Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Psychol. neurosci. (Impr.) ; 6(2): 199-212, jul.-dez. 2013. ilus
Article in English | LILACS | ID: lil-699236

ABSTRACT

The present paper focuses on a classic hyperacuity, Vernier acuity-the ability to discriminate breaks in the collinearity of lines or edges on the order of only arcseconds of visual angle. We measured steady-state sweep visual evoked potentials (sVEPs) in response to 6 Hz periodic breaks in collinearity (Vernier offsets) in horizontal squarewave gratings. Vernier thresholds, estimated by extrapolating the amplitude of the first harmonic (1F) to 0 µV, were measured for gratings with 4%, 8%, 16%, 32%, 64%, and 80% contrast, with gaps of 0, 2, or 5 arcmin introduced between neighboring bar elements that formed the Vernier offsets. Thresholds for the 2F response component provided an estimate of motion thresholds. The data confirmed and extended evidence that the odd- and even-harmonic components reflect cortical activity of different neurons (i.e., neurons that respond asymmetrically to the periodic breaks in alignment and neurons that respond symmetrically to the local relative motion cue of the stimulus). Suprathreshold data (peak amplitude, response slope, and response phase at the peak amplitude) provided additional independent evidence of this notion. Vernier thresholds decreased linearly as contrast increased, with a slope of approximately -0.5 on log-log axes, similar to prior psychophysical results. The form of contrast dependence showed more similarity to measures of magnocellular ganglion cell spatial precision than measures from parvocellular ganglion cells. Our data thus support the hypothesis that magnocellular ganglion cell output from the retina has the requisite properties to support cortical calculation of Vernier offsets at a hyperacuity level...


Subject(s)
Humans , Male , Female , Adult , Evoked Potentials, Visual , Visual Acuity
2.
Psychol. neurosci. (Impr.) ; 6(1): 123-127, Jan.-June 2013. ilus
Article in English | LILACS | ID: lil-687861

ABSTRACT

Methylmercury (MeHg) is present in the environment because of natural and anthropogenic causes. MeHg can reach the central nervous system (CNS) and cause neurological damage in humans and animals. Electric organ discharges (EODs) in the weak electric fish Gymnotus sylvius are produced by the electric organ and modulated by the CNS. These discharges are used for electrolocation and communication. The purpose of the present study was to investigate the effects of dietary MeHg exposure on EOD rate in G. sylvius. An oscilloscope was used to record the EOD rate. Two treatments were investigated: chronic MeHg administration (4 µg/kg MeHg every 2 days, with a total of nine dietary exposures to MeHg) and acute MeHg administration (a single dose of 20 µg/kg MeHg). The control data for both treatments were collected every 2 days for 18 days, with a total of nine sessions (day 1 until day 18). Data of fish exposed to MeHg were collected every 2 days, totaling nine sessions (day 19 until day 36). Chronic treatment significantly increased the EOD rate in G. sylvius (p < .05), especially with the final treatment (day 32 until day 36). Acute treatment resulted in an initial increase in the EOD rate, which was maintained midway through the experiment (day 26 until day 30; p < .05). The present study provides the first insights into the effects of MeHg on EODs in weak electric fish. The EOD rate is a novel response of the fish to MeHg administration.


Subject(s)
Animals , Behavior, Animal , Mercury Compounds/adverse effects , Mercury Compounds/radiation effects , Electric Fish
SELECTION OF CITATIONS
SEARCH DETAIL