Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
1.
Mol Cell ; 81(3): 418-420, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33545056

RESUMO

Transcription factors (TFs) are frequently altered in human diseases. Identifying the direct and immediate target genes of TFs is critical to understanding their role in pathophysiology. Stengel et al. (2020) applied chemogenetic and nascent transcriptome mapping technologies to define the core gene set regulated by AML1-ETO-an oncogenic TF fusion protein frequently found in acute myeloid leukemia (AML).


Assuntos
Socorristas , Leucemia Mieloide Aguda , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética
2.
Mol Cell ; 81(3): 530-545.e5, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33382982

RESUMO

Transcription factors regulate gene networks controlling normal hematopoiesis and are frequently deregulated in acute myeloid leukemia (AML). Critical to our understanding of the mechanism of cellular transformation by oncogenic transcription factors is the ability to define their direct gene targets. However, gene network cascades can change within minutes to hours, making it difficult to distinguish direct from secondary or compensatory transcriptional changes by traditional methodologies. To overcome this limitation, we devised cell models in which the AML1-ETO protein could be quickly degraded upon addition of a small molecule. The rapid kinetics of AML1-ETO removal, when combined with analysis of transcriptional output by nascent transcript analysis and genome-wide AML1-ETO binding by CUT&RUN, enabled the identification of direct gene targets that constitute a core AML1-ETO regulatory network. Moreover, derepression of this gene network was associated with RUNX1 DNA binding and triggered a transcription cascade ultimately resulting in myeloid differentiation.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/metabolismo , RNA Neoplásico/biossíntese , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Transcrição Gênica , Acetilação , Sítios de Ligação , Ligação Competitiva , Diferenciação Celular , Linhagem Celular Tumoral , Proliferação de Células , Autorrenovação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Sangue Fetal/citologia , Regulação Leucêmica da Expressão Gênica , Redes Reguladoras de Genes , Células HEK293 , Células-Tronco Hematopoéticas/patologia , Histonas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/genética , Ligação Proteica , Proteólise , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , RNA Neoplásico/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo , Transcriptoma
3.
Blood ; 139(7): 1080-1097, 2022 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-34695195

RESUMO

In an effort to identify novel drugs targeting fusion-oncogene-induced acute myeloid leukemia (AML), we performed high-resolution proteomic analysis. In AML1-ETO (AE)-driven AML, we uncovered a deregulation of phospholipase C (PLC) signaling. We identified PLCgamma 1 (PLCG1) as a specific target of the AE fusion protein that is induced after AE binding to intergenic regulatory DNA elements. Genetic inactivation of PLCG1 in murine and human AML inhibited AML1-ETO dependent self-renewal programs, leukemic proliferation, and leukemia maintenance in vivo. In contrast, PLCG1 was dispensable for normal hematopoietic stem and progenitor cell function. These findings are extended to and confirmed by pharmacologic perturbation of Ca++-signaling in AML1-ETO AML cells, indicating that the PLCG1 pathway poses an important therapeutic target for AML1-ETO+ leukemic stem cells.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação Leucêmica da Expressão Gênica , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Células-Tronco Neoplásicas/patologia , Proteínas de Fusão Oncogênica/metabolismo , Fosfolipase C gama/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Animais , Autorrenovação Celular , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Camundongos , Células-Tronco Neoplásicas/metabolismo , Proteínas de Fusão Oncogênica/genética , Fosfolipase C gama/genética , Proteoma , Proteína 1 Parceira de Translocação de RUNX1/genética , Transcriptoma , Translocação Genética
4.
Hematol Oncol ; 42(2): e3264, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38461410

RESUMO

In addition to RUNX1::RUNX1T1 transcript levels, measurable residual disease monitoring using KIT mutant (KITmut ) DNA level is reportedly predictive of relapse in t (8; 21) acute myeloid leukemia (AML). However, the usefulness of KITmut transcript levels remains unknown. A total of 202 bone marrow samples collected at diagnosis and during treatment from 52 t (8; 21) AML patients with KITmut (D816V/H/Y or N822K) were tested for KITmut transcript levels using digital polymerase chain reaction. The individual optimal cutoff values of KITmut were identified by performing receiver operating characteristics curve analysis for relapse at each of the following time points: at diagnosis, after achieving complete remission (CR), and after Course 1 and 2 consolidations. The cutoff values were used to divide the patients into the KITmut -high (KIT_H) group and the KITmut -low (KIT_L) group. The KIT_H patients showed significantly lower relapse-free survival (RFS) and overall survival (OS) rates than the KIT_L patients after Course 1 consolidation (p = 0.0040 and 0.021, respectively) and Course 2 consolidation (p = 0.018 and 0.011, respectively) but not at diagnosis and CR. The <3-log reduction in the RUNX1::RUNX1T1 transcript levels after Course 2 consolidation was an independent adverse prognostic factor for RFS and OS. After Course 2 consolidation, the KIT_H patients with >3-log reduction in the RUNX1::RUNX1T1 transcript levels (11/45; 24.4%) had similar RFS as that of patients with <3-log reduction in the RUNX1::RUNX1T1 transcript levels. The combination of KITmut and RUNX1::RUNX1T1 transcript levels after Course 2 consolidation may improve risk stratification in t (8; 21) AML patient with KIT mutation.


Assuntos
Leucemia Mieloide Aguda , Proteínas Proto-Oncogênicas c-kit , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/terapia , Neoplasia Residual/genética , Resposta Patológica Completa , Prognóstico , Recidiva , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética , Proteínas Proto-Oncogênicas c-kit/genética
5.
Pediatr Blood Cancer ; 71(2): e30791, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38014874

RESUMO

BACKGROUND: Pediatric core binding factor acute myeloid leukemia (CBF-AML), although considered a favorable risk subtype, exhibits variable outcomes primarily driven by additional genetic abnormalities, such as KIT mutations. PROCEDURE: In this study, we examined the prognostic impact of KIT mutations in 130 pediatric patients with CBF-AML, treated uniformly at a single center over 4 years (2017-2021). KIT mutations were detected via next-generation sequencing using a myeloid panel comprising 52 genes for most patients. RESULTS: Our findings revealed that KIT mutations were present in 31% of CBF-AML cases. Exon 17 KIT mutation was most commonly (72%) seen with notable occurrences at the D816 and N822 residue in 48% and 39% of cases, respectively. The 3-year cumulative incidence of relapse (CIR) and overall survival (OS) for patients with exon 17 KIT mutation were 36% and 40%, respectively, and was significantly worse in comparison to other site KIT mutations (3-year CIR: 11%; OS: 64%) and without KIT mutation (3-year CIR: 13%; OS:71%). Notably, the prognostic impact of KIT mutations was prominent in patients with RUNX1::RUNX1T1, but not in those with CBFB::MYH11 fusion. Additionally, a high KIT variant-allele frequency (VAF) (>33%) predicted for a higher disease relapse; 3-year CIR of 40% for VAF greater than 33% versus 7% for VAF less than 33%. When adjusted for site of KIT mutation and end-of-induction measurable residual disease, VAF greater than 33% correlated with poor OS (hazard ratio [HR]: 4.4 [95% CI: 1.2-17.2], p = .034). CONCLUSION: Exon 17 KIT mutations serve as an important predictor of relapse in RUNX1::RUNX1T1 pediatric AML. In addition, a high KIT VAF may predict poor outcomes in these patients. These results emphasize the need to incorporate KIT mutational analysis into risk stratification for pediatric CBF-AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Leucemia Mieloide Aguda , Humanos , Criança , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteínas Proto-Oncogênicas c-kit/genética , Leucemia Mieloide Aguda/terapia , Mutação , Prognóstico , Éxons/genética , Recidiva , Proteína 1 Parceira de Translocação de RUNX1/genética
6.
Acta Pharmacol Sin ; 45(3): 633-645, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38017299

RESUMO

Understanding the molecular pathogenesis of acute myeloid leukemia (AML) with well-defined genomic abnormalities has facilitated the development of targeted therapeutics. Patients with t(8;21) AML frequently harbor a fusion gene RUNX1-RUNX1T1 and KIT mutations as "secondary hit", making the disease one of the ideal models for exploring targeted treatment options in AML. In this study we investigated the combination therapy of agents targeting RUNX1-RUNX1T1 and KIT in the treatment of t(8;21) AML with KIT mutations. We showed that the combination of eriocalyxin B (EriB) and homoharringtonine (HHT) exerted synergistic therapeutic effects by dual inhibition of RUNX1-RUNX1T1 and KIT proteins in Kasumi-1 and SKNO-1 cells in vitro. In Kasumi-1 cells, the combination of EriB and HHT could perturb the RUNX1-RUNX1T1-responsible transcriptional network by destabilizing RUNX1-RUNX1T1 transcription factor complex (AETFC), forcing RUNX1-RUNX1T1 leaving from the chromatin, triggering cell cycle arrest and apoptosis. Meanwhile, EriB combined with HHT activated JNK signaling, resulting in the eventual degradation of RUNX1-RUNX1T1 by caspase-3. In addition, HHT and EriB inhibited NF-κB pathway through blocking p65 nuclear translocation in two different manners, to synergistically interfere with the transcription of KIT. In mice co-expressing RUNX1-RUNX1T1 and KITN822K, co-administration of EriB and HHT significantly prolonged survival of the mice by targeting CD34+CD38- leukemic cells. The synergistic effects of the two drugs were also observed in bone marrow mononuclear cells (BMMCs) of t(8;21) AML patients. Collectively, this study reveals the synergistic mechanism of the combination regimen of EriB and HHT in t(8;21) AML, providing new insight into optimizing targeted treatment of AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core , Diterpenos , Leucemia Mieloide Aguda , Humanos , Animais , Camundongos , Mepesuccinato de Omacetaxina/farmacologia , Mepesuccinato de Omacetaxina/uso terapêutico , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/uso terapêutico , Translocação Genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética
7.
Clin Lab ; 70(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38469780

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) with t(8;21)(q22;q22.1); RUNX1::RUNX1T1 has a relatively favorable prognosis with a high complete remission rate and long disease-free survival. METHODS AND RESULTS: Here we describe a patient who had AML with t(8;21)(q22;q22.1); RUNX1::RUNX1T1. Cooperating mutations including KRAS and ASXL1, and with other abnormal karyotype del(17) and with a myelomonocytic differentiation. CONCLUSIONS: The patient relapsed despite achieving a morphologic complete remission (CR).


Assuntos
Leucemia Mieloide Aguda , Translocação Genética , Humanos , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Leucemia Mieloide Aguda/genética , Mutação
8.
Blood ; 138(15): 1331-1344, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-33971010

RESUMO

The mechanism underlying cell type-specific gene induction conferred by ubiquitous transcription factors as well as disruptions caused by their chimeric derivatives in leukemia is not well understood. Here, we investigate whether RNAs coordinate with transcription factors to drive myeloid gene transcription. In an integrated genome-wide approach surveying for gene loci exhibiting concurrent RNA and DNA interactions with the broadly expressed Runt-related transcription factor 1 (RUNX1), we identified the long noncoding RNA (lncRNA) originating from the upstream regulatory element of PU.1 (LOUP). This myeloid-specific and polyadenylated lncRNA induces myeloid differentiation and inhibits cell growth, acting as a transcriptional inducer of the myeloid master regulator PU.1. Mechanistically, LOUP recruits RUNX1 to both the PU.1 enhancer and the promoter, leading to the formation of an active chromatin loop. In t(8;21) acute myeloid leukemia (AML), wherein RUNX1 is fused to ETO, the resulting oncogenic fusion protein, RUNX1-ETO, limits chromatin accessibility at the LOUP locus, causing inhibition of LOUP and PU.1 expression. These findings highlight the important role of the interplay between cell-type-specific RNAs and transcription factors, as well as their oncogenic derivatives in modulating lineage-gene activation and raise the possibility that RNA regulators of transcription factors represent alternative targets for therapeutic development.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , RNA Longo não Codificante/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Linhagem Celular Tumoral , Regulação Leucêmica da Expressão Gênica , Humanos , Ativação Transcricional
9.
Blood ; 138(15): 1345-1358, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34010414

RESUMO

The blood system serves as a key model for cell differentiation and cancer. It is orchestrated by precise spatiotemporal expression of crucial transcription factors. One of the key master regulators in the hematopoietic systems is PU.1. Reduced levels of PU.1 are characteristic for human acute myeloid leukemia (AML) and are known to induce AML in mouse models. Here, we show that transcriptional downregulation of PU.1 is an active process involving an alternative promoter in intron 3 that is induced by RUNX transcription factors driving noncoding antisense transcription. Core-binding factor (CBF) fusions RUNX1-ETO and CBFß-MYH11 in t(8;21) and inv(16) AML, respectively, activate the PU.1 antisense promoter that results in a shift from sense toward antisense transcription and myeloid differentiation blockade. In patients with CBF-AML, we found that an elevated antisense/sense transcript and promoter accessibility ratio represents a hallmark compared with normal karyotype AML or healthy CD34+ cells. Competitive interaction of an enhancer with the proximal or the antisense promoter forms a binary on/off switch for either myeloid or T-cell development. Leukemic CBF fusions thus use a physiological mechanism used by T cells to decrease sense transcription. Our study is the first example of a sense/antisense promoter competition as a crucial functional switch for gene expression perturbation by oncogenes. Hence, this disease mechanism reveals a previously unknown Achilles heel for future precise therapeutic targeting of oncogene-induced chromatin remodeling.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade beta de Fator de Ligação ao Core/genética , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/genética , Proteínas Proto-Oncogênicas/genética , Transativadores/genética , Elementos Antissenso (Genética)/genética , Linhagem Celular Tumoral , Fusão Gênica , Humanos , Proteínas de Fusão Oncogênica/genética , Regiões Promotoras Genéticas , Proteína 1 Parceira de Translocação de RUNX1/genética , Células Tumorais Cultivadas
10.
FASEB J ; 36(10): e22562, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36125067

RESUMO

Oncoprotein AML1-ETO (AE) derived from t(8;21)(q22;q22) translocation is typically present in a portion of French-American-British-M2 subtype of acute myeloid leukemia (AML). Although these patients have relatively favorable prognoses, substantial numbers of them would relapse after conventional therapy. Here, we explored whether reinforcing the endogenous differentiation potential of t(8;21) AML cells would diminish the associated malignancy. In doing so, we noticed an expansion of immature erythroid blasts featured in both AML1-ETO9a (AE9a) and AE plus c-KIT (N822K) (AK) murine leukemic models. Interestingly, in the AE9a murine model, a spontaneous step-wise erythroid differentiation path, as characterized by the differential expression of CD43/c-Kit and the upregulation of several key erythroid transcription factors (TFs), accompanied the decline or loss of leukemia-initiating potential. Notably, overexpression of one of the key erythroid TFs, Ldb1, potently disrupted the repopulation of AE9a leukemic cells in vivo, suggesting a new promising intervention strategy of t(8;21) AML through enforcing their erythroid differentiation.


Assuntos
Leucemia Mieloide Aguda , Proteínas de Fusão Oncogênica , Animais , Cromossomos Humanos Par 21 , Cromossomos Humanos Par 8 , Proteínas de Ligação a DNA/metabolismo , Humanos , Proteínas com Domínio LIM , Proteínas com Homeodomínio LIM , Leucemia Mieloide Aguda/metabolismo , Camundongos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética
11.
Clin Lab ; 69(2)2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36787564

RESUMO

BACKGROUND: The aim was to improve the understanding of an AML1/ETO positive child with acute myeloid leukemia with poor prognosis. METHODS: A case of AML1/ETO positive child with acute myeloid leukemia with poor prognosis was reported. The bone marrow cell morphology, multi-parameter flow cytometry, cytogenetic or molecular genetic test results were analyzed by reviewing relevant literature. RESULTS: The patient was a young girl with clinical manifestations of respiratory tract infection. Bone marrow smears showed that myeloid primordial cells accounted for 13%, some granulocyte cell bodies are enlarged, visible pathological phenomena such as cytoplasmic vacuoles, binuclear grains, ring rods, and pseudo pelgerhuet malformations were seen (Figure 1). Flow cytometry: abnormal myeloid original cells (12.33%), expression of CD34 and HLA - DR, CD38, CD56, part of the expression of CD117, weak expression of CD13, CD33, MPO, CD19, cCD79a (Figure 2). Chromosome karyotype analysis showed that the chromosome karyotype of peripheral blood was 46, XX, t(8;21)(q22;q22). The quantitative detection result of AML1/ETO fusion gene was 42.15%, and mutations of NRAS, ASXL2, TP53 and TET2 genes were detected by second-generation sequencing. Combined with the above results, AML1/ETO positive with acute myeloid leukemia was diagnosed. CONCLUSIONS: Cytogenetics or molecular genetics is the gold standard for identification of positive AML1/ETO fusion gene. Morphological heterogeneity of AML1/ETO positive AML cells is large, which limits the morphological diagnosis of bone marrow cells to a certain extent, and the comprehensive diagnostic efficiency is significantly better than that of morphology. Leukemia fusion gene AML1/ETO refers to the fusion of AML1 gene located on human chromosome 21q22 and ETO gene 8q22, which is the most common fusion gene in acute myeloid leukemia (AML). This paper reports a case of an AML1/ETO positive child with acute myeloid leukemia with poor prognosis admitted to our hospital and reviews relevant literature.


Assuntos
Leucemia Mieloide Aguda , Feminino , Humanos , Criança , Proteína 1 Parceira de Translocação de RUNX1/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Antígenos HLA-DR , Mutação , Proteínas de Fusão Oncogênica/genética , Prognóstico , Cromossomos Humanos Par 8/metabolismo
12.
Clin Lab ; 69(4)2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057942

RESUMO

BACKGROUND: The aim of the study was to improve the understanding of complex karyotype acute mixed cell leukemia containing pseudo Chediak-Higashi granules. METHODS: A case of acute mixed cell leukemia resembling AML1-ETO positive acute myeloid leukemia was reported. The results of morphological, immunophenotypic, and cytogenetic tests were analyzed by reviewing relevant literature. RESULTS: The patient was a young boy with clinical manifestations of recurrent fever. Bone marrow smear: Granulocyte system hyperplasia is obvious, visible at each stage, primitive cells account for 12%. These cells are large in volume, mostly round or class round, with abundant cell mass, stained gray blue, unbalanced development of some nuclear plasma, abnormal cytoplasmic staining, and visible "sunrise red" -like changes. Typical Auer bodies, pseudo Chadiak-Higashi granules and phagocytic erythroid substances were observed. The nuclei are irregular in shape, distorted and depressed, with fine chromatin and prominent large nucleoli. Bone marrow was extracted 3 days later, the bone marrow smear showed 65% primitive cells. The morphology of primitive cells was similar to that of 3 days ago. The results of flow cytometry showed that the primary/naive T cells in the samples possessed nuclear cells. Flow cytometry showed two groups of abnormal cells. One group accounted for 3.87% of nuclear cells and was a primitive/naive T-cell phenotype, mainly expressing: CD34+, CD7+, CD5+, CD2dim+, MPO-, CCD3 + part, CD3-, CD4-, CD8 -, CD117 -, CD13-, CD33-, HLA - DR -, CD10-, CD11b-, CD56-. The other group which accounted for 79.8% of the nuclear cells was monocyte phenotype, mainly expressing: CD34-, CD117-, CD13+ small amount, CD33+, HLA-DR-, CD11b+, CD14+, CD15+, CD36+, CD56+, CD64+, CD4+, CD85J+, CD85K + part. It matched the immunophenotype of acute mixed cell leukemia (T/MMPAL). Immunophenotypic leukemia-related fusion genes were negative, and karyotype analysis results were 45, XY, T (11; 12)(p13; Q13), -12-17, + mar [12]/90 < n > 4, idem x 2 [6]/46, XY. Combined with the above results, acute mixed cell leukemia was diagnosed. CONCLUSIONS: The flow cytometry is the gold standard in the diagnosis of acute mixed cell leukemia. The diagnosis of acute mixed cell leukemia requires the combination of clinical manifestations, cellular morphology, immunology, cytogenetics and molecular biology, and the comprehensive diagnosis efficiency is obviously better than that of morphology.


Assuntos
Leucemia Aguda Bifenotípica , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Antígenos HLA-DR/análise , Medula Óssea/química , Fenótipo , Imunofenotipagem , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteínas de Fusão Oncogênica/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética
13.
Clin Lab ; 69(5)2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37145071

RESUMO

BACKGROUND: The goal was to study the role of the morphology, immunophenotype, karyotype and fusion gene expression in a patient with diagnosis of AML1-ETO positive acute myeloid leukemia. METHODS: A case of AML1-ETO positive acute myeloid leukemia morphologically similar to chronic myelogenous leukemia was reported. The results of the morphology, immunophenotype, karyotype and fusion gene expression were analyzed by reviewing relevant literature. RESULTS: The patient was a young boy, at the age of 13, with clinical manifestations of intermittent fatigue and fever. Blood routine: White blood cell 142.6 x 109/L, Red blood cell 0.89 x 1012/L, Hemoglobin 41 g/L, Platelet 23 x 109/L, primitive cells account for 5%. Bone marrow smear: Granulocyte system hyperplasia is obvious, visible at each stage, primitive cells account for 17%, eosinophils, basophils, and phagocytic blood cells were observed. Flow cytometry showed myeloid primitive cell population was 4.14%, immature and mature granulocytes cell population was 85.22%, and eosinophil cell population was 0.61%. The results showed that the proportion of myeloid primitive cell was high, the expression of CD34 was enhanced, the expression of CD117 was partially absent, the expression of CD38 was weakened, the expression of CD19 was weak, and a few cells expressed CD56, and the phenotype was abnormal. The proportion of granulocyte series increased and the nucleus shifted to the left. The proportion of erythroid series was decreased, and the expression of CD71 was weakened. The results of fusion gene showed AML1-ETO positive. Karyotype analysis showed clonogenic abnormality t(8;21)(q22;q22). CONCLUSIONS: The peripheral blood and bone marrow images of patients with t(8;21)(q22;q22) AML1-ETO positive are the manifestations of chronic myelogenous leukemia, suggesting that cytogenetics and molecular genetics play an irreplaceable role in the diagnosis of acute myeloid leukemia, and the comprehensive diagnostic efficiency is significantly better than that of morphology.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , Leucemia Mieloide Aguda , Humanos , Proteína 1 Parceira de Translocação de RUNX1/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Medula Óssea/metabolismo , Doença Crônica , Proteínas de Fusão Oncogênica/genética , Cromossomos Humanos Par 8/genética , Cromossomos Humanos Par 8/metabolismo
14.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613512

RESUMO

The AML1-ETO (RUNX1-RUNX1T1) fusion gene created by the chromosome translocation t(8;21) (q21;q22) is one of the essential contributors to leukemogenesis. Only a few studies in the literature have focused on fusion gene-derived circular RNAs (f-circRNAs). Here, we report several AML1-ETO-related fusion circular RNAs (F-CircAEs) in AML1-ETO-positive cell lines and primary patient blasts. Functional studies demonstrate that the over-expression of F-CircAE in NIH3T3 cells promotes cell proliferation in vitro and in vivo. F-CircAE expression enhances the colony formation ability of c-Kit+ hematopoietic stem and progenitor cells (HSPCs). Meanwhile, the knockdown of endogenous F-CircAEs can inhibit the proliferation and colony formation ability of AML1-ETO-positive Kasumi-1 cells. Intriguingly, bioinformatic analysis revealed that the glycolysis pathway is down-regulated in F-CircAE-knockdown Kasumi-1 cells and up-regulated in F-CircAE over-expressed NIH3T3 cells. Further studies show that F-CircAE binds to the glycolytic protein ENO-1, up-regulates the expression level of glycolytic enzymes, and enhances lactate production. In summary, our study demonstrates that F-CircAE may exert biological activities on the growth of AML1-ETO leukemia cells by regulating the glycolysis pathway. Determining the role of F-CircAEs in AML1-ETO leukemia can lead to great strides in understanding its pathogenesis, thus providing new diagnostic markers and therapeutic targets.


Assuntos
Leucemia Mieloide Aguda , RNA Circular , Camundongos , Animais , Humanos , RNA Circular/genética , Células NIH 3T3 , Proteína 1 Parceira de Translocação de RUNX1/genética , Leucemia Mieloide Aguda/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Proliferação de Células/genética , Proteínas de Fusão Oncogênica/metabolismo , Cromossomos Humanos Par 21/metabolismo , Translocação Genética
15.
Rinsho Ketsueki ; 63(2): 104-107, 2022.
Artigo em Japonês | MEDLINE | ID: mdl-35264498

RESUMO

Variants of the t (8;21) (q22;q22) involving chromosome 8, 21, and other chromosomes account for about 3% of all t (8;21) (q22;q22) in patients with acute myeloid leukemia (AML). However, the prognosis of AML with variant t (8;21) remains unknown due to the scarcity of reported cases. Herein we report a case of AML with t (6;21;8) (p23;q22;q22). Fluorescence in situ hybridization confirmed a RUNX1-RUNX1T1 fusion signal on the derivative chromosome 8. This is the first report on a variant of t (8;21) involving the breakpoint 6p23. After induction chemotherapy, our patient achieved complete remission and has been stable for four years.


Assuntos
Cromossomos Humanos Par 8 , Leucemia Mieloide Aguda , Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Humanos , Hibridização in Situ Fluorescente , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Translocação Genética
16.
J Biol Chem ; 295(13): 4212-4223, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32071087

RESUMO

In up to 15% of acute myeloid leukemias (AMLs), a recurring chromosomal translocation, termed t(8;21), generates the AML1-eight-twenty-one (ETO) leukemia fusion protein, which contains the DNA-binding domain of Runt-related transcription factor 1 (RUNX1) and almost all of ETO. RUNX1 and the AML1-ETO fusion protein are coexpressed in t(8;21) AML cells and antagonize each other's gene-regulatory functions. AML1-ETO represses transcription of RUNX1 target genes by competitively displacing RUNX1 and recruiting corepressors such as histone deacetylase 3 (HDAC3). Recent studies have shown that AML1-ETO and RUNX1 co-occupy the binding sites of AML1-ETO-activated genes. How this joined binding allows RUNX1 to antagonize AML1-ETO-mediated transcriptional activation is unclear. Here we show that RUNX1 functions as a bona fide repressor of transcription activated by AML1-ETO. Mechanistically, we show that RUNX1 is a component of the HDAC3 corepressor complex and that HDAC3 preferentially binds to RUNX1 rather than to AML1-ETO in t(8;21) AML cells. Studying the regulation of interleukin-8 (IL8), a newly identified AML1-ETO-activated gene, we demonstrate that RUNX1 and HDAC3 collaboratively repress AML1-ETO-dependent transcription, a finding further supported by results of genome-wide analyses of AML1-ETO-activated genes. These and other results from the genome-wide studies also have important implications for the mechanistic understanding of gene-specific coactivator and corepressor functions across the AML1-ETO/RUNX1 cistrome.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Histona Desacetilases/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genoma Humano/genética , Humanos , Interleucina-8/genética , Leucemia Mieloide Aguda/patologia , Regiões Promotoras Genéticas , Ativação Transcricional/genética , Translocação Genética/genética
17.
J Cell Biochem ; 122(11): 1737-1748, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34369622

RESUMO

RUNX1T1 has been found to be mutated in different cancers such as prostate, lung, colon, and breast cancer. A recent computational study involving the TCGA database of glioma patients found RUNX1T1 as one of the downregulated driver genes associated with poor overall survival of glioma patients. Hypoxia-inducible factor 1α (HIF1α) is upregulated in glioma and has been associated with the severity and drug resistance of glioma. Previously, we have shown that RUNX1T3 degrades HIF1α affecting the proliferation of leukemia cells. We hypothesize that RUNX1T1 might be associated with the growth and development of glioma through the regulation of HIF1α. We have evaluated the expression level of RUNX1T1 at different stages of glioma and the effect of RUNX1T1 on the proliferation and invasiveness of glioblastoma cells in vitro. We further looked at the effect of RUNX1T1 on the expression and stability of HIF1α in vitro. Expression of RUNX1T1 was significantly downregulated, both at RNA and protein levels in glioma samples as studied by quantitative real-time polymerase chain reaction and immunohistochemistry. While expression of HIF1α was higher in glioma tissues compared with its level in the normal brain. In vitro studies demonstrated that RUNX1T1 interacted with HIF1α and recruited HIF1α modification factor such as PHD2 and GSK3ß causing hydroxylation of HIF1α following ubiquitination by FBW7. RUNX1T1 led to the degradation of HIF1α and decreased proliferation/invasiveness of glioblastoma cell lines. Further, RUNX1T1 increased the effectiveness of temozolomide (TMZ), a conventional glioma drug toward glioblastoma cell lines. This study indicates that downregulation of RUNX1T1 might play an important role in the severity and development of glioma.


Assuntos
Neoplasias Encefálicas/patologia , Glioma/patologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Glioblastoma/genética , Glioblastoma/patologia , Glioma/tratamento farmacológico , Glioma/genética , Humanos , Hidroxilação , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Pessoa de Meia-Idade , Estabilidade Proteica , Proteína 1 Parceira de Translocação de RUNX1/metabolismo , Temozolomida/farmacologia
18.
Br J Haematol ; 194(2): 414-422, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34120331

RESUMO

KIT D816V mutation within exon 17 has been particularly reported as one of the poor prognostic factors in pediatric acute myeloid leukemia (AML) with RUNX1-RUNX1T1. The exact frequency and the prognostic impact of KIT D816V minor clones at diagnosis were not examined. In this study, the minor clones were examined and the prognostic significance of KIT D816V mutation in pediatric patients was investigated. Consequently, 24 KIT D816V mutations (7.2%) in 335 pediatric patients were identified, and 12 of 24 were only detected via the digital droplet polymerase chain reaction method. All 12 patients were confined in core binding factor (CBF)-AML patients. The 5 year event-free survival of the patients with KIT D816V mutation was significantly inferior to those without KIT D816V mutation (44.1% [95% confidence interval (CI), 16.0%-69.4%] vs. 74.7% [95% CI, 63.0%-83.2%] P-value = 0.02, respectively). The 5 year overall survival was not different between the two groups (92.9% [95% CI, 59.0%-NA vs. 89.7% [95% CI, 69.6%-96.8%] P-value = 0.607, respectively). In this study, KIT D816V minor clones in patients with CBF-AML were confirmed and KIT D816V was considered as a risk factor for relapse in patients with RUNX1-RUNX1T1-positive AML.


Assuntos
Subunidade alfa 2 de Fator de Ligação ao Core/genética , Leucemia Mieloide Aguda/genética , Proteínas de Fusão Oncogênica/genética , Proteínas Proto-Oncogênicas c-kit/genética , Proteína 1 Parceira de Translocação de RUNX1/genética , Adolescente , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Leucemia Mieloide Aguda/epidemiologia , Masculino , Mutação Puntual , Reação em Cadeia da Polimerase , Análise de Sobrevida
19.
Blood ; 134(19): 1608-1618, 2019 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-31554635

RESUMO

We performed serial measurable residual disease (MRD) monitoring in bone marrow (BM) and peripheral blood (PB) samples of 155 intensively treated patients with RUNX1-RUNX1T1+ AML, using a qRT-PC-based assay with a sensitivity of up to 10-6. We assessed both reduction of RUNX1-RUNX1T1 transcript levels (TLs) and achievement of MRD negativity (MRD-) for impact on prognosis. Achievement of MR2.5 (>2.5 log reduction) after treatment cycle 1 and achievement of MR3.0 after treatment cycle 2 were significantly associated with a reduced risk of relapse (P = .034 and P = .028, respectively). After completion of therapy, achievement of MRD- in both BM and PB was an independent, favorable prognostic factor in cumulative incidence of relapse (4-year cumulative incidence relapse: BM, 17% vs 36%, P = .021; PB, 23% vs 55%, P = .001) and overall survival (4-year overall survival rate BM, 93% vs 70%, P = .007; PB, 87% vs 47%, P < .0001). Finally, during follow-up, serial qRT-PCR analyses allowed prediction of relapse in 77% of patients exceeding a cutoff value of 150 RUNX1-RUNX1T1 TLs in BM, and in 84% of patients exceeding a value of 50 RUNX1-RUNX1T1 TLs in PB. The KIT mutation was a significant factor predicting a lower CR rate and inferior outcome, but its prognostic impact was outweighed by RUNX1-RUNX1T1 TLs during treatment. Virtually all relapses occurred within 1 year after the end of treatment, with a very short latency from molecular to morphologic relapse, necessitating MRD assessment at short intervals during this time period. Based on our data, we propose a refined practical guideline for MRD assessment in RUNX1-RUNX1T1+ AML.


Assuntos
Leucemia Mieloide Aguda/diagnóstico , Neoplasia Residual/diagnóstico , Proteínas de Fusão Oncogênica/análise , Adolescente , Adulto , Idoso , Subunidade alfa 2 de Fator de Ligação ao Core/análise , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Feminino , Humanos , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Neoplasia Residual/genética , Proteínas de Fusão Oncogênica/genética , Prognóstico , Proteína 1 Parceira de Translocação de RUNX1/análise , Proteína 1 Parceira de Translocação de RUNX1/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Translocação Genética , Adulto Jovem
20.
Toxicol Appl Pharmacol ; 417: 115459, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609515

RESUMO

Heat Shock Protein 90 (Hsp90) is frequently upregulated in many cancers, and its inhibition simultaneously blocks multiple signaling pathways, resulting in cell differentiation or apoptosis. However, the complexity of Hsp90 in differentiation and its relation with apoptosis have remained unsettled. In this study, we demonstrated that HDN-1, a C-terminal inhibitor of Hsp90, induced the differentiation of HL-60 cells toward apoptosis. HDN-1 induced the differentiation of cells containing mutant AML1-ETO into mature granulocytes, which was related to its selective effect on client proteins of Hsp90. HDN-1 destabilized AML1-ETO and preserved C/EBPß at the same time, thereby induced a total increase in C/EBPß levels because of AML1-ETO negative regulation to C/EBPß expression. Neither HDN-1 nor 17-AAG (an N-terminal inhibitor of Hsp90) led to the differentiation of NB4 cells because mutant PML-RARα was not affected as a client protein of Hsp90; thus, no additional expression of C/EBPß was induced. 17-AAG did not affect the differentiation of HL-60 cells due to decreased AML1-ETO and C/EBPß levels. These results indicate that HDN-1 drives cell differentiation toward apoptosis depending on its selective influence on client proteins of Hsp90, establishing the relationship between differentiation and apoptosis and uncovering the mechanism of HDN-1 in promyelocytic leukemia cell differentiation. Moreover, HDN-1 is very promising for the development of anticancer agents with the induction of differentiation.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Dicetopiperazinas/farmacologia , Dissulfetos/farmacologia , Granulócitos/efeitos dos fármacos , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Leucemia Promielocítica Aguda/tratamento farmacológico , Benzoquinonas/farmacologia , Proteína beta Intensificadora de Ligação a CCAAT/genética , Proteína beta Intensificadora de Ligação a CCAAT/metabolismo , Linhagem da Célula , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Regulação Leucêmica da Expressão Gênica , Granulócitos/metabolismo , Granulócitos/patologia , Células HL-60 , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Humanos , Lactamas Macrocíclicas/farmacologia , Leucemia Promielocítica Aguda/genética , Leucemia Promielocítica Aguda/metabolismo , Leucemia Promielocítica Aguda/patologia , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA