Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Language
Year range
1.
RGO (Porto Alegre) ; 65(3): 254-259, July-Sept. 2017. tab
Article in English | LILACS, BBO | ID: biblio-896032

ABSTRACT

ABSTRACT Tissue engineering is a contemporary field of science, which aims to create conditions based on principles of cell and molecular biology, bioengineering and biomaterials to regenerate tissues. Mesenchymal stem cells present high proliferation rates and are able to differentiate into multilineages under certain conditions, suggesting that they have great potential to act in regeneration field. Tooth derived stem cells are a suitable alternative source of mesenchymal cells once they are easily accessible and have poor morbidity to the donor. Studies showed that they have been isolated and characterized from diverse tissues such as dental pulp, exfoliated deciduous teeth, periodontal ligament, gingiva, dental follicle and apical papilla. However studies show that there is heterogeneity among these populations and there is no standard method to select the most appropriate tooth derived stem cells for regenerative procedures. The aim of this review is to present the current perspective of the multiple types of tooth-derived stem cells and to discuss the basis for their use in periodontal tissue engineering.


RESUMO A engenharia de tecidos é um campo contemporâneo da ciência, que visa criar condições baseadas em princípios de biologia celular e molecular, bioengenharia e biomateriais para regenerar tecidos. As células tronco mesenquimais apresentam altas taxas de proliferação e são capazes de se diferenciar, sob certas condições, em multi-linhagens, sugerindo que elas têm grande potencial para atuar no campo da regeneração. As células tronco derivadas de tecidos dentais são uma fonte alternativa adequada de células mesenquimais uma vez que são de fácil acesso e têm baixa morbidade para o doador. Estudos demonstraram que elas já foram isoladas e caracterizadas a partir de diversos tecidos tais como polpa dentária, dentes decíduos esfoliados, ligamento periodontal, gengiva, folículo dental e papila apical. Entretanto, os estudos demonstram que há heterogeneidade entre essas populações e não existe um método padrão para selecionar as células-tronco dentais mais apropriadas para procedimentos regenerativos. O objetivo desta revisão é apresentar o conhecimento atual dos vários tipos de células-tronco derivadas de dentes e discutir as novas perspectivas para seu uso na engenharia de tecidos periodontais.

2.
Braz. oral res. (Online) ; 31: e17, 2017. tab, graf
Article in English | LILACS | ID: biblio-839523

ABSTRACT

Abstract Periodontitis develops as a result of a continuous interaction between host cells and subgingival pathogenic bacteria. The periodontium has a limited capacity for regeneration, probably due to changes in periodontal ligament stem cells (PDLSCs) phenotype. The aim of this study was to evaluate the effects of lipopolysaccharides from Porphyromonas gingivalis (PgLPS) on mesenchymal phenotype and osteoblast/cementoblast (O/C) potential of PDLSCs. PDLSCs were assessed for Toll-like receptor 2 (TLR2) expression by immunostaining technique. After, cells were exposed to PgLPS, and the following assays were carried out: (i) cell metabolic activity using MTS; (ii) gene expression for IL-1β, TNF-α and OCT-4 by real-time polymerase chain reaction (RT-qPCR); (iii) flow cytometry for STRO-1 and CD105, and (iv) osteogenic differentiation. PDLSCs were positive for TLR2. PgLPS promoted cell proliferation, produced IL-1β and TNF-α, and did not affect the expression of stem cell markers, STRO-1, CD105 and OCT-4. Under osteogenic condition, PDLSCs exposed to PgLPS showed a similar potential to differentiate toward osteoblast/cementoblast phenotype compared to control group as revealed by mineralized matrix deposition and levels of transcripts for RUNX2, ALP and OCN. These results provide evidence that PgLPS induces pro-inflammatory cytokines, but does not change the mesenchymal phenotype and osteoblast/cementoblast differentiation potential of PDLSCs.


Subject(s)
Humans , Osteogenesis/drug effects , Periodontal Ligament/cytology , Lipopolysaccharides/toxicity , Porphyromonas gingivalis , Mesenchymal Stem Cells/drug effects , Time Factors , Gene Expression , Osteocalcin/analysis , Cell Differentiation/drug effects , Cell Survival/drug effects , Cells, Cultured , Tumor Necrosis Factor-alpha/analysis , Statistics, Nonparametric , Cell Proliferation/drug effects , Alkaline Phosphatase/analysis , Octamer Transcription Factor-3/analysis , Toll-Like Receptors/analysis , Core Binding Factor Alpha 1 Subunit/analysis , Interleukin-1beta/analysis , Mesenchymal Stem Cells/metabolism , Real-Time Polymerase Chain Reaction , Flow Cytometry
3.
J. appl. oral sci ; 23(2): 145-152, Mar-Apr/2015. graf
Article in English | LILACS, BBO | ID: lil-746536

ABSTRACT

Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells) would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS). Material and Methods : Toll-like receptor 4 (TLR4) expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i) cell viability using MTS; (ii) expression of the interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α) genes; (iii) osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities. .


Subject(s)
Alkenes/metabolism , /chemistry , Staphylococcaceae/enzymology , Catalysis , Enzyme Stability , Industrial Microbiology , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL