the United States. Two strains were further isolated by cell culture and sequenced using whole-genome sequencing, confirming the clustering of these falcon strains within the C. buteonis species, but in a separate clade from the previously identified hawk strains. We also developed a SNP-based PCR-HRM assay to distinguish between these different genotypes. Overall, our findings suggest a high prevalence of C. buteonis in falcons in Dubai and highlight the importance of monitoring this pathogen in birds of prey.


Assuntos
Chlamydia , Chlamydiaceae , Falconiformes , Humanos , Animais , Tipagem de Sequências Multilocus/veterinária , Chlamydia/genética , Aves/microbiologia , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA