Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.270
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Cell ; 179(1): 106-119.e16, 2019 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-31539491

RESUMO

Genes are often transcribed by multiple RNA polymerases (RNAPs) at densities that can vary widely across genes and environmental conditions. Here, we provide in vitro and in vivo evidence for a built-in mechanism by which co-transcribing RNAPs display either collaborative or antagonistic dynamics over long distances (>2 kb) through transcription-induced DNA supercoiling. In Escherichia coli, when the promoter is active, co-transcribing RNAPs translocate faster than a single RNAP, but their average speed is not altered by large variations in promoter strength and thus RNAP density. Environmentally induced promoter repression reduces the elongation efficiency of already-loaded RNAPs, causing premature termination and quick synthesis arrest of no-longer-needed proteins. This negative effect appears independent of RNAP convoy formation and is abrogated by topoisomerase I activity. Antagonistic dynamics can also occur between RNAPs from divergently transcribed gene pairs. Our findings may be broadly applicable given that transcription on topologically constrained DNA is the norm across organisms.


Assuntos
DNA Bacteriano/genética , DNA Super-Helicoidal/genética , RNA Polimerases Dirigidas por DNA/genética , Escherichia coli/genética , Transcrição Gênica , RNA Polimerases Dirigidas por DNA/química , Regulação Bacteriana da Expressão Gênica/genética , Glucose/farmacologia , Glicosídeos/farmacologia , Isopropiltiogalactosídeo/farmacologia , Cinética , Óperon Lac/efeitos dos fármacos , Óperon Lac/genética , Plasmídeos/genética , Regiões Promotoras Genéticas/genética , RNA Bacteriano/genética , Reação em Cadeia da Polimerase em Tempo Real , Rifampina/farmacologia
2.
Nature ; 628(8006): 186-194, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38509362

RESUMO

Drug-resistant bacteria are emerging as a global threat, despite frequently being less fit than their drug-susceptible ancestors1-8. Here we sought to define the mechanisms that drive or buffer the fitness cost of rifampicin resistance (RifR) in the bacterial pathogen Mycobacterium tuberculosis (Mtb). Rifampicin inhibits RNA polymerase (RNAP) and is a cornerstone of modern short-course tuberculosis therapy9,10. However, RifR Mtb accounts for one-quarter of all deaths due to drug-resistant bacteria11,12. We took a comparative functional genomics approach to define processes that are differentially vulnerable to CRISPR interference (CRISPRi) inhibition in RifR Mtb. Among other hits, we found that the universally conserved transcription factor NusG is crucial for the fitness of RifR Mtb. In contrast to its role in Escherichia coli, Mtb NusG has an essential RNAP pro-pausing function mediated by distinct contacts with RNAP and the DNA13. We find this pro-pausing NusG-RNAP interface to be under positive selection in clinical RifR Mtb isolates. Mutations in the NusG-RNAP interface reduce pro-pausing activity and increase fitness of RifR Mtb. Collectively, these results define excessive RNAP pausing as a molecular mechanism that drives the fitness cost of RifR in Mtb, identify a new mechanism of compensation to overcome this cost, suggest rational approaches to exacerbate the fitness cost, and, more broadly, could inform new therapeutic approaches to develop drug combinations to slow the evolution of RifR in Mtb.


Assuntos
Proteínas de Bactérias , Farmacorresistência Bacteriana , Evolução Molecular , Aptidão Genética , Mycobacterium tuberculosis , Rifampina , Humanos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência Conservada , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana/efeitos dos fármacos , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Genômica , Mutação , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Rifampina/farmacologia , Rifampina/uso terapêutico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia
3.
Mol Cell ; 82(17): 3166-3177.e5, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35905736

RESUMO

Rifampicin (RIF), the frontline drug against M. tuberculosis, is completely ineffective against M. abscessus, partially due to the presence of an ADP-ribosyltransferase (Arr) that inactivates RIF. Using RNA-seq, we show that exposure of M. abscessus to sublethal doses of RIF and Rifabutin (RBT), a close analog of RIF, results in an ∼25-fold upregulation of Mab_helR in laboratory and clinical isolates. An isogenic deletion in Mab_helR results in RIF/RBT hypersensitivity, and overexpression of Mab_helR confers RIF tolerance in M. tuberculosis. We demonstrate an increased HelR-RNAP association in RIF-exposed bacteria and a MabHelR-mediated dissociation of RNAP from stalled initiation complexes in vitro. Finally, we show that the tip of the PCh-loop of Mab_helR, present in proximity to RIF, is critical for conferring RIF resistance but dispensable for dissociation of stalled RNAP complexes, suggesting that HelR-mediated RIF resistance requires a step in addition to displacement of RIF-stalled RNAP.


Assuntos
Mycobacterium abscessus , Mycobacterium tuberculosis , Rifamicinas , Tuberculose , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/genética , Humanos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis/genética , Rifabutina/farmacologia , Rifampina/farmacologia , Rifamicinas/farmacologia , Tuberculose/microbiologia
4.
Mol Cell ; 82(17): 3151-3165.e9, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35907401

RESUMO

Rifamycin antibiotics such as rifampin are potent inhibitors of prokaryotic RNA polymerase (RNAP) used to treat tuberculosis and other bacterial infections. Although resistance arises in the clinic principally through mutations in RNAP, many bacteria possess highly specific enzyme-mediated resistance mechanisms that modify and inactivate rifamycins. The expression of these enzymes is controlled by a 19-bp cis-acting rifamycin-associated element (RAE). Guided by the presence of RAE sequences, we identify a helicase-like protein, HelR, in Streptomyces venezuelae that confers broad-spectrum rifamycin resistance. We show that HelR also promotes tolerance to rifamycins, enabling bacterial evasion of the toxic properties of these antibiotics. HelR forms a complex with RNAP and rescues transcription inhibition by displacing rifamycins from RNAP, thereby providing resistance by target protection . Furthermore, HelRs are broadly distributed in Actinobacteria, including several opportunistic Mycobacterial pathogens, offering yet another challenge for developing new rifamycin antibiotics.


Assuntos
Rifamicinas , Tuberculose , Antibacterianos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Humanos , Rifampina/metabolismo , Rifampina/farmacologia , Rifamicinas/farmacologia , Streptomyces/enzimologia
5.
Nature ; 622(7981): 180-187, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37648864

RESUMO

Antibiotic binding sites are located in important domains of essential enzymes and have been extensively studied in the context of resistance mutations; however, their study is limited by positive selection. Using multiplex genome engineering1 to overcome this constraint, we generate and characterize a collection of 760 single-residue mutants encompassing the entire rifampicin binding site of Escherichia coli RNA polymerase (RNAP). By genetically mapping drug-enzyme interactions, we identify an alpha helix where mutations considerably enhance or disrupt rifampicin binding. We find mutations in this region that prolong antibiotic binding, converting rifampicin from a bacteriostatic to bactericidal drug by inducing lethal DNA breaks. The latter are replication dependent, indicating that rifampicin kills by causing detrimental transcription-replication conflicts at promoters. We also identify additional binding site mutations that greatly increase the speed of RNAP.Fast RNAP depletes the cell of nucleotides, alters cell sensitivity to different antibiotics and provides a cold growth advantage. Finally, by mapping natural rpoB sequence diversity, we discover that functional rifampicin binding site mutations that alter RNAP properties or confer drug resistance occur frequently in nature.


Assuntos
Antibacterianos , Sítios de Ligação , RNA Polimerases Dirigidas por DNA , Escherichia coli , Mutação , Rifampina , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/genética , Quebras de DNA/efeitos dos fármacos , Replicação do DNA/efeitos dos fármacos , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , RNA Polimerases Dirigidas por DNA/genética , RNA Polimerases Dirigidas por DNA/metabolismo , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/enzimologia , Escherichia coli/genética , Nucleotídeos/deficiência , Nucleotídeos/metabolismo , Regiões Promotoras Genéticas , Rifampina/química , Rifampina/metabolismo , Rifampina/farmacologia , Fatores de Tempo , Transcrição Gênica/efeitos dos fármacos
6.
Proc Natl Acad Sci U S A ; 121(17): e2315361121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38621130

RESUMO

Biofilms inhabit a range of environments, such as dental plaques or soil micropores, often characterized by noneven surfaces. However, the impact of surface irregularities on the population dynamics of biofilms remains elusive, as most experiments are conducted on flat surfaces. Here, we show that the shape of the surface on which a biofilm grows influences genetic drift and selection within the biofilm. We culture Escherichia coli biofilms in microwells with a corrugated bottom surface and observe the emergence of clonal sectors whose size corresponds to that of the corrugations, despite no physical barrier separating different areas of the biofilm. The sectors are remarkably stable and do not invade each other; we attribute this stability to the characteristics of the velocity field within the biofilm, which hinders mixing and clonal expansion. A microscopically detailed computer model fully reproduces these findings and highlights the role of mechanical interactions such as adhesion and friction in microbial evolution. The model also predicts clonal expansion to be limited even for clones with a significant growth advantage-a finding which we confirm experimentally using a mixture of antibiotic-sensitive and antibiotic-resistant mutants in the presence of sublethal concentrations of the antibiotic rifampicin. The strong suppression of selection contrasts sharply with the behavior seen in range expansion experiments in bacterial colonies grown on agar. Our results show that biofilm population dynamics can be affected by patterning the surface and demonstrate how a better understanding of the physics of bacterial growth can be used to control microbial evolution.


Assuntos
Antibacterianos , Biofilmes , Bactérias , Rifampina/farmacologia , Escherichia coli/genética , Aderência Bacteriana
7.
PLoS Pathog ; 20(4): e1012137, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38603763

RESUMO

Interleukin-1 (IL-1) signaling is essential for controlling virulent Mycobacterium tuberculosis (Mtb) infection since antagonism of this pathway leads to exacerbated pathology and increased susceptibility. In contrast, the triggering of type I interferon (IFN) signaling is associated with the progression of tuberculosis (TB) disease and linked with negative regulation of IL-1 signaling. However, mice lacking IL-1 signaling can control Mtb infection if infected with an Mtb strain carrying the rifampin-resistance conferring mutation H445Y in its RNA polymerase ß subunit (rpoB-H445Y Mtb). The mechanisms that govern protection in the absence of IL-1 signaling during rpoB-H445Y Mtb infection are unknown. In this study, we show that in the absence of IL-1 signaling, type I IFN signaling controls rpoB-H445Y Mtb replication, lung pathology, and excessive myeloid cell infiltration. Additionally, type I IFN is produced predominantly by monocytes and recruited macrophages and acts on LysM-expressing cells to drive protection through nitric oxide (NO) production to restrict intracellular rpoB-H445Y Mtb. These findings reveal an unexpected protective role for type I IFN signaling in compensating for deficiencies in IL-1 pathways during rpoB-H445Y Mtb infection.


Assuntos
Proteínas de Bactérias , RNA Polimerases Dirigidas por DNA , Interferon Tipo I , Mycobacterium tuberculosis , Rifampina , Transdução de Sinais , Interferon Tipo I/metabolismo , Animais , Camundongos , Rifampina/farmacologia , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Mutação , Camundongos Endogâmicos C57BL , Farmacorresistência Bacteriana/genética , Tuberculose/microbiologia , Tuberculose/imunologia , Tuberculose/genética , Camundongos Knockout
8.
PLoS Pathog ; 20(1): e1011918, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241414

RESUMO

Bacterial persister cells, a sub-population of dormant phenotypic variants highly tolerant to antibiotics, present a significant challenge for infection control. Investigating the mechanisms of antibiotic persistence is crucial for developing effective treatment strategies. Here, we found a significant association between tolerance frequency and previous infection history in bovine mastitis. Previous S. aureus infection led to S. aureus tolerance to killing by rifampicin in subsequent infection in vivo and in vitro. Actually, the activation of trained immunity contributed to rifampicin persistence of S. aureus in secondary infection, where it reduced the effectiveness of antibiotic treatment and increased disease severity. Mechanically, we found that S. aureus persistence was mediated by the accumulation of fumarate provoked by trained immunity. Combination therapy with metformin and rifampicin promoted eradication of persisters and improved the severity of recurrent S. aureus infection. These findings provide mechanistic insight into the relationship between trained immunity and S. aureus persistence, while providing proof of concept that trained immunity is a therapeutic target in recurrent bacterial infections involving persistent pathogens.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Animais , Feminino , Bovinos , Staphylococcus aureus/fisiologia , Rifampina/farmacologia , Rifampina/uso terapêutico , Imunidade Treinada , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Bactérias
9.
Mol Cell ; 72(2): 263-274.e5, 2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30244835

RESUMO

Antibiotic-resistant bacterial pathogens pose an urgent healthcare threat, prompting a demand for new medicines. We report the mode of action of the natural ansamycin antibiotic kanglemycin A (KglA). KglA binds bacterial RNA polymerase at the rifampicin-binding pocket but maintains potency against RNA polymerases containing rifampicin-resistant mutations. KglA has antibiotic activity against rifampicin-resistant Gram-positive bacteria and multidrug-resistant Mycobacterium tuberculosis (MDR-M. tuberculosis). The X-ray crystal structures of KglA with the Escherichia coli RNA polymerase holoenzyme and Thermus thermophilus RNA polymerase-promoter complex reveal an altered-compared with rifampicin-conformation of KglA within the rifampicin-binding pocket. Unique deoxysugar and succinate ansa bridge substituents make additional contacts with a separate, hydrophobic pocket of RNA polymerase and preclude the formation of initial dinucleotides, respectively. Previous ansa-chain modifications in the rifamycin series have proven unsuccessful. Thus, KglA represents a key starting point for the development of a new class of ansa-chain derivatized ansamycins to tackle rifampicin resistance.


Assuntos
Produtos Biológicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Rifabutina/farmacologia , Rifampina/farmacologia , Rifamicinas/farmacologia , Antituberculosos/farmacologia , RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/genética , Escherichia coli/efeitos dos fármacos , Escherichia coli/genética , Humanos , Testes de Sensibilidade Microbiana/métodos , Mutação/efeitos dos fármacos , Mutação/genética , Mycobacterium tuberculosis/genética , Thermus thermophilus/efeitos dos fármacos , Thermus thermophilus/genética
10.
Proc Natl Acad Sci U S A ; 120(2): e2216216120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595701

RESUMO

The rise of antibiotic-resistant bacterial infections poses a global threat. Antibiotic resistance development is generally studied in batch cultures which conceals the heterogeneity in cellular responses. Using single-cell imaging, we studied the growth response of Escherichia coli to sub-inhibitory and inhibitory concentrations of nine antibiotics. We found that the heterogeneity in growth increases more than what is expected from growth rate reduction for three out of the nine antibiotics tested. For two antibiotics (rifampicin and nitrofurantoin), we found that sub-populations were able to maintain growth at lethal antibiotic concentrations for up to 10 generations. This perseverance of growth increased the population size and led to an up to 40-fold increase in the frequency of antibiotic resistance mutations in gram-negative and gram-positive species. We conclude that antibiotic perseverance is a common phenomenon that has the potential to impact antibiotic resistance development across pathogenic bacteria.


Assuntos
Antibacterianos , Escherichia coli , Antibacterianos/farmacologia , Testes de Sensibilidade Microbiana , Rifampina/farmacologia , Mutação , Bactérias , Farmacorresistência Bacteriana/genética
11.
Proc Natl Acad Sci U S A ; 120(7): e2215512120, 2023 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-36763530

RESUMO

Tuberculosis treatment requires months-long combination chemotherapy with multiple drugs, with shorter treatments leading to relapses. A major impediment to shortening treatment is that Mycobacterium tuberculosis becomes tolerant to the administered drugs, starting early after infection and within days of infecting macrophages. Multiple lines of evidence suggest that macrophage-induced drug tolerance is mediated by mycobacterial drug efflux pumps. Here, using assays to directly measure drug efflux, we find that M. tuberculosis transports the first-line antitubercular drug rifampicin through a proton gradient-dependent mechanism. We show that verapamil, a known efflux pump inhibitor, which inhibits macrophage-induced rifampicin tolerance, also inhibits M.tuberculosis rifampicin efflux. As with macrophage-induced tolerance, the calcium channel-inhibiting property of verapamil is not required for its inhibition of rifampicin efflux. By testing verapamil analogs, we show that verapamil directly inhibits M. tuberculosis drug efflux pumps through its human P-glycoprotein (PGP)-like inhibitory activity. Screening commonly used drugs with incidental PGP inhibitory activity, we find many inhibit rifampicin efflux, including the proton pump inhibitors (PPIs) such as omeprazole. Like verapamil, the PPIs inhibit macrophage-induced rifampicin tolerance as well as intramacrophage growth, which has also been linked to mycobacterial efflux pump activity. Our assays provide a facile screening platform for M. tuberculosis efflux pump inhibitors that inhibit in vivo drug tolerance and growth.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Rifampina/farmacologia , Inibidores da Bomba de Prótons/farmacologia , Antituberculosos/farmacologia , Verapamil/farmacologia , Macrófagos , Tuberculose/tratamento farmacológico , Tolerância a Medicamentos , Proteínas de Bactérias , Testes de Sensibilidade Microbiana
12.
N Engl J Med ; 387(25): 2331-2343, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36546625

RESUMO

BACKGROUND: In patients with rifampin-resistant tuberculosis, all-oral treatment regimens that are more effective, shorter, and have a more acceptable side-effect profile than current regimens are needed. METHODS: We conducted an open-label, phase 2-3, multicenter, randomized, controlled, noninferiority trial to evaluate the efficacy and safety of three 24-week, all-oral regimens for the treatment of rifampin-resistant tuberculosis. Patients in Belarus, South Africa, and Uzbekistan who were 15 years of age or older and had rifampin-resistant pulmonary tuberculosis were enrolled. In stage 2 of the trial, a 24-week regimen of bedaquiline, pretomanid, linezolid, and moxifloxacin (BPaLM) was compared with a 9-to-20-month standard-care regimen. The primary outcome was an unfavorable status (a composite of death, treatment failure, treatment discontinuation, loss to follow-up, or recurrence of tuberculosis) at 72 weeks after randomization. The noninferiority margin was 12 percentage points. RESULTS: Recruitment was terminated early. Of 301 patients in stage 2 of the trial, 145, 128, and 90 patients were evaluable in the intention-to-treat, modified intention-to-treat, and per-protocol populations, respectively. In the modified intention-to-treat analysis, 11% of the patients in the BPaLM group and 48% of those in the standard-care group had a primary-outcome event (risk difference, -37 percentage points; 96.6% confidence interval [CI], -53 to -22). In the per-protocol analysis, 4% of the patients in the BPaLM group and 12% of those in the standard-care group had a primary-outcome event (risk difference, -9 percentage points; 96.6% CI, -22 to 4). In the as-treated population, the incidence of adverse events of grade 3 or higher or serious adverse events was lower in the BPaLM group than in the standard-care group (19% vs. 59%). CONCLUSIONS: In patients with rifampin-resistant pulmonary tuberculosis, a 24-week, all-oral regimen was noninferior to the accepted standard-care treatment, and it had a better safety profile. (Funded by Médecins sans Frontières; TB-PRACTECAL ClinicalTrials.gov number, NCT02589782.).


Assuntos
Antituberculosos , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose Pulmonar , Humanos , Antituberculosos/administração & dosagem , Antituberculosos/efeitos adversos , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Quimioterapia Combinada , Moxifloxacina/administração & dosagem , Moxifloxacina/efeitos adversos , Moxifloxacina/uso terapêutico , Rifampina/efeitos adversos , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Pulmonar/tratamento farmacológico , Adolescente , Adulto Jovem , Adulto , Linezolida/administração & dosagem , Linezolida/efeitos adversos , Linezolida/uso terapêutico , Administração Oral
13.
Mol Cell ; 66(2): 169-179.e8, 2017 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-28392175

RESUMO

Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis, which kills 1.8 million annually. Mtb RNA polymerase (RNAP) is the target of the first-line antituberculosis drug rifampin (Rif). We report crystal structures of Mtb RNAP, alone and in complex with Rif, at 3.8-4.4 Å resolution. The results identify an Mtb-specific structural module of Mtb RNAP and establish that Rif functions by a steric-occlusion mechanism that prevents extension of RNA. We also report non-Rif-related compounds-Nα-aroyl-N-aryl-phenylalaninamides (AAPs)-that potently and selectively inhibit Mtb RNAP and Mtb growth, and we report crystal structures of Mtb RNAP in complex with AAPs. AAPs bind to a different site on Mtb RNAP than Rif, exhibit no cross-resistance with Rif, function additively when co-administered with Rif, and suppress resistance emergence when co-administered with Rif.


Assuntos
Proteínas de Bactérias/metabolismo , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Mycobacterium tuberculosis/enzimologia , Mycobacterium tuberculosis/genética , Transcrição Gênica , Antituberculosos/metabolismo , Antituberculosos/farmacologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Sítios de Ligação , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/química , Farmacorresistência Bacteriana , Inibidores Enzimáticos/metabolismo , Inibidores Enzimáticos/farmacologia , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Ligação Proteica , Conformação Proteica , Rifampina/metabolismo , Rifampina/farmacologia , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos
15.
Clin Infect Dis ; 78(3): 730-741, 2024 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-37874021

RESUMO

BACKGROUND: Effectiveness, safety, tolerability, and adherence are critical considerations in shifting to shorter tuberculosis (TB) regimens. Novel 6-month oral regimens that include bedaquiline (B), pretomanid (Pa), and linezolid (L), with or without a fourth drug, have been shown to be as or more effective than the established longer regimens for the treatment of multidrug-resistant/rifampicin-resistant TB (MDR/RR-TB). We aimed to evaluate the safety and tolerability of linezolid in BPaL-containing regimens for the treatment of MDR/RR-TB among recently completed clinical trials. METHODS: A review and meta-analysis was undertaken including published and unpublished data from clinical trials, conducted between 2010 and 2021, that evaluated regimens containing BPaL for the treatment of MDR/RR-TB. Individual patient data were obtained. For each BPaL-containing regimen, we evaluated the frequency and severity of treatment-related adverse events. The risk difference of adverse events for each regimen was calculated, in comparison to patients assigned to receiving the lowest cumulative exposure of linezolid. RESULTS: Data from 3 clinical trials investigating 8 unique BPaL-containing regimens were included, comprising a total of 591 participants. Adverse events were more frequent in groups randomized to a higher cumulative linezolid dose. Among patients who were randomized to a daily dose of 1200 mg linezolid, 68 of 195 (35%) experienced a grade 3-4 adverse event versus 89 of 396 (22%) patients receiving BPaL-containing regimens containing 600 mg linezolid. CONCLUSIONS: Regimens containing BPaL were relatively well tolerated when they included a daily linezolid dose of 600 mg. These novel regimens promise to improve the tolerability of treatment for MDR/RR-TB.


Assuntos
Linezolida , Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Humanos , Antituberculosos/efeitos adversos , Diarilquinolinas/uso terapêutico , Linezolida/efeitos adversos , Nitroimidazóis , Ensaios Clínicos Controlados Aleatórios como Assunto , Rifampina/farmacologia , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
16.
Emerg Infect Dis ; 30(8): 1571-1579, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39043388

RESUMO

New tuberculosis (TB) drugs with little existing antimicrobial resistance enable a pan-TB treatment regimen, intended for universal use without prior drug-susceptibility testing. However, widespread use of such a regimen could contribute to an increasing prevalence of antimicrobial resistance, potentially rendering the pan-TB regimen ineffective or driving clinically problematic patterns of resistance. We developed a model of multiple sequential TB patient cohorts to compare treatment outcomes between continued use of current standards of care (guided by rifampin-susceptibility testing) and a hypothetical pan-TB approach. A pan-TB regimen that met current target profiles was likely to initially outperform the standard of care; however, a rising prevalence of transmitted resistance to component drugs could make underperformance likely among subsequent cohorts. Although the pan-TB approach led to an increased prevalence of resistance to novel drugs, it was unlikely to cause accumulation of concurrent resistance to novel drugs and current first-line drugs.


Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Humanos , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Tuberculose Resistente a Múltiplos Medicamentos/epidemiologia , Tuberculose/tratamento farmacológico , Tuberculose/microbiologia , Farmacorresistência Bacteriana , Resultado do Tratamento , Rifampina/uso terapêutico , Rifampina/farmacologia
17.
Antimicrob Agents Chemother ; 68(1): e0079423, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38112526

RESUMO

Clofazimine is recommended for the treatment of rifampicin-resistant tuberculosis (RR-TB), but there is currently no verified dosing guideline for its use in children. There is only limited safety and no pharmacokinetic (PK) data available for children. We aimed to characterize clofazimine PK and its relationship with QT-interval prolongation in children. An observational cohort study of South African children <18 years old routinely treated for RR-TB with a clofazimine-containing regimen was analyzed. Clofazimine 100 mg gelatin capsules were given orally once daily (≥20 kg body weight), every second day (10 to <20 kg), or thrice weekly (<10 kg). PK sampling and electrocardiograms were completed pre-dose and at 1, 4, and 10 hours post-dose, and the population PK and Fridericia-corrected QT (QTcF) interval prolongation were characterized. Fifty-four children contributed both PK and QTcF data, with a median age (2.5th-97.5th centiles) of 3.3 (0.5-15.6) years; five children were living with HIV. Weekly area under the time-concentration curve at steady state was 79.1 (15.0-271) mg.h/L compared to an adult target of 60.9 (56.0-66.6) mg.h/L. Children living with HIV had four times higher clearance compared to those without. No child had a QTcF ≥500 ms. A linear concentration-QTcF relationship was found, with a drug effect of 0.05 (0.027, 0.075) ms/µg/L. In some of the first PK data in children, we found clofazimine exposure using an off-label dosing strategy was higher in children versus adults. Clofazimine concentrations were associated with an increase in QTcF, but severe prolongation was not observed. More data are required to inform dosing strategies in children.


Assuntos
Clofazimina , Tuberculose Resistente a Múltiplos Medicamentos , Adolescente , Criança , Pré-Escolar , Humanos , Clofazimina/efeitos adversos , Clofazimina/farmacocinética , Infecções por HIV/tratamento farmacológico , Rifampina/farmacologia , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico
18.
Antimicrob Agents Chemother ; 68(3): e0115723, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38259101

RESUMO

Mycobacterium avium complex pulmonary disease is treated with an azithromycin, ethambutol, and rifampicin regimen, with limited efficacy. The role of rifampicin is controversial due to inactivity, adverse effects, and drug interactions. Here, we evaluated the efficacy of clofazimine as a substitute for rifampicin in an intracellular hollow-fiber infection model. THP-1 cells, which are monocytes isolated from peripheral blood from an acute monocytic leukemia patient, were infected with M. avium ATCC 700898 and exposed to a regimen of azithromycin and ethambutol with either rifampicin or clofazimine. Intrapulmonary pharmacokinetic profiles of azithromycin, ethambutol, and rifampicin were simulated. For clofazimine, a steady-state average concentration was targeted. Drug concentrations and bacterial densities were monitored over 21 days. Exposures to azithromycin and ethambutol were 20%-40% lower than targeted but within clinically observed ranges. Clofazimine exposures were 1.7 times higher than targeted. Until day 7, both regimens were able to maintain stasis. Thereafter, regrowth was observed for the rifampicin-containing regimen, while the clofazimine-containing regimen yielded a 2 Log10 colony forming unit (CFU) per mL decrease in bacterial load. The clofazimine regimen also successfully suppressed the emergence of macrolide tolerance. In summary, substitution of rifampicin with clofazimine in the hollow-fiber model improved the antimycobacterial activity of the regimen. Clofazimine-containing regimens merit investigation in clinical trials.


Assuntos
Pneumopatias , Infecção por Mycobacterium avium-intracellulare , Humanos , Rifampina/farmacologia , Rifampina/uso terapêutico , Clofazimina/farmacologia , Clofazimina/uso terapêutico , Etambutol/farmacologia , Etambutol/uso terapêutico , Azitromicina/farmacologia , Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Quimioterapia Combinada , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Complexo Mycobacterium avium , Pneumopatias/microbiologia
19.
Antimicrob Agents Chemother ; 68(8): e0078324, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39028192

RESUMO

Tuberculous meningitis (TBM) has a high mortality, possibly due to suboptimal therapy. Drug exposure data of antituberculosis agents in the central nervous system (CNS) are required to develop more effective regimens. Rifabutin is a rifamycin equivalently potent to rifampin in human pulmonary tuberculosis. Here, we show that human-equivalent doses of rifabutin achieved potentially therapeutic exposure in relevant CNS tissues in a rabbit model of TBM, supporting further evaluation in clinical trials.


Assuntos
Modelos Animais de Doenças , Rifabutina , Tuberculose Meníngea , Animais , Coelhos , Rifabutina/uso terapêutico , Rifabutina/farmacologia , Tuberculose Meníngea/tratamento farmacológico , Sistema Nervoso Central/efeitos dos fármacos , Antituberculosos/uso terapêutico , Antituberculosos/farmacologia , Rifampina/uso terapêutico , Rifampina/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Antibióticos Antituberculose/uso terapêutico , Antibióticos Antituberculose/farmacologia
20.
Antimicrob Agents Chemother ; 68(8): e0043024, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38904390

RESUMO

Infection with Mycobacterium tuberculosis remains one of the biggest causes of death from a single microorganism worldwide, and the continuous emergence of drug resistance aggravates our ability to cure the disease. New improved resistance detection methods are needed to provide adequate treatment, such as whole genome sequencing (WGS), which has been used increasingly to identify resistance-conferring mutations over the last decade. The steadily increasing knowledge of resistance-conferring mutations increases our ability to predict resistance based on genomic data alone. This study evaluates the performance of WGS to predict M. tuberculosis complex resistance. It compares WGS predictions with the phenotypic (culture-based) drug susceptibility results based on 20 years of nationwide Danish data. Analyzing 6,230 WGS-sequenced samples, the sensitivities for isoniazid, rifampicin, ethambutol, and pyrazinamide were 82.5% [78.0%-86.5%, 95% confidence interval (CI)], 97.3% (90.6%-99.7%, 95% CI), 58.0% (43.2%-71.8%, 95% CI), and 60.5% (49.0%-71.2%, 95% CI), respectively, and specificities were 99.8% (99.7%-99.9%, 95% CI), 99.8% (99.7%-99.9%, 95% CI), 99.4% (99.2%-99.6%, 95% CI), and 99.9% (99.7%-99.9%, 95% CI), respectively. A broader range of both sensitivities and specificities was observed for second-line drugs. The results conform with previously reported values and indicate that WGS is reliable for routine resistance detection in resource-rich tuberculosis low-incidence and low-resistance settings such as Denmark.


Assuntos
Antituberculosos , Testes de Sensibilidade Microbiana , Mycobacterium tuberculosis , Sequenciamento Completo do Genoma , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Dinamarca/epidemiologia , Antituberculosos/farmacologia , Humanos , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/microbiologia , Isoniazida/farmacologia , Etambutol/farmacologia , Rifampina/farmacologia , Pirazinamida/farmacologia , Pirazinamida/uso terapêutico , Mutação , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA