Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Hum Genomics ; 18(1): 62, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862997

RESUMO

BACKGROUND: Diabetic foot ulcers (DFU) is the most serious complication of diabetes mellitus, which has become a global health problem due to its high morbidity and disability rates and the poor efficacy of conventional treatments. Thus, it is urgent to identify novel molecular targets to improve the prognosis and reduce disability rate in DFU patients. RESULTS: In the present study, bulk RNA-seq and scRNA-seq associated with DFU were downloaded from the GEO database. We identified 1393 DFU-related DEGs by differential analysis and WGCNA analysis together, and GO/KEGG analysis showed that these genes were associated with lysosomal and immune/inflammatory responses. Immediately thereafter, we identified CLU, RABGEF1 and ENPEP as DLGs for DFU using three machine learning algorithms (Randomforest, SVM-RFE and LASSO) and validated their diagnostic performance in a validation cohort independent of this study. Subsequently, we constructed a novel artificial neural network model for molecular diagnosis of DFU based on DLGs, and the diagnostic performance in the training and validation cohorts was sound. In single-cell sequencing, the heterogeneous expression of DLGs also provided favorable evidence for them to be potential diagnostic targets. In addition, the results of immune infiltration analysis showed that the abundance of mainstream immune cells, including B/T cells, was down-regulated in DFUs and significantly correlated with the expression of DLGs. Finally, we found latamoxef, parthenolide, meclofenoxate, and lomustine to be promising anti-DFU drugs by targeting DLGs. CONCLUSIONS: CLU, RABGEF1 and ENPEP can be used as novel lysosomal molecular signatures of DFU, and by targeting them, latamoxef, parthenolide, meclofenoxate and lomustine were identified as promising anti-DFU drugs. The present study provides new perspectives for the diagnosis and treatment of DFU and for improving the prognosis of DFU patients.


Assuntos
Pé Diabético , Lisossomos , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Lisossomos/efeitos dos fármacos , Pé Diabético/genética , Pé Diabético/tratamento farmacológico , Pé Diabético/patologia , RNA-Seq , Análise de Célula Única/métodos , Perfilação da Expressão Gênica , Prognóstico , Masculino , Feminino , Aprendizado de Máquina , Análise da Expressão Gênica de Célula Única
2.
Biochem Biophys Res Commun ; 731: 150388, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39024974

RESUMO

The poor healing characteristics of diabetic foot ulcers are partially attributed to diabetes-induced pro-inflammatory wounds. Our previous study reported that both miR-146a-5p and miR-200b-3p decrease endothelial inflammation in human aortic endothelial cells and db/db diabetic mice. Although miR-146a-5p has been reported to improve diabetic wound healing, the role of miR-200b-3p is not clear. This study compared the roles of these miRNAs in diabetic wound healing. Two 8-mm full-thickness wounds were created in 12-week-old male db/db mice on the left and right back. After surgery, 100 ng miR-146a-5p, miR-200b-3p, or miR-negative control (NC) was injected in each wound. Full-thickness skin samples were harvested from mice at the 14th day for real-time polymerase chain reaction and immunohistochemistry analyses. At the 14th day, the miR-200b-3p group showed better wound healing and greater granulation tissue thickness than the miR-146a-5p group. The miR-200b-3p group showed a significant decrease of IL-6 and IL-1ß gene expression and a significant increase of Col3α1 gene expression compared to those in the miR-NC group. The miR-200b-3p group had the lowest gene expression of TGF-ß1, followed by the miR-146a-5p and miR-NC groups. Our findings suggest that the miR-200b-3p group had better healing characteristics than the other two groups. Immunohistochemical staining revealed that CD68 immunoreactivity was significantly decreased in both the miR-146a-5p and miR-200b-3p groups compared with that in the miR-NC group. In addition, CD31 immunoreactivity was significantly higher in the miR-200b-3p group than in the miR-146a-5p group. In conclusion, these results suggest that miR-200b-3p is more effective than miR-146a-5p in promoting diabetic wound healing through its anti-inflammatory and pro-angiogenic effects.


Assuntos
MicroRNAs , Cicatrização , MicroRNAs/genética , MicroRNAs/metabolismo , Animais , Cicatrização/genética , Masculino , Camundongos , Fator de Crescimento Transformador beta1/metabolismo , Fator de Crescimento Transformador beta1/genética , Pé Diabético/genética , Pé Diabético/metabolismo , Pé Diabético/patologia , Neovascularização Fisiológica/genética , Interleucina-6/metabolismo , Interleucina-6/genética , Antígenos de Diferenciação Mielomonocítica/metabolismo , Antígenos de Diferenciação Mielomonocítica/genética , Interleucina-1beta/metabolismo , Interleucina-1beta/genética , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Antígenos CD/genética , Antígenos CD/metabolismo , Pele/metabolismo , Pele/patologia , Inflamação/genética , Inflamação/patologia , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Molécula CD68
3.
Biochem Biophys Res Commun ; 722: 150149, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-38788355

RESUMO

OBJECTIVE: The objective of this study was to examine the potential of USP7 as a target for senolytic therapy and to investigate the molecular mechanism by which its inhibitor selectively induced apoptosis in senescent HDF and enhanced DFU wound healing. METHODS: Clinical samples of DFU were collected to detect the expression of USP7 and aging-related proteins using immunohistochemistry and Western blot. In addition, ß-galactosidase staining, qPCR, flow cytometry, ROS and MMP kits, and Western blot were used to analyze the biological functions of P5091 on senescence, cycle, and apoptosis. RNAseq was employed to further analyze the molecular mechanism of P5091. Finally, the DFU rat model was established to evaluate the effect of P5091 on wound healing. RESULTS: The expression of USP7 and p21 were increased in DFU clinical samples. After treatment with d-glucose (30 mM, 7 days), ß-galactosidase staining was deepened, proliferation rate decreased. USP7 inhibitors (P5091) could reduce the release of SASP factors, activate the production of ROS, and reduce MMP. In addition, it induced apoptosis and selectively clears senescent cells through the p53 signaling pathway. Finally, P5091 can improve diabetic wound healing in rats. CONCLUSION: This study clarified the molecular mechanism of USP7 inhibitor (P5091) selectively inducing apoptosis of high glucose senescent HDF cells. This provides a new senolytics target and experimental basis for promoting DFU wound healing.


Assuntos
Senescência Celular , Transdução de Sinais , Proteína Supressora de Tumor p53 , Peptidase 7 Específica de Ubiquitina , Cicatrização , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/antagonistas & inibidores , Animais , Cicatrização/efeitos dos fármacos , Proteína Supressora de Tumor p53/metabolismo , Humanos , Senescência Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Ratos , Masculino , Pé Diabético/tratamento farmacológico , Pé Diabético/metabolismo , Pé Diabético/patologia , Apoptose/efeitos dos fármacos , Ratos Sprague-Dawley , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Tiofenos
4.
J Transl Med ; 22(1): 643, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982516

RESUMO

BACKGROUND: Diabetic foot ulcer (DFU) is the most devastating complication of diabetes mellitus (DM) and plays a major role in disability and death in DM patients. NADH: ubiquinone oxidoreductase subunit B5 (NDUFB5) plays an important role in maintaining mitochondrial respiration, but whether it is involved in regulating the progression of advanced glycation end products (AGEs)-mediated DFU is still unclear. METHODS: Firstly, the role of AGEs on cell viability, migration, and mitochondrial respiration in human umbilical vein endothelial cells (HUVECs) was explored in vitro. Next, NDUFB5 expression was detected in human samples and AGEs-treated HUVECs, and NDUFB5's effect on AGEs-induced HUVECs injury and skin wound in diabetic mice was further clarified. In addition, the role of m6A modification mediated by methyltransferase-like 3 (METTL3) in regulating NDUFB5 expression and AGEs-induced HUVECs injury was investigated. RESULTS: NDUFB5 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs, whereas mitochondrial fusion promoter M1 facilitated cell viability, migration, and mitochondrial oxiadative respiration in NDUFB5 knockdown HUVECs. Meanwhile, NDUFB5 promotes skin wound healing in diabetic mice. Besides, METTL3-mediated m6A modification and insulin like growth factor 2 mRNA binding protein 2 (IGF2BP2) enhanced NDUFB5 expression in HUVECs. Furthermore, METTL3 promoted cell viability, migration, and mitochondrial respiration in AGEs-treated HUVECs by increasing NDUFB5. CONCLUSION: METTL3-mediated NDUFB5 m6A modification inhibits AGEs-induced cell injury in HUVECs. METTL3 and NDUFB5 might serve as potential targets for DFU therapy in the future.


Assuntos
Movimento Celular , Pé Diabético , Células Endoteliais da Veia Umbilical Humana , Metiltransferases , Mitocôndrias , Cicatrização , Animais , Humanos , Masculino , Camundongos , Respiração Celular , Sobrevivência Celular , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Pé Diabético/patologia , Pé Diabético/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Metiltransferases/metabolismo , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Complexo I de Transporte de Elétrons/genética , Complexo I de Transporte de Elétrons/metabolismo
5.
Diabet Med ; 41(9): e15388, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38934613

RESUMO

AIM: The objective was to investigate the specific role and the regulatory mechanism of vascular endothelial growth factor (VEGF) during wound healing in diabetic foot ulcer (DFU). METHODS: Streptozotocin-induced diabetic rats were used to establish a DFU animal model. VEGF and Axitinib (a specific inhibitor of VEGFR) were used for treatment in vivo. The wounds at different time points were imaged and histological analysis of the wounds were performed by haematoxylin and eosin (H&E) staining and Masson's trichrome staining. Immunohistochemical staining was conducted to examine CD31 and eNOS expression in the wounds. Immunofluorescence assay and quantitative real-time PCR were performed to examine macrophage markers. In addition, THP-1 was differentiated to macrophages, and then treated with interleukin (IL)-4 to induce M2 macrophages, followed by VEGF treatment. The conditional medium (CM) from VEGF-mediated macrophages were collected to culture human dermal fibroblasts (HDFs). Cell viability and migration were measured by Cell Counting Kit (CCK)-8, wound-healing and Transwell assays, respectively. RESULTS: VEGF treatment remarkably accelerated wound healing of DFU rats. VEGF promoted collagen deposition and elevated CD31 and eNOS expression, confirming the pro-angiogenesis of VEGF around diabetic wound in rats. Meanwhile, VEGF restricted pro-inflammatory cytokines and increased F4/80 and CD206 expression, highlighting the activated macrophages and enhanced M2 macrophages following VEGF treatment in diabetic wounds of DFU rats. However, Axitinib exerted an opposite function to VEGF in DFU rats. Moreover, VEGF directly promoted macrophage polarization toward M2 phenotype in vitro, and the CM from VEGF-mediated M2 macrophages markedly promoted HDFs proliferation, migration and collagen deposition. CONCLUSION: VEGF might accelerate the wound healing of DFU through promoting M2 macrophage polarization and fibroblast migration.


Assuntos
Axitinibe , Diabetes Mellitus Experimental , Pé Diabético , Macrófagos , Fator A de Crescimento do Endotélio Vascular , Cicatrização , Animais , Pé Diabético/metabolismo , Pé Diabético/patologia , Cicatrização/efeitos dos fármacos , Cicatrização/fisiologia , Ratos , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/complicações , Fator A de Crescimento do Endotélio Vascular/metabolismo , Macrófagos/metabolismo , Masculino , Axitinibe/farmacologia , Axitinibe/uso terapêutico , Humanos , Ratos Sprague-Dawley , Ativação de Macrófagos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Indazóis/farmacologia , Indazóis/uso terapêutico
6.
Wound Repair Regen ; 32(4): 464-474, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38656652

RESUMO

Recent evidence has implicated the role of microRNA-146a (miR-146a) in regulating inflammatory responses. In the present study, we investigated the role of miRNA-146a in the progression of diabetic foot ulcer (DFU) in type 2 diabetes mellitus patients (T2DM) and studied its correlation with stress mediators such as Endoplasmic Reticulum (ER) and oxidative stress. Ninety subjects were enrolled and evenly distributed among three groups: Controls (n = 30), T2DM without complications (n = 30) and T2DM with foot ulcers (n = 30). Subsequently, each group was further subdivided based on the University of Texas classification. Peripheral blood was collected from all the study subjects, while tissue biopsies were taken only from DFU patients. Total RNA from both PBMCs and wound tissues were isolated using miRNA isolation kit and qPCR was performed to check the expression of miR-146a, ER stress and oxidative stress markers. Our findings revealed a significant decrease in miR-146a expression among T2DM patients with Grade 2 and Grade 3 DFUs compared with those with Grade 0 and Grade 1 DFUs. Notably, inflammatory genes regulated by miR-146a, including TRAF6, IRAK-1 and ADAM, were all upregulated in T2DM patients with Grade 2 and Grade 3 DFUs. Moreover, reduced miR-146a levels were correlated with increased markers of ER stress and oxidative stress in Grade 2 and Grade 3 DFU patients. Furthermore, our in vitro experiment using mouse 3T3 fibroblasts demonstrated a downregulation of miR-146a following induction of hyperglycaemia, ER stress and oxidative stress in these cells. These findings suggest a potential link between diminished miR-146a expression and heightened oxidative and ER stress in T2DM patients with more severe grades of DFUs. Our results imply that targeting miR-146a may hold therapeutic promise for managing disease progression in DFU patients, as it could help alleviate oxidative and ER stress associated with diabetic complications.


Assuntos
Diabetes Mellitus Tipo 2 , Pé Diabético , Progressão da Doença , Estresse do Retículo Endoplasmático , Inflamação , MicroRNAs , Estresse Oxidativo , Humanos , Pé Diabético/metabolismo , Pé Diabético/patologia , MicroRNAs/metabolismo , MicroRNAs/genética , Masculino , Feminino , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/metabolismo , Pessoa de Meia-Idade , Inflamação/metabolismo , Animais , Camundongos , Idoso
7.
Int J Mol Sci ; 25(15)2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39125958

RESUMO

Diabetic foot ulceration is one of the most common complications in patients treated for diabetes mellitus. The presented pilot study describes the successful treatment of diabetic ulceration of the heel with ongoing osteomyelitis in a 39-year-old patient after using a combination of modified chitosan-based biomaterial in combination with autologous mesenchymal stem cells isolated from bone marrow and dermal fibroblasts. The isolated population of bone marrow mesenchymal stem cells fulfilled all of the attributes given by the International Society for Stem Cell Research, such as fibroblast-like morphology, the high expression of positive surface markers (CD29: 99.1 ± 0.4%; CD44: 99.8 ± 0.2% and CD90: 98.0 ± 0.6%) and the ability to undergo multilineage differentiation. Likewise, the population of dermal fibroblasts showed high positivity for the widely accepted markers collagen I, collagen III and vimentin, which was confirmed by immunocytochemical staining. Moreover, we were able to describe newly formed blood vessels shown by angio CT and almost complete closure of the skin defect after 8 months of the treatment.


Assuntos
Materiais Biocompatíveis , Quitosana , Pé Diabético , Pé Diabético/terapia , Pé Diabético/patologia , Humanos , Quitosana/química , Projetos Piloto , Adulto , Fibroblastos/metabolismo , Fibroblastos/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/citologia , Transplante de Células-Tronco Mesenquimais/métodos , Masculino , Diferenciação Celular/efeitos dos fármacos , Terapia Baseada em Transplante de Células e Tecidos/métodos
8.
Cells ; 13(5)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38474419

RESUMO

Non-healing lesions in diabetic foot ulcers are a significant effect of poor angiogenesis. Epigenetic regulators, mainly lncRNA and miRNA, are recognized for their important roles in disease progression. We deciphered the regulation of lncRNA NEAT1 through the miR-146a-5p/mafG axis in the progression of DFU. A lowered expression of lncRNA NEAT1 was associated with dysregulated angiogenesis through the reduced expression of mafG, SDF-1α, and VEGF in chronic ulcer subjects compared to acute DFU. This was validated by silencing NEAT1 by SiRNA in the endothelial cells which resulted in the transcriptional repression of target genes. Our in silico analysis identified miR-146a-5p as a potential target of lncRNA NEAT1. Further, silencing NEAT1 led to an increase in the levels of miR-146a-5p in chronic DFU subjects. This research presents the role of the lncRNA NEAT1/miR-146a-5p/mafG axis in enhancing angiogenesis in DFU.


Assuntos
Pé Diabético , MicroRNAs , Neovascularização Fisiológica , RNA Longo não Codificante , Humanos , Pé Diabético/patologia , Células Endoteliais/metabolismo , MicroRNAs/genética , RNA Longo não Codificante/genética
9.
Sci Rep ; 14(1): 11588, 2024 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-38773207

RESUMO

Current assessment methods for diabetic foot ulcers (DFUs) lack objectivity and consistency, posing a significant risk to diabetes patients, including the potential for amputations, highlighting the urgent need for improved diagnostic tools and care standards in the field. To address this issue, the objective of this study was to develop and evaluate the Smart Diabetic Foot Ulcer Scoring System, ScoreDFUNet, which incorporates artificial intelligence (AI) and image analysis techniques, aiming to enhance the precision and consistency of diabetic foot ulcer assessment. ScoreDFUNet demonstrates precise categorization of DFU images into "ulcer," "infection," "normal," and "gangrene" areas, achieving a noteworthy accuracy rate of 95.34% on the test set, with elevated levels of precision, recall, and F1 scores. Comparative evaluations with dermatologists affirm that our algorithm consistently surpasses the performance of junior and mid-level dermatologists, closely matching the assessments of senior dermatologists, and rigorous analyses including Bland-Altman plots and significance testing validate the robustness and reliability of our algorithm. This innovative AI system presents a valuable tool for healthcare professionals and can significantly improve the care standards in the field of diabetic foot ulcer assessment.


Assuntos
Algoritmos , Inteligência Artificial , Pé Diabético , Pé Diabético/diagnóstico , Pé Diabético/patologia , Humanos , Reprodutibilidade dos Testes , Processamento de Imagem Assistida por Computador/métodos , Índice de Gravidade de Doença
10.
Wounds ; 36(2): 43-46, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38479430

RESUMO

BACKGROUND: AS is a malignant tumor that originates from vascular endothelial cells and is known for a high rate of local recurrence and metastasis. CASE REPORT: A 48-year-old male presented with cutaneous epithelioid AS. Cutaneous AS of the foot is quite rare, especially in the absence of predisposing factors, and in this patient it was previously misdiagnosed as a DFU. CONCLUSION: Physicians should be aware of this rare presentation of cutaneous AS. The authors of the current report advise regular clinical reassessment of chronic ulcers and biopsies of nonhealing wounds, even when adequate wound treatment has been administered, with the goal of identifying ulcerated skin malignancies and preventing delay in providing appropriate treatment.


Assuntos
Diabetes Mellitus , Pé Diabético , Úlcera do Pé , Hemangiossarcoma , Neoplasias Cutâneas , Masculino , Humanos , Pessoa de Meia-Idade , Pé Diabético/patologia , Hemangiossarcoma/diagnóstico , Células Endoteliais/patologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia , Erros de Diagnóstico , Úlcera do Pé/diagnóstico
11.
Diabetes Res Clin Pract ; 209: 111605, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453058

RESUMO

BACKGROUND: The persistent presence of inflammation is a recognized pathogenic mechanisms of diabetic foot ulcers (DFUs). We aimed to investigate the expression of PLIN1 in tissues from DFU patients and assess its potential association with inflammation-induced damage. METHODS: We performed transcriptome sequencing and correlation analysis of the foot skin from patients with or without DFUs. Additionally, we examined the correlation between PLIN1 and related inflammatory indicators by analyzing PLIN1 expression in tissue and serum samples and through high-glucose stimulation of keratinocytes (HaCaT cells). RESULTS: PLIN1 is upregulated in the tissue and serum from DFU patients. Additionally, PLIN1 shows a positive correlation with leukocytes, neutrophils, monocytes, C-reactive protein, and procalcitonin in the serum, as well as IL-1ß and TNF-α in the tissues. Experiments with Cells demonstrated that reduced expression of PLIN1 leads to significantly decreased expression of iNOS, IL-1ß, IL-6, IL-18, and TNF-α. PLIN1 may mediate wound inflammatory damage through the NF-κB signaling pathway. CONCLUSION: Our findings suggest that PLIN1 mediates the inflammatory damage in DFU, offering new prospects for the treatment of DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/genética , Pé Diabético/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Pele/patologia , Inflamação/metabolismo , Queratinócitos/metabolismo , Diabetes Mellitus/metabolismo , Perilipina-1/metabolismo
12.
Immun Inflamm Dis ; 12(4): e1233, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38577990

RESUMO

OBJECTIVE: To observe the expression of inflammatory factors and autophagy-related proteins in granulation tissue of diabetic foot ulcer (DFU) patients and analyze their relationship with infection. METHODS: This is a retrospective cohort study. One hundred and fifty-two patients with DFU in our hospital from July 2020 to March 2022 were selected as the DFU group, including 98 cases in infection stage group and 54 cases in infection control group. The patients were further graded as the mild (51 cases), the moderate (65 cases), and the severe infection group (36 cases) according to the Wagner grading criteria. Sixty-seven patients with foot burns during the same period were selected as the control group. The distribution of pathogenic bacteria on the ulcer surface was examined using fully automated bacterial analyzer. The expression of inflammatory factors (procalcitonin [PCT], tumor necrosis factor-α [TNF-α], and interleukin-6 [IL-6]) was valued by real-time fluorescence quantitative PCR (qRT-PCR). Protein expression was measured by immunohistochemistry (IHC). The correlation was analyzed by Pearson. RESULTS: The surface infection of DFU patients was mostly induced by gram-negative and gram-positive bacteria, with Pseudomonas aeruginosa predominating among the Gram-negative bacteria and Staphylococcus aureus among the gram-positive bacteria. The infection stage group had higher content of PCT, TNF-α, and IL-6 and lower content of Beclin-1 and LC3 than the infection control group (p < .001). The levels of PCT, TNF-α, and IL-6 in the DFU patients with cardiovascular events were higher than those in the nonoccurrence group (p < .001). Glycated hemoglobin in patients with DFU was positively correlated with PCT, TNF-α, and IL-6 levels (p < .05), and negatively correlated with Beclin-1 and LC3 levels (p < .001). CONCLUSION: P. aeruginosa and S. aureus were predominant bacterial in DFU infections. Inflammatory factor and autophagy protein expression were closely correlated with the degree of infection.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/metabolismo , Pé Diabético/microbiologia , Pé Diabético/patologia , Fator de Necrose Tumoral alfa , Estudos Retrospectivos , Interleucina-6 , Staphylococcus aureus , Proteína Beclina-1/genética , Bactérias , Tecido de Granulação/metabolismo , Tecido de Granulação/patologia , Autofagia
13.
Sci Adv ; 10(26): eadj2020, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38924411

RESUMO

Chronic wounds are a common and costly complication of diabetes, where multifactorial defects contribute to dysregulated skin repair, inflammation, tissue damage, and infection. We previously showed that aspects of the diabetic foot ulcer microbiota were correlated with poor healing outcomes, but many microbial species recovered remain uninvestigated with respect to wound healing. Here, we focused on Alcaligenes faecalis, a Gram-negative bacterium that is frequently recovered from chronic wounds but rarely causes infection. Treatment of diabetic wounds with A. faecalis accelerated healing during early stages. We investigated the underlying mechanisms and found that A. faecalis treatment promotes reepithelialization of diabetic keratinocytes, a process that is necessary for healing but deficient in chronic wounds. Overexpression of matrix metalloproteinases in diabetes contributes to failed epithelialization, and we found that A. faecalis treatment balances this overexpression to allow proper healing. This work uncovers a mechanism of bacterial-driven wound repair and provides a foundation for the development of microbiota-based wound interventions.


Assuntos
Alcaligenes faecalis , Queratinócitos , Metaloproteinases da Matriz , Cicatrização , Alcaligenes faecalis/metabolismo , Animais , Queratinócitos/metabolismo , Queratinócitos/microbiologia , Humanos , Metaloproteinases da Matriz/metabolismo , Metaloproteinases da Matriz/genética , Pé Diabético/microbiologia , Pé Diabético/patologia , Pé Diabético/metabolismo , Camundongos , Reepitelização , Masculino
14.
Int J Immunopathol Pharmacol ; 38: 3946320241265945, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39102374

RESUMO

OBJECTIVES: This study aimed to explore the unique transcriptional feature of fibroblasts subtypes and the role of ferroptosis in diabetic foot ulcers (DFUs). METHODS: The GEO (Gene Expression Omnibus) was searched to obtain the DFUs single-cell and transcriptional datasets. After identifying cell types by classic marker genes, the integrated single-cell dataset was used to run trajectory inference, RNA velocity, and ligand-receptor interaction analysis. Next, bulk RNA-seq datasets of DFUs were analyzed to the key ferroptosis genes. RESULTS: Here, we profile 83529 single transcriptomes from the foot samples utilizing single-cell sequencing (scRNA-seq) data of DFU from GEO database and identified 12 cell types, with fibroblasts exhibiting elevated levels of ferroptosis activity and substantial cellular heterogeneity. Our results defined six main fibroblast subsets that showed mesenchymal, secretory-reticular, secretory-papillary, pro-inflammatory, myogenesis, and healing-enriched functional annotations. Trajectory inference and cell-cell communication analysis revealed two major cell fates with subpopulations of fibroblasts and altered ligand-receptor interactions. Bulk RNA sequencing data identified CGNL1 as a distinctive diagnostic signature in fibroblasts. Notably, CGNL1 positively correlated with pro-inflammatory fibroblasts. CONCLUSIONS: Overall, our analysis delineated the heterogeneity present in cell populations of DFUs, showing distinct fibroblast subtypes characterized by their own unique transcriptional features and enrichment functions. Our study will help us better understand DFUs pathogenesis and identifies CGNL1 as a potential target for DFUs therapies.


Assuntos
Pé Diabético , Fibroblastos , Análise de Sequência de RNA , Análise de Célula Única , Pé Diabético/genética , Pé Diabético/diagnóstico , Pé Diabético/patologia , Humanos , Fibroblastos/metabolismo , Análise de Célula Única/métodos , Análise de Sequência de RNA/métodos , Biomarcadores/metabolismo , Transcriptoma
15.
Methods Mol Biol ; 2849: 173-183, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38376750

RESUMO

Diabetic foot ulcers (DFUs) pose a significant threat to the health and well-being of individuals with diabetes, often leading to lower limb amputations. Fortunately, epidermal stem cell therapy offers hope for improving the treatment of DFUs. By leveraging 3D culture techniques, the scalability of stem cell manufacturing can be greatly enhanced. In particular, using bioactive materials and scaffolds can promote the healing potential of cells, enhance their proliferation, and facilitate their survival. Furthermore, 3D tissue-mimicking cultures can accurately replicate the complex interactions between cells and extracellular matrix, thereby ensuring that the stem cells are primed for therapeutic application. To ensure the safety and quality of these stem cells, it is essential to adhere to good manufacturing practice (GMP) principles during cultivation. This chapter provides a comprehensive overview of the step-by-step process for GMP-based 3D epidermal stem cell cultivation, thus laying the groundwork for developing reliable regenerative medicine therapies.


Assuntos
Pé Diabético , Células-Tronco , Pé Diabético/terapia , Pé Diabético/patologia , Humanos , Células-Tronco/citologia , Células Epidérmicas/citologia , Técnicas de Cultura de Células em Três Dimensões/métodos , Técnicas de Cultura de Células/métodos , Alicerces Teciduais/química , Medicina Regenerativa/métodos , Transplante de Células-Tronco/métodos , Proliferação de Células , Cicatrização , Células Cultivadas , Diferenciação Celular
16.
PLoS One ; 19(7): e0306248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38950058

RESUMO

Diabetic foot ulcers (DFUs) pose a significant challenge in diabetes care. Yet, a comprehensive understanding of the underlying biological disparities between healing and non-healing DFUs remains elusive. We conducted bioinformatics analysis of publicly available transcriptome sequencing data in an attempt to elucidate these differences. Our analysis encompassed differential analysis to unveil shifts in cell composition and gene expression profiles between non-healing and healing DFUs. Cell communication alterations were explored employing the Cellchat R package. Pseudotime analysis and cytoTRACE allowed us to dissect the heterogeneity within fibroblast subpopulations. Our findings unveiled disruptions in various cell types, localized low-grade inflammation, compromised systemic antigen processing and presentation, and extensive extracellular matrix signaling disarray in non-healing DFU patients. Some of these anomalies partially reverted in healing DFUs, particularly within the abnormal ECM-receptor signaling pathway. Furthermore, we distinguished distinct fibroblast subpopulations in non-healing and healing DFUs, each with unique biological functions. Healing-associated fibroblasts exhibited heightened extracellular matrix (ECM) remodeling and a robust wound healing response, while non-healing-associated fibroblasts showed signs of cellular senescence and complement activation, among other characteristics. This analysis offers profound insights into the wound healing microenvironment, identifies pivotal cell types for DFU healing promotion, and reveals potential therapeutic targets for DFU management.


Assuntos
Pé Diabético , Fibroblastos , Análise de Célula Única , Transcriptoma , Cicatrização , Pé Diabético/genética , Pé Diabético/patologia , Pé Diabético/metabolismo , Humanos , Cicatrização/genética , Análise de Célula Única/métodos , Fibroblastos/metabolismo , Fibroblastos/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/genética , Perfilação da Expressão Gênica , Transdução de Sinais/genética
17.
Cell Rep Med ; 5(6): 101588, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38781961

RESUMO

Tibial cortex transverse distraction is a surgical method for treating severe diabetic foot ulcers (DFUs), but the underlying mechanism is unclear. We show that antioxidant proteins and small extracellular vesicles (sEVs) with multiple-tissue regenerative potential are released during bone transport (BT) in humans and rats. These vesicles accumulate in diabetic wounds and are enriched with microRNAs (miRNAs) (e.g., miR-494-3p) that have high regenerative activities that improve the circulation of ischemic lower limbs while also promoting neovascularization, fibroblast migration, and nerve fiber regeneration. Deletion of miR-494-3p in rats reduces the beneficial effects of BT on diabetic wounds, while hydrogels containing miR-494-3p and reduced glutathione (GSH) effectively repair them. Importantly, the ginsenoside Rg1 can upregulate miR-494-3p, and a randomized controlled trial verifies that the regimen of oral Rg1 and GSH accelerates wound healing in refractory DFU patients. These findings identify potential functional factors for tissue regeneration and suggest a potential therapy for DFUs.


Assuntos
Cicatrização , Animais , Cicatrização/efeitos dos fármacos , Humanos , Ratos , Masculino , MicroRNAs/metabolismo , MicroRNAs/genética , Vesículas Extracelulares/metabolismo , Ratos Sprague-Dawley , Pé Diabético/metabolismo , Pé Diabético/patologia , Diabetes Mellitus Experimental/metabolismo , Glutationa/metabolismo , Pessoa de Meia-Idade , Regeneração/efeitos dos fármacos , Feminino , Osso e Ossos/metabolismo
18.
Kaohsiung J Med Sci ; 40(5): 422-434, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38385859

RESUMO

Diabetic foot ulcer (DFU) is a serious complication of diabetic patients which negatively affects their foot health. This study aimed to estimate the role and mechanism of the miR-200 family in DNA damage of diabetic wound healing. Human foreskin fibroblasts (HFF-1 cells) were stimulated with high glucose (HG). Db/db mice were utilized to conduct the DFU in vivo model. Cell viability was evaluated using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide assays. Superoxide dismutase activity was determined using detection kits. Reactive oxygen species determination was conducted via dichlorodihydrofluorescein-diacetate assays. Enzyme-linked immunosorbent assay was used to evaluate 8-oxo-7,8-dihydro-2'deoxyguanosine levels. Genes and protein expression were analyzed by quantitative real-time polymerase chain reaction, western blotting, or immunohistochemical analyses. Luciferase reporter gene and RNA immunoprecipitation assays determined the interaction with miR-200a/b/c-3p and GLI family zinc finger protein 2 (GLI2) or ataxia telangiectasia mutated (ATM) kinase. HG repressed cell proliferation and DNA damage repair, promoted miR-200a/b/c-3p expression, and suppressed ATM and GLI2. MiR-200a/b/c-3p inhibition ameliorated HG-induced cell proliferation and DNA damage repair repression. MiR-200a/b/c-3p targeted ATM. Then, the silenced ATM reversed the miR-200a/b/c-3p inhibition-mediated alleviative effects under HG. Next, GLI2 overexpression alleviated the HG-induced cell proliferation and DNA damage repair inhibition via miR-200a/b/c-3p. MiR-200a/b/c-3p inhibition significantly promoted DNA damage repair and wound healing in DFU mice. GLI2 promoted cell proliferation and DNA damage repair by regulating the miR-200/ATM axis to enhance diabetic wound healing in DFU.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia , Reparo do DNA , Fibroblastos , MicroRNAs , Cicatrização , Animais , Humanos , Camundongos , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proliferação de Células , Pé Diabético/patologia , Pé Diabético/metabolismo , Pé Diabético/genética , Dano ao DNA , Fibroblastos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Pele/patologia , Pele/metabolismo , Cicatrização/genética
19.
J Biophotonics ; 17(7): e202300568, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38651324

RESUMO

We investigate the efficacy of photodynamic antimicrobial chemotherapy (PACT) and its combination with an antibiotic in the treatment of diabetic foot ulcers (DFUs) in rats using a novel cationic amino acid porphyrin-based photosensitizer. The research findings demonstrate that the combination of novel cationic photosensitizer-mediated PACT and an antibiotic exhibits significant therapeutic efficacy in treating deep ulcers in a rat model of DFUs. Moreover, the PACT + Antibiotic group displays enhanced angiogenesis, improved tissue maturation, and superior wound healing effect. Micro-computed tomography examination showed that the periosteal reaction was most obvious in the PACT + Antibiotic group. The cortical bone volume ratio (BV/TV), the bone mineral density, and trabecular thickness were significantly higher in the PACT + Antibiotic group than in the model group (p < 0.05). The combination of PACT and antibiotic plays a sensitizing therapeutic role, which provides a new idea for the clinical treatment of DFUs.


Assuntos
Pé Diabético , Fotoquimioterapia , Fármacos Fotossensibilizantes , Ratos Sprague-Dawley , Cicatrização , Animais , Ratos , Pé Diabético/tratamento farmacológico , Pé Diabético/diagnóstico por imagem , Pé Diabético/patologia , Masculino , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Cicatrização/efeitos dos fármacos , Antibacterianos/farmacologia , Microtomografia por Raio-X
20.
ACS Appl Mater Interfaces ; 16(32): 41927-41938, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39090773

RESUMO

The complex microenvironment of diabetic wounds often hinders the healing process, ultimately leading to the formation of diabetic foot ulcers and even death. Dual monitoring and treatment of wounds can significantly reduce the incidence of such cases. Herein, a multifunctional Janus membrane (3D chitosan sponge-ZE/polycaprolactone nanofibers-ZP) was developed by incorporating the zinc metal-organic framework, europium metal-organic framework, and phenol red into nanofibers for diabetic wound monitoring and treatment. The directional water transport capacity of the resulting Janus membrane allows for unidirectional and irreversible drainage of wound exudate, and the multifunctional Janus membrane creates up to a 99% antibacterial environment, both of which can treat wounds. Moreover, the pH (5-8) and H2O2 (0.00-0.80 µM) levels of the wound can be monitored using the color-changing property of phenol red and the fluorescence characteristic of Eu-MOF on the obtained membrane, respectively. The healing stages of the wound can also be monitored by analyzing the RGB values of the targeted membrane images. This design can more accurately reflect the wound state and treat the wound to reduce bacterial infection and accelerate wound healing, which has been demonstrated in in vivo experiments. The results provide an important basis for early intervention in diabetic patients.


Assuntos
Antibacterianos , Estruturas Metalorgânicas , Nanofibras , Cicatrização , Cicatrização/efeitos dos fármacos , Animais , Nanofibras/química , Nanofibras/uso terapêutico , Estruturas Metalorgânicas/química , Estruturas Metalorgânicas/farmacologia , Antibacterianos/química , Antibacterianos/farmacologia , Poliésteres/química , Quitosana/química , Zinco/química , Fenolsulfonaftaleína/química , Európio/química , Camundongos , Humanos , Membranas Artificiais , Peróxido de Hidrogênio/química , Diabetes Mellitus Experimental/tratamento farmacológico , Pé Diabético/tratamento farmacológico , Pé Diabético/patologia , Staphylococcus aureus/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA