Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 324
Filtrar
1.
Mol Cell ; 81(5): 1027-1042.e4, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33453166

RESUMO

Alternative lengthening of telomeres (ALT) is mediated by break-induced replication (BIR), but how BIR is regulated at telomeres is poorly understood. Here, we show that telomeric BIR is a self-perpetuating process. By tethering PML-IV to telomeres, we induced telomere clustering in ALT-associated PML bodies (APBs) and a POLD3-dependent ATR response at telomeres, showing that BIR generates replication stress. Ablation of BLM helicase activity in APBs abolishes telomere synthesis but causes multiple chromosome bridges between telomeres, revealing a function of BLM in processing inter-telomere BIR intermediates. Interestingly, the accumulation of BLM in APBs requires its own helicase activity and POLD3, suggesting that BIR triggers a feedforward loop to further recruit BLM. Enhancing BIR induces PIAS4-mediated TRF2 SUMOylation, and PIAS4 loss deprives APBs of repair proteins and compromises ALT telomere synthesis. Thus, a BLM-driven and PIAS4-mediated feedforward loop operates in APBs to perpetuate BIR, providing a critical mechanism to extend ALT telomeres.


Assuntos
Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Retroalimentação Fisiológica , Proteínas de Ligação a Poli-ADP-Ribose/genética , Proteínas Inibidoras de STAT Ativados/genética , RNA Helicases/genética , Homeostase do Telômero , Telômero/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , DNA Polimerase III/genética , DNA Polimerase III/metabolismo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/antagonistas & inibidores , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Corpos de Inclusão Intranuclear/genética , Corpos de Inclusão Intranuclear/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/antagonistas & inibidores , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/metabolismo , RNA Helicases/antagonistas & inibidores , RNA Helicases/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteína Rad52 de Recombinação e Reparo de DNA/genética , Proteína Rad52 de Recombinação e Reparo de DNA/metabolismo , RecQ Helicases/genética , RecQ Helicases/metabolismo , Transdução de Sinais , Sumoilação , Telômero/metabolismo , Proteína 2 de Ligação a Repetições Teloméricas/genética
2.
Mol Cell ; 77(3): 556-570.e6, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31901446

RESUMO

Regulation of transcription is the main mechanism responsible for precise control of gene expression. Whereas the majority of transcriptional regulation is mediated by DNA-binding transcription factors that bind to regulatory gene regions, an elegant alternative strategy employs small RNA guides, Piwi-interacting RNAs (piRNAs) to identify targets of transcriptional repression. Here, we show that in Drosophila the small ubiquitin-like protein SUMO and the SUMO E3 ligase Su(var)2-10 are required for piRNA-guided deposition of repressive chromatin marks and transcriptional silencing of piRNA targets. Su(var)2-10 links the piRNA-guided target recognition complex to the silencing effector by binding the piRNA/Piwi complex and inducing SUMO-dependent recruitment of the SetDB1/Wde histone methyltransferase effector. We propose that in Drosophila, the nuclear piRNA pathway has co-opted a conserved mechanism of SUMO-dependent recruitment of the SetDB1/Wde chromatin modifier to confer repression of genomic parasites.


Assuntos
Proteínas de Drosophila/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , RNA Interferente Pequeno/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Proteínas Argonautas/metabolismo , Núcleo Celular/metabolismo , Cromatina/genética , Cromatina/metabolismo , Elementos de DNA Transponíveis , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Regulação da Expressão Gênica/genética , Inativação Gênica/fisiologia , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/genética , RNA Interferente Pequeno/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Transcrição Gênica/genética
3.
Mol Cell ; 77(3): 571-585.e4, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-31901448

RESUMO

Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila, deposition of most of the H3K9me3 mark depends on SUMO and the SUMO ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation, ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway, providing a negative feedback mechanism to ensure chromatin homeostasis.


Assuntos
Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Animais , Proteínas Cromossômicas não Histona/metabolismo , Metilação de DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Eucromatina/metabolismo , Retroalimentação Fisiológica , Expressão Gênica/genética , Inativação Gênica/fisiologia , Heterocromatina/genética , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/genética , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/genética , Histonas/metabolismo , Ligases/genética , Metiltransferases/genética , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Repressoras/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
4.
PLoS Pathog ; 20(5): e1012058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768227

RESUMO

Viral disruption of innate immune signaling is a critical determinant of productive infection. The Human Cytomegalovirus (HCMV) UL26 protein prevents anti-viral gene expression during infection, yet the mechanisms involved are unclear. We used TurboID-driven proximity proteomics to identify putative UL26 interacting proteins during infection to address this issue. We find that UL26 forms a complex with several immuno-regulatory proteins, including several STAT family members and various PIAS proteins, a family of E3 SUMO ligases. Our results indicate that UL26 prevents STAT phosphorylation during infection and antagonizes transcriptional activation induced by either interferon α (IFNA) or tumor necrosis factor α (TNFα). Additionally, we find that the inactivation of PIAS1 sensitizes cells to inflammatory stimulation, resulting in an anti-viral transcriptional environment similar to ΔUL26 infection. Further, PIAS1 is important for HCMV cell-to-cell spread, which depends on the presence of UL26, suggesting that the UL26-PIAS1 interaction is vital for modulating intrinsic anti-viral defense.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Proteínas Inibidoras de STAT Ativados , Proteínas Virais , Humanos , Citomegalovirus/imunologia , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Regulação Viral da Expressão Gênica , Imunidade Inata
5.
Nat Immunol ; 14(5): 461-9, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23525087

RESUMO

Inflammation is essential for host defense but can cause tissue damage and organ failure if unchecked. How the inflammation is resolved remains elusive. Here we report that the transcription factor Miz1 was required for terminating lipopolysaccharide (LPS)-induced inflammation. Genetic disruption of the Miz1 POZ domain, which is essential for the transactivation or repression activity of Miz1, resulted in hyperinflammation, lung injury and greater mortality in LPS-treated mice but a lower bacterial load and mortality in mice with Pseudomonas aeruginosa pneumonia. Loss of the Miz1 POZ domain prolonged the expression of proinflammatory cytokines. After stimulation, Miz1 was phosphorylated at Ser178, which was required for recruitment of the histone deacetylase HDAC1 to repress transcription of the gene encoding C/EBP-δ, an amplifier of inflammation. Our data provide a long-sought mechanism underlying the resolution of LPS-induced inflammation.


Assuntos
Lesão Pulmonar Aguda/imunologia , Proteína delta de Ligação ao Facilitador CCAAT/metabolismo , Proteínas Nucleares/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Infecções por Pseudomonas/imunologia , Pseudomonas aeruginosa/imunologia , Lesão Pulmonar Aguda/genética , Animais , Citocinas/metabolismo , Repressão Enzimática/genética , Histona Desacetilase 1/metabolismo , Tolerância Imunológica , Inflamação/genética , Mediadores da Inflamação/metabolismo , Lipopolissacarídeos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Mutagênese Sítio-Dirigida , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Fosforilação , Proteínas Inibidoras de STAT Ativados/genética , Infecções por Pseudomonas/genética , Proteínas Repressoras/genética , Ativação Transcricional/genética , Ubiquitina-Proteína Ligases
6.
FASEB J ; 38(1): e23362, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38102979

RESUMO

Endothelial dysfunction (ED) is commonly considered a crucial initiating step in the pathogenesis of numerous cardiovascular diseases. The coupling of endothelial nitric oxide synthase (eNOS) is important in maintaining normal endothelial functions. However, it still remains elusive whether and how eNOS SUMOylation affects the eNOS coupling. In the study, we investigate the roles and possible action mechanisms of protein inhibitor of activated STAT 1 (PIAS1) in ED. Human umbilical vein endothelial cells (HUVECs) treated with palmitate acid (PA) in vitro and ApoE-/- mice fed with high-fat diet (HFD) in vivo were constructed as the ED models. Our in vivo data show that PIAS1 alleviates the dysfunction of vascular endothelium by increasing nitric oxide (NO) level, reducing malondialdehyde (MDA) level, and activating the phosphatidylinositol 3-kinase-protein kinase B-endothelial nitric oxide synthase (PI3K-AKT-eNOS) signaling in ApoE-/- mice. Our in vitro data also show that PIAS1 can SUMOylate eNOS under endogenous conditions; moreover, it antagonizes the eNOS uncoupling induced by PA. The findings demonstrate that PIAS1 alleviates the dysfunction of vascular endothelium by promoting the SUMOylation and inhibiting the uncoupling of eNOS, suggesting that PIAS1 would become an early predictor of atherosclerosis and a new potential target of the hyperlipidemia-related cardiovascular diseases.


Assuntos
Homeostase , Animais , Humanos , Camundongos , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Doenças Cardiovasculares/metabolismo , Endotélio Vascular/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação
7.
Cell Mol Life Sci ; 81(1): 119, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38456949

RESUMO

Activated small ubiquitin-like modifiers (SUMOs) have been implicated in neuropathological processes following ischemic stroke. However, the target proteins of SUMOylation and their contribution to neuronal injury remain to be elucidated. MLK3 (mixed-lineage kinase 3), a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family, is a critical regulator of neuronal lesions following cerebral ischemia. Here, we found that SUMOylation of MLK3 increases in both global and focal ischemic rodent models and primary neuronal models of oxygen and glucose deprivation (OGD). SUMO1 conjugation at the Lys401 site of MLK3 promoted its activation, stimulated its downstream p38/c-Jun N-terminal kinase (JNK) cascades, and led to cell apoptosis. The interaction of MLK3 with PIAS3, a SUMO ligase, was elevated following ischemia and reperfusion. The PINIT domain of PIAS3 was involved in direct interactions with MLK3. Overexpression of the PINIT domain of PIAS3 disrupted the MLK3-PIAS3 interaction, inhibited SUMOylation of MLK3, suppressed downstream signaling, and reduced cell apoptosis and neurite damage. In rodent ischemic models, the overexpression of the PINIT domain reduced brain lesions and alleviated deficits in learning, memory, and sensorimotor functions. Our findings demonstrate that brain ischemia-induced MLK3 SUMOylation by PIAS3 is a potential target against poststroke neuronal lesions and behavioral impairments.


Assuntos
Isquemia Encefálica , Sumoilação , Humanos , MAP Quinase Quinase Quinases/genética , MAP Quinase Quinase Quinase 11 Ativada por Mitógeno , Transdução de Sinais/fisiologia , Isquemia Encefálica/metabolismo , Cognição , Chaperonas Moleculares/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(27): e2116896119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35771942

RESUMO

Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.


Assuntos
Evolução Molecular , Magnaporthe , Proteínas NLR , Oryza , Doenças das Plantas , Proteínas de Plantas , Receptores Imunológicos , Ligação Genética , Interações Hospedeiro-Patógeno/imunologia , Magnaporthe/genética , Magnaporthe/patogenicidade , Proteínas NLR/genética , Proteínas NLR/imunologia , Oryza/imunologia , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/imunologia , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/imunologia , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia
9.
Mol Cancer ; 23(1): 207, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39334380

RESUMO

BACKGROUND: The clinical response rate to immune checkpoint blockade (ICB) therapy in melanoma remains low, despite its widespread use. Circular non-coding RNAs (circRNAs) are known to play a crucial role in cancer progression and may be a key factor limiting the effectiveness of ICB treatment. METHODS: The circRNAs that were downregulated after coadministration compared with single administration of PD-1 inhibitor administration were identified through RNA-seq and Ribo-seq, and thus the circPIAS1 (mmu_circ_0015773 in mouse, has_circ_0008378 in human) with high protein coding potential was revealed. Fluorescence in situ hybridization (FISH) assays were conducted to determine the localization of circPIAS1 in human and mouse melanoma cells, as well as its presence in tumor and adjacent tissues of patients. Validation through dual-luciferase reporter assay and LC-MS/MS confirmed the ability of circPIAS1 to encode a novel 108 amino acid polypeptide (circPIAS1-108aa). Specific antisense oligonucleotides (ASOs) targeting the junction site of circPIAS1 were developed to reduce its intracellular levels. Proliferation changes in melanoma cells were assessed using CCK8, EdU, and colony formation assays. The impact of circPIAS1-108aa on the ferroptosis process of melanoma cells was studied through GSH, MDA, and C11-BODIPY staining assays. Western Blot, Immunoprecipitation (IP), and Immunoprecipitation-Mass Spectrometry (IP-MS) techniques were employed to investigate the impact of circPIAS1-108aa on the P-STAT1/SLC7A11/GPX4 signaling pathway, as well as its influence on the balance between STAT1 SUMOylation and phosphorylation. Additionally, a melanoma subcutaneous transplanted tumor mouse model was utilized to examine the combined effect of reducing circPIAS1 levels alongside PD-1 inhibitor. RESULTS: Compared with the group treated with PD-1 inhibitor alone, circPIAS1 was significantly down-regulated in the coadministration group and demonstrated higher protein coding potential. CircPIAS1, primarily localized in the nucleus, was notably upregulated in tumor tissues compared to adjacent tissues, where it plays a crucial role in promoting cancer cell proliferation. This circRNA can encode a unique polypeptide consisting of 108 amino acids, through which it exerts its cancer-promoting function and impedes the effectiveness of ICB therapy. Mechanistically, circPIAS1-108aa hinders STAT1 phosphorylation by recruiting SUMO E3 ligase Ranbp2 to enhance STAT1 SUMOylation, thereby reactivating the transduction of the SLC7A11/GPX4 signaling pathway and restricting the immunogenic ferroptosis induced by IFNγ. Furthermore, the combination of ASO-circPIAS1 with PD-1 inhibitor effectively inhibits melanoma growth and significantly enhances the efficacy of immune drugs in vivo. CONCLUSIONS: Our study uncovers a novel mechanism regarding immune evasion in melanoma driven by a unique 108aa peptide encoded by circPIAS1 in melanoma that dramatically hinders immunogenic ferroptosis triggered by ICB therapy via modulating the balance between SUMOylation and phosphorylation of STAT1. This work reveals circPIAS1-108aa as a critical factor limiting the immunotherapeutic effects in melanoma and propose a promising strategy for improving ICB treatment outcomes.


Assuntos
Ferroptose , Proteínas Inibidoras de STAT Ativados , RNA Circular , Fator de Transcrição STAT1 , Sumoilação , Ferroptose/genética , Humanos , Animais , Camundongos , RNA Circular/genética , Fosforilação , Fator de Transcrição STAT1/metabolismo , Linhagem Celular Tumoral , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Melanoma/metabolismo , Melanoma/genética , Melanoma/patologia , Melanoma/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica , Proliferação de Células , Feminino
10.
PLoS Pathog ; 18(4): e1010446, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35377920

RESUMO

Host defense systems employ posttranslational modifications to protect against invading pathogens. Here, we found that protein inhibitor of activated STAT 1 (PIAS1) interacts with the nucleoprotein (NP), polymerase basic protein 1 (PB1), and polymerase basic protein 2 (PB2) of influenza A virus (IAV). Lentiviral-mediated stable overexpression of PIAS1 dramatically suppressed the replication of IAV, whereas siRNA knockdown or CRISPR/Cas9 knockout of PIAS1 expression significantly increased virus growth. The expression of PIAS1 was significantly induced upon IAV infection in both cell culture and mice, and PIAS1 was involved in the overall increase in cellular SUMOylation induced by IAV infection. We found that PIAS1 inhibited the activity of the viral RNP complex, whereas the C351S or W372A mutant of PIAS1, which lacks the SUMO E3 ligase activity, lost the ability to suppress the activity of the viral RNP complex. Notably, the SUMO E3 ligase activity of PIAS1 catalyzed robust SUMOylation of PB2, but had no role in PB1 SUMOylation and a minimal role in NP SUMOylation. Moreover, PIAS1-mediated SUMOylation remarkably reduced the stability of IAV PB2. When tested in vivo, we found that the downregulation of Pias1 expression in mice enhanced the growth and virulence of IAV. Together, our findings define PIAS1 as a restriction factor for the replication and pathogenesis of IAV.


Assuntos
Vírus da Influenza A , Proteínas Inibidoras de STAT Ativados , Sumoilação , Replicação Viral , Animais , Vírus da Influenza A/patogenicidade , Vírus da Influenza A/fisiologia , Camundongos , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Virulência
11.
Cell Commun Signal ; 22(1): 422, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39223673

RESUMO

Post-translational SUMOylation of nuclear and cytosolic proteins maintains homeostasis in eukaryotic cells and orchestrates programmed responses to changes in metabolic demand or extracellular stimuli. In excitable cells, SUMOylation tunes the biophysical properties and trafficking of ion channels. Ion channel SUMOylation status is determined by the opposing enzyme activities of SUMO ligases and deconjugases. Phosphorylation also plays a permissive role in SUMOylation. SUMO deconjugases have been identified for several ion channels, but their corresponding E3 ligases remain unknown. This study shows PIAS3, a.k.a. KChAP, is a bona fide SUMO E3 ligase for Kv4.2 and HCN2 channels in HEK cells, and endogenous Kv4.2 and Kv4.3 channels in cardiomyocytes. PIAS3-mediated SUMOylation at Kv4.2-K579 increases channel surface expression through a rab11a-dependent recycling mechanism. PKA phosphorylation at Kv4.2-S552 reduces the current mediated by Kv4 channels in HEK293 cells, cardiomyocytes, and neurons. This study shows PKA mediated phosphorylation blocks Kv4.2-K579 SUMOylation in HEK cells and cardiomyocytes. Together, these data identify PIAS3 as a key downstream mediator in signaling cascades that control ion channel surface expression.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , Miócitos Cardíacos , Proteínas Inibidoras de STAT Ativados , Canais de Potássio Shal , Sumoilação , Humanos , Células HEK293 , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Animais , Miócitos Cardíacos/metabolismo , Canais de Potássio Shal/metabolismo , Canais de Potássio Shal/genética , Fosforilação , Chaperonas Moleculares/metabolismo , Chaperonas Moleculares/genética
12.
Cell Mol Biol Lett ; 29(1): 122, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39266996

RESUMO

BACKGROUND: Zinc finger MIZ-type containing 2 (ZMIZ2) can function as a coactivator and participate in the progression of certain malignant tumors; however, its expression and underlying molecular mechanism in non-small-cell lung cancer (NSCLC) remains unknown. In this study, we aim to analyze the expression of ZMIZ2 and its tumorigenic function in NSCLC, identifying its related factors. METHODS: ZMIZ2 expression in NSCLC tissue samples and cell lines was examined using immunohistochemistry and western blotting; its biological role was investigated using in vivo and in vitro assays. The association between ZMIZ2 and NAD-dependent protein deacetylase sirtuin-1 (SIRT1) was demonstrated using mass spectrometry and immunoprecipitation experiments. Kyoto Encyclopedia of Genes and Genomes Pathway (KEGG)-based enrichment analysis, luciferase reporter assay, and real-time quantitative polymerase chain reaction (RT-qPCR) were conducted to verify the impact of ZMIZ2-SIRT1 combination on Hippo/Wnt pathways. RESULTS: ZMIZ2 was highly expressed in NSCLC and positively associated with advanced pTNM staging, lymph node metastasis, and poor overall survival. Functional experiments revealed that ZMIZ2 promotes the proliferation, migration, and invasiveness of lung cancer cells-establishing its role as a promoter of oncogenes. Molecular mechanism studies identified SIRT1 as an assisted key factor interacting with ZMIZ2. KEGG enrichment analysis revealed that ZMIZ2 is closely related to Wnt/Hippo pathways; ZMIZ2-SIRT1 interaction enhanced SIRT1 deacetylase activity. Direct downregulation of intranuclear ß-catenin and yes-associated protein (YAP) acetylation levels occurred independently of upstream proteins in Wnt/Hippo pathways; transcriptional activities of ß-catenin-transcription factor 4 (TCF4) and YAP-TEA domain family transcription factors (TEADs) were amplified. CONCLUSIONS: ZMIZ2 promotes the malignant phenotype of lung cancer by regulating Wnt/Hippo pathways through SIRT1, providing an experimental basis for discovering novel biomarkers and developing tumor-targeted drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Via de Sinalização Hippo , Neoplasias Pulmonares , Proteínas Inibidoras de STAT Ativados , Proteínas Serina-Treonina Quinases , Sirtuína 1 , Via de Sinalização Wnt , Animais , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Células A549 , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos Nus , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Sirtuína 1/metabolismo , Sirtuína 1/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Via de Sinalização Wnt/genética , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo
13.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-33468657

RESUMO

DNA damage repair genes are modifiers of disease onset in Huntington's disease (HD), but how this process intersects with associated disease pathways remains unclear. Here we evaluated the mechanistic contributions of protein inhibitor of activated STAT-1 (PIAS1) in HD mice and HD patient-derived induced pluripotent stem cells (iPSCs) and find a link between PIAS1 and DNA damage repair pathways. We show that PIAS1 is a component of the transcription-coupled repair complex, that includes the DNA damage end processing enzyme polynucleotide kinase-phosphatase (PNKP), and that PIAS1 is a SUMO E3 ligase for PNKP. Pias1 knockdown (KD) in HD mice had a normalizing effect on HD transcriptional dysregulation associated with synaptic function and disease-associated transcriptional coexpression modules enriched for DNA damage repair mechanisms as did reduction of PIAS1 in HD iPSC-derived neurons. KD also restored mutant HTT-perturbed enzymatic activity of PNKP and modulated genomic integrity of several transcriptionally normalized genes. The findings here now link SUMO modifying machinery to DNA damage repair responses and transcriptional modulation in neurodegenerative disease.


Assuntos
Enzimas Reparadoras do DNA/genética , Reparo do DNA , DNA/genética , Proteína Huntingtina/genética , Doença de Huntington/genética , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Proteínas Inibidoras de STAT Ativados/genética , Processamento de Proteína Pós-Traducional , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Animais , Diferenciação Celular , DNA/metabolismo , Dano ao DNA , Enzimas Reparadoras do DNA/metabolismo , Modelos Animais de Doenças , Feminino , Humanos , Proteína Huntingtina/metabolismo , Doença de Huntington/metabolismo , Doença de Huntington/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células-Tronco Pluripotentes/metabolismo , Células-Tronco Pluripotentes/patologia , Cultura Primária de Células , Proteínas Inibidoras de STAT Ativados/antagonistas & inibidores , Proteínas Inibidoras de STAT Ativados/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/antagonistas & inibidores , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Transcrição Gênica
14.
J Biol Chem ; 298(5): 101840, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35307349

RESUMO

Posttranslational addition of a small ubiquitin-like modifier (SUMO) moiety (SUMOylation) has been implicated in pathologies such as brain ischemia, diabetic peripheral neuropathy, and neurodegeneration. However, nuclear enrichment of SUMO pathway proteins has made it difficult to ascertain how ion channels, proteins that are typically localized to and function at the plasma membrane, and mitochondria are SUMOylated. Here, we report that the trophic factor, brain-derived neurotrophic factor (BDNF) regulates SUMO proteins both spatially and temporally in neurons. We show that BDNF signaling via the receptor tropomyosin-related kinase B facilitates nuclear exodus of SUMO proteins and subsequent enrichment within dendrites. Of the various SUMO E3 ligases, we found that PIAS-3 dendrite enrichment in response to BDNF signaling specifically modulates subsequent ERK1/2 kinase pathway signaling. In addition, we found the PIAS-3 RING and Ser/Thr domains, albeit in opposing manners, functionally inhibit GABA-mediated inhibition. Finally, using oxygen-glucose deprivation as an in vitro model for ischemia, we show that BDNF-tropomyosin-related kinase B signaling negatively impairs clustering of the main scaffolding protein at GABAergic postsynapse, gephyrin, whereby reducing GABAergic neurotransmission postischemia. SUMOylation-defective gephyrin K148R/K724R mutant transgene expression reversed these ischemia-induced changes in gephyrin cluster density. Taken together, these data suggest that BDNF signaling facilitates the temporal relocation of nuclear-enriched SUMO proteins to dendrites to influence postsynaptic protein SUMOylation.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Ubiquitina-Proteína Ligases , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Proteínas de Membrana , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Sumoilação , Tropomiosina/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinas/metabolismo
15.
Lab Invest ; 103(1): 100011, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36748193

RESUMO

SUMOylation, one of the most important posttranslational modifications of proteins, plays an essential role in various biological processes; however, enzymes that control SUMOylation in hepatocellular carcinoma (HCC) are still unclear. Comprehensive exploration of the expression and clinical significance of SUMO enzymes in HCC would be of great value. Here, we obtained the gene expression profile of each small ubiquitin-like modifier (SUMO) protein and the corresponding clinical information from The Cancer Genome Atlas. We found that all SUMO enzymes were significantly increased in HCC tissues compared with that in adjacent nontumorous tissues. We identified a 6-gene prognostic signature, including SAE1, PIAS2, PIAS3, SENP3, SENP5, and UBC9, that could effectively predict the overall survival in patients with HCC. Specifically, SAE1 was the most valuable prognostic indicator. In 282 clinical samples, we found that SAE1 was closely related to the clinicopathologic parameters and prognosis of patients with HCC. In vitro and in vivo studies showed that SAE1 knockdown inhibits the proliferation, migration, and invasion of HCC cells. Mechanistically, we confirmed that SAE1 plays a role in driving HCC progression, which is largely dependent on the SUMOylation of mTOR signaling. In conclusion, our study revealed that the expression of SUMO enzymes, especially SAE1, is highly associated with HCC development and acts as a promising prognostic predictor.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enzimas Ativadoras de Ubiquitina , Humanos , Carcinoma Hepatocelular/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/metabolismo , Neoplasias Hepáticas/genética , Chaperonas Moleculares/genética , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Sumoilação , Serina-Treonina Quinases TOR/metabolismo , Enzimas Ativadoras de Ubiquitina/genética , Enzimas Ativadoras de Ubiquitina/metabolismo , Ubiquitinas
16.
Fish Shellfish Immunol ; 137: 108754, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37088348

RESUMO

Small ubiquitin-like modifier (SUMO) regulates various biological processes, including the MyD88/TICAMs-IRAKs-TRAF6-NF-κB pathway, one of the core immune pathways. However, its functions are inconsistent between invertebrates and vertebrates and have rarely been investigated in lower chordates, including amphioxus and fishes. Here, we investigated the SUMOylation gene system in the amphioxus, a living basal chordate. We found that amphioxus has a SUMOylation system that has a complete set of genes and preserves several ancestral traits. We proceeded to study their molecular functions using the mammal cell lines. Both amphioxus SUMO1 and SUMO2 were shown to be able to attach to NF-κB Rel and to inhibit NF-κB activation by 50-75% in a dose-dependent fashion. The inhibition by SUMO2 could be further enhanced by the addition of the SUMO E2 ligase UBC9. In comparison, while human SUMO2 inhibited RelA, human SUMO1 slightly activated RelA. We also showed that, similar to human PIAS1-4, amphioxus PIAS could serve as a SUMO E3 ligase and promote its self-SUMOylation. This suggests that amphioxus PIAS is functionally compatible in human cells. Moreover, we showed that amphioxus PIAS is not only able to inhibit NF-κB activation induced by MyD88, TICAM-like, TRAF6 and IRAK4 but also able to suppress NF-κB Rel completely in the presence of SUMO1/2 in a dose-insensitive manner. This suggests that PIAS could effectively block Rel by promoting Rel SUMOylation. In comparison, in humans, only PIAS3, but not PIAS1/2/4, has been reported to promote NF-κB SUMOylation. Taken together, the findings from amphioxus, together with those from mammals and other species, not only offer insights into the functional volatility of the animal SUMO system, but also shed light on its evolutionary transitions from amphioxus to fish, and ultimately to humans.


Assuntos
Anfioxos , NF-kappa B , Humanos , Animais , NF-kappa B/genética , NF-kappa B/metabolismo , Ubiquitina , Fator 88 de Diferenciação Mieloide/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anfioxos/genética , Anfioxos/metabolismo , Mamíferos/metabolismo , Chaperonas Moleculares , Proteínas Inibidoras de STAT Ativados/genética
17.
Mol Cell ; 57(1): 150-64, 2015 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-25557546

RESUMO

We show that central components of the Fanconi anemia (FA) DNA repair pathway, the tumor suppressor proteins FANCI and FANCD2 (the ID complex), are SUMOylated in response to replication fork stalling. The ID complex is SUMOylated in a manner that depends on the ATR kinase, the FA ubiquitin ligase core complex, and the SUMO E3 ligases PIAS1/PIAS4 and is antagonized by the SUMO protease SENP6. SUMOylation of the ID complex drives substrate selectivity by triggering its polyubiquitylation by the SUMO-targeted ubiquitin ligase RNF4 to promote its removal from sites of DNA damage via the DVC1-p97 ubiquitin segregase complex. Deregulation of ID complex SUMOylation compromises cell survival following replication stress. Our results uncover a regulatory role for SUMOylation in the FA pathway, and we propose that ubiquitin-SUMO signaling circuitry is a mechanism that contributes to the balance of activated ID complex dosage at sites of DNA damage.


Assuntos
Cisteína Endopeptidases/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Proteínas de Grupos de Complementação da Anemia de Fanconi/metabolismo , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Linhagem Celular Tumoral , Cisteína Endopeptidases/genética , Dano ao DNA , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteínas de Grupos de Complementação da Anemia de Fanconi/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Hidroxiureia/farmacologia , Proteínas Nucleares/genética , Proteínas de Ligação a Poli-ADP-Ribose , Ligação Proteica , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transdução de Sinais , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Fatores de Transcrição/genética , Ubiquitina/genética , Ubiquitinação
18.
PLoS Genet ; 16(11): e1009106, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33151932

RESUMO

Hirschsprung disease (HSCR, OMIM 142623) involves congenital intestinal obstruction caused by dysfunction of neural crest cells and their progeny during enteric nervous system (ENS) development. HSCR is a multifactorial disorder; pathogenetic variants accounting for disease phenotype are identified only in a minority of cases, and the identification of novel disease-relevant genes remains challenging. In order to identify and to validate a potential disease-causing relevance of novel HSCR candidate genes, we established a complementary study approach, combining whole exome sequencing (WES) with transcriptome analysis of murine embryonic ENS-related tissues, literature and database searches, in silico network analyses, and functional readouts using candidate gene-specific genome-edited cell clones. WES datasets of two patients with HSCR and their non-affected parents were analysed, and four novel HSCR candidate genes could be identified: ATP7A, SREBF1, ABCD1 and PIAS2. Further rare variants in these genes were identified in additional HSCR patients, suggesting disease relevance. Transcriptomics revealed that these genes are expressed in embryonic and fetal gastrointestinal tissues. Knockout of these genes in neuronal cells demonstrated impaired cell differentiation, proliferation and/or survival. Our approach identified and validated candidate HSCR genes and provided further insight into the underlying pathomechanisms of HSCR.


Assuntos
Doença de Hirschsprung/genética , Membro 1 da Subfamília D de Transportadores de Cassetes de Ligação de ATP/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Sobrevivência Celular/genética , Simulação por Computador , ATPases Transportadoras de Cobre/genética , Modelos Animais de Doenças , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Humanos , Lactente , Masculino , Camundongos , Proteínas Inibidoras de STAT Ativados/genética , Proteína de Ligação a Elemento Regulador de Esterol 1/genética , Sequenciamento do Exoma
19.
Am J Respir Cell Mol Biol ; 67(3): 346-359, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35833903

RESUMO

Asthma is the most prevalent chronic respiratory disease worldwide. There is currently no cure, and it remains an important cause of morbidity and mortality. Here we report that lung-specific loss of function of the transcription factor Miz1 (c-Myc-interacting zinc finger protein-1) upregulates the pro-T-helper cell type 1 cytokine IL-12. Upregulation of IL-12 in turn stimulates a Th1 response, thereby counteracting T-helper cell type 2 response and preventing the allergic response in mouse models of house dust mite- and OVA (ovalbumin)-induced asthma. Using transgenic mice expressing Cre under a cell-specific promoter, we demonstrate that Miz1 acts in lung epithelial cells and dendritic cells in asthma. Chromatin immunoprecipitation coupled with high-throughput DNA sequencing or quantitative PCR reveals the binding of Miz1 on the Il12 promoter indicating direct repression of IL-12 by Miz1. In addition, HDAC1 (histone deacetylase 1) is recruited to the Il12 promoter in a Miz1-depdenent manner, suggesting epigenetic repression of Il12 by Miz1. Furthermore, Miz1 is upregulated in the lungs of asthmatic mice. Our data together suggest that Miz1 is upregulated during asthma, which in turn promotes asthma pathogenesis by preventing Th1 skewing through the transcriptional repression of IL-12.


Assuntos
Asma , Proteínas Inibidoras de STAT Ativados , Células Th1 , Ubiquitina-Proteína Ligases , Animais , Asma/imunologia , Asma/patologia , Modelos Animais de Doenças , Interleucina-12/imunologia , Pulmão/patologia , Camundongos , Camundongos Endogâmicos BALB C , Ovalbumina , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/metabolismo , Pyroglyphidae , Células Th1/imunologia , Células Th2/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
20.
J Biol Chem ; 297(4): 101200, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34537242

RESUMO

As a conserved posttranslational modification, SUMOylation has been shown to play important roles in chromatin-related biological processes including transcription. However, how the SUMOylation machinery associates with chromatin is not clear. Here, we present evidence that multiple SUMOylation machinery components, including SUMO E1 proteins SAE1 and SAE2 and the PIAS (protein inhibitor of activated STAT) family SUMO E3 ligases, are primarily associated with the nuclear matrix rather than with chromatin. We show using nuclease digestion that all PIAS family proteins maintain nuclear matrix association in the absence of chromatin. Of importance, we identify multiple histones including H3 and H2A.Z as directly interacting with PIAS1 and demonstrate that this interaction requires the PIAS1 SAP (SAF-A/B, Acinus, and PIAS) domain. We demonstrate that PIAS1 promotes SUMOylation of histones H3 and H2B in both a SAP domain- and an E3 ligase activity-dependent manner. Furthermore, we show that PIAS1 binds to heat shock-induced genes and represses their expression and that this function also requires the SAP domain. Altogether, our study reveals for the first time the nuclear matrix as the compartment most enriched in SUMO E1 and PIAS family E3 ligases. Our finding that PIAS1 interacts directly with histone proteins also suggests a molecular mechanism as to how nuclear matrix-associated PIAS1 is able to regulate transcription and other chromatin-related processes.


Assuntos
Cromatina/metabolismo , Histonas/metabolismo , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Sumoilação , Transcrição Gênica , Cromatina/genética , Células HEK293 , Células HeLa , Histonas/genética , Humanos , Domínios Proteicos , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA