Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add filters








Language
Year range
1.
Article in English | WPRIM | ID: wpr-238424

ABSTRACT

This study investigated the effect of diosgenin, a natural sapogenin possessing various pharmacological activities, on benign prostatic hyperplasia (BPH) in rats and the possible mechanisms. BPH was established in the castrated rats by subcutaneous injection of testosterone propionate. Animals were randomly divided into four groups (n=10 each): model group (0.5% sodium carboxymethyl cellulose); positive control group (3 mg/kg finasteride); two diosgenin groups (50 and 100 mg/kg). The drugs were intragastricaly given in each group for consecutive 3 weeks. Another 10 rats with no testicles cut off served as negative controls and they were subcutaneously injected with 0.1 mL olive oil per day and then treated with 0.5% sodium carboxymethylcellulose. After 3-week administration, the prostate index and serum PSA level were determined, and histopathological examination was carried out. The levels of MDA, SOD and GPx in prostates were also measured. Additionally, the expression of Bcl-2, Bax and p53 was examined using Western blotting. The results showed that the prostate index and serum PSA level were significantly decreased, and the pathological changes of the prostate gland were greatly improved in diosgenin groups as compared with the model group. Elevated activities of SOD and GPx, and reduced MDA level were also observed in diosgenin-treated rats. In addition, the expression of Bcl-2 in prostates was down-regulated, whereas that of Bax and p53 was up-regulated in diosgenin-treated rats. These results indicated that diosgenin was effective in inhibiting testosterone propionate-induced prostate enlargement and may be a candidate agent for the treatment of BPH.


Subject(s)
Animals , Male , Rats , Apoptosis , Diosgenin , Pharmacology , Therapeutic Uses , Glutathione Peroxidase , Metabolism , Malondialdehyde , Metabolism , Oxidative Stress , Prostate , Metabolism , Prostate-Specific Antigen , Blood , Prostatic Hyperplasia , Drug Therapy , Proto-Oncogene Proteins c-bcl-2 , Metabolism , Rats, Sprague-Dawley , Superoxide Dismutase , Metabolism , Tumor Suppressor Protein p53 , Metabolism , bcl-2-Associated X Protein , Metabolism
2.
Article in English | WPRIM | ID: wpr-250312

ABSTRACT

Alzheimer's disease (AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta (Aβ) peptide in human brains. Oxidative stress and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides (200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase (SOD), glutathione (GSH), acetylcholine esterase (AChE), and the content of malondialdehyde (MDA) as well as the level of nitric oxide (NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides (400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.


Subject(s)
Animals , Female , Male , Mice , Acetylcholinesterase , Metabolism , Alzheimer Disease , Drug Therapy , Amyloid beta-Peptides , Toxicity , Glutathione , Metabolism , Hippocampus , Metabolism , Interleukins , Metabolism , Juglans , Chemistry , Malondialdehyde , Metabolism , Maze Learning , Memory Disorders , Drug Therapy , NF-kappa B , Metabolism , Neuroprotective Agents , Pharmacology , Therapeutic Uses , Nitric Oxide , Metabolism , Peptide Fragments , Toxicity , Peptides , Pharmacology , Therapeutic Uses , Plant Extracts , Pharmacology , Therapeutic Uses , Superoxide Dismutase , Metabolism , Tumor Necrosis Factor-alpha , Metabolism
3.
Article in English | WPRIM | ID: wpr-638122

ABSTRACT

Alzheimer's disease (AD) is one of the major neurodegenerative disorders of the elderly, which is characterized by the accumulation and deposition of amyloid-beta (Aβ) peptide in human brains. Oxidative streβs and neuroinflammation induced by Aβ in brain are increasingly considered to be responsible for the pathogenesis of AD. The present study aimed to determine the protective effects of walnut peptides against the neurotoxicity induced by Aβ25-35 in vivo. Briefly, the AD model was induced by injecting Aβ25-35 into bilateral hippocampi of mice. The animals were treated with distilled water or walnut peptides (200, 400 and 800 mg/kg, p.o.) for five consecutive weeks. Spatial learning and memory abilities of mice were investigated by Morris water maze test and step-down avoidance test. To further explore the underlying mechanisms of the neuroprotectivity of walnut peptides, the activities of superoxide dismutase (SOD), glutathione (GSH), acetylcholine esterase (AChE), and the content of malondialdehyde (MDA) as well as the level of nitric oxide (NO) in the hippocampus of mice were measured by spectrophotometric method. In addition, the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG), tumor necrosis factor-α (TNF-α), interleukin 1β (IL-1β) and IL-6 in the samples were determined using ELISA. The hippocampal expressions of inducible nitric oxide synthase (iNOS) and nuclear factor κB (NF-κB) were evaluated by Western blot analysis. The results showed that walnut peptides supplementation effectively ameliorated the cognitive deficits and memory impairment of mice. Meanwhile, our study also revealed effective restoration of levels of antioxidant enzymes as well as inflammatory mediators with supplementation of walnut peptides (400 or 800 mg/kg). All the above findings suggested that walnut peptides may have a protective effect on AD by reducing inflammatory responses and modulating antioxidant system.

4.
Article in English | WPRIM | ID: wpr-331134

ABSTRACT

Novel uniform-sized magnetic molecularly imprinted polymers (MMIPs) were synthesized for selective recognition of active antitumor ingredients of kaempferol (KMF) and protoapigenone (PA) in Macrothelypteris torresiana (M. torresiana) by surface molecular imprinting technique in this study. Super paramagnetic core-shell nanoparticles (γ-MPS-SiO2@Fe3O4) were used as seeds, KMF as template molecule, acrylamide (AM) as functional monomer, and N, N'-methylene bisacrylamide (BisAM) as cross-linker. The prepared MMIPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), transmission electron microscopy (TEM) and thermo-gravimetric analysis (TGA), respectively. The recognition capacity of MMIPs was 2.436 times of non-imprinted polymers. The adsorption results based on kinetics and isotherm analysis were in accordance with the pseudo-second-order model (R (2)=0.9980) and the Langmuir adsorption model (R (2)=0.9944). The value of E (6.742 kJ/mol) calculated from the Dubinin-Radushkevich isotherm model suggested that the physical adsorption via hydrogen-bonding might be predominant. The Scatchard plot showed a single line (R (2)=0.9172) and demonstrated the homogeneous recognition sites on MMIPs for KMF. The magnetic solid phase extraction (MSPE) based on MMIPs as sorbent was established for fast and selective enrichment of KMF and its structural analogue PA from the crude extract of M. torresiana and then KMF and PA were detected by HPLC-UV. The established method showed good performance and satisfactory results for real sample analysis. It also showed the feasibility of MMIPs for selective recognition of active structural analogues from complex herbal extracts.


Subject(s)
Acrylic Resins , Chemistry , Antineoplastic Agents, Phytogenic , Chemistry , Cyclohexanones , Chemistry , Ferns , Chemistry , Flavones , Chemistry , Kaempferols , Chemistry , Nanoparticles , Chemistry
5.
Article in English | WPRIM | ID: wpr-636522

ABSTRACT

Dioscin is a natural steroid saponin derived from several plants, showing potent anti-cancer effect against a variety of tumor cell lines. In the present study, we investigated the anti-cancer activity of dioscin against human LNCaP cells, and evaluated the possible mechanism involved in its antineoplastic action. It was found that dioscin (1, 2 and 4 μmol/L) could significantly inhibit the viability of LNCaP cells in a time- and concentration-dependent manner. Flow cytometry revealed that the apoptosis rate was increased after treatment of LNCaP cells with dioscin for 24 h, indicating that apoptosis was an important mechanism by which dioscin inhibited cancer. Western blotting was employed to detect the expression of caspase-3, Bcl-2 and Bax in LNCaP cells. The expression of cleaved caspase-3 was significantly increased, and meanwhile procaspase-3 was markedly decreased. The expression of anti-apoptotic protein Bcl-2 was down-regulated, whereas the pro-apoptotic protein Bax was up-regulated. Moreover, the Bcl-2/Bax ratio was drastically decreased. These results suggested that dioscin possessed potential anti-tumor activity in human LNCaP cells through the apoptosis pathway, which might be associated with caspase-3 and Bcl-2 protein family.

6.
Article in English | WPRIM | ID: wpr-636884

ABSTRACT

Novel uniform-sized magnetic molecularly imprinted polymers (MMIPs) were synthesized for selective recognition of active antitumor ingredients of kaempferol (KMF) and protoapigenone (PA) in Macrothelypteris torresiana (M. torresiana) by surface molecular imprinting technique in this study. Super paramagnetic core-shell nanoparticles (γ-MPS-SiO2@Fe3O4) were used as seeds, KMF as template molecule, acrylamide (AM) as functional monomer, and N, N'-methylene bisacrylamide (BisAM) as cross-linker. The prepared MMIPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectrum (FTIR), transmission electron microscopy (TEM) and thermo-gravimetric analysis (TGA), respectively. The recognition capacity of MMIPs was 2.436 times of non-imprinted polymers. The adsorption results based on kinetics and isotherm analysis were in accordance with the pseudo-second-order model (R (2)=0.9980) and the Langmuir adsorption model (R (2)=0.9944). The value of E (6.742 kJ/mol) calculated from the Dubinin-Radushkevich isotherm model suggested that the physical adsorption via hydrogen-bonding might be predominant. The Scatchard plot showed a single line (R (2)=0.9172) and demonstrated the homogeneous recognition sites on MMIPs for KMF. The magnetic solid phase extraction (MSPE) based on MMIPs as sorbent was established for fast and selective enrichment of KMF and its structural analogue PA from the crude extract of M. torresiana and then KMF and PA were detected by HPLC-UV. The established method showed good performance and satisfactory results for real sample analysis. It also showed the feasibility of MMIPs for selective recognition of active structural analogues from complex herbal extracts.

7.
Article in English | WPRIM | ID: wpr-351111

ABSTRACT

Dioscin is a natural steroid saponin derived from several plants, showing potent anti-cancer effect against a variety of tumor cell lines. In the present study, we investigated the anti-cancer activity of dioscin against human LNCaP cells, and evaluated the possible mechanism involved in its antineoplastic action. It was found that dioscin (1, 2 and 4 μmol/L) could significantly inhibit the viability of LNCaP cells in a time- and concentration-dependent manner. Flow cytometry revealed that the apoptosis rate was increased after treatment of LNCaP cells with dioscin for 24 h, indicating that apoptosis was an important mechanism by which dioscin inhibited cancer. Western blotting was employed to detect the expression of caspase-3, Bcl-2 and Bax in LNCaP cells. The expression of cleaved caspase-3 was significantly increased, and meanwhile procaspase-3 was markedly decreased. The expression of anti-apoptotic protein Bcl-2 was down-regulated, whereas the pro-apoptotic protein Bax was up-regulated. Moreover, the Bcl-2/Bax ratio was drastically decreased. These results suggested that dioscin possessed potential anti-tumor activity in human LNCaP cells through the apoptosis pathway, which might be associated with caspase-3 and Bcl-2 protein family.


Subject(s)
Humans , Male , Apoptosis , Blotting, Western , Caspase 3 , Metabolism , Cell Line, Tumor , Cell Survival , Diosgenin , Chemistry , Pharmacology , Dose-Response Relationship, Drug , Enzyme Activation , Flow Cytometry , Molecular Structure , Prostatic Neoplasms , Metabolism , Pathology , Proto-Oncogene Proteins c-bcl-2 , Metabolism , Time Factors , bcl-2-Associated X Protein , Metabolism
SELECTION OF CITATIONS
SEARCH DETAIL