ABSTRACT
OBJECTIVE@#The objectives of this study were to evaluate linear and volumetric alveolar changes induced by nasoalveolar molding (NAM) in infants with complete unilateral cleft lip and palate (UCLP) and compare the maxillary dimensions after NAM with the normal dimensions in infants without clefts.@*METHODS@#A total of 26 infants with UCLP treated by NAM (mean age before and after NAM: 14.20 ± 8.09 days and 118.16 ± 10.06 days, respectively) comprised the treatment group, while 26 infants without clefts (mean age: 115.81 ± 8.71 days) comprised the control group. Changes in the maxillary dimensions following NAM were measured on three-dimensional models using Mimics software, version 17.0.@*RESULTS@#During NAM, there was a decrease in the cleft widths, maxillary arch depths, and rotation of the greater segment. While the anterior alveolar arch width exhibited a significant decrease, the posterior arch width was mostly maintained. There were no changes in the anterior vertical deviations of the alveolar segments. The alveolar crest lengths, arch circumference, and bilateral posterior volumetric measures exhibited an increase. After NAM, the anterior arch width was comparable between the treatment and control groups, whereas the posterior arch width and anterior vertical deviations were greater in the treatment group than in the control group. The maxillary arch depths, alveolar crest lengths, and maxillary volumes were smaller in the NAM group than in the control group.@*CONCLUSIONS@#During NAM in infants with UCLP, the cleft width and anteroposterior and transverse alveolar dimensions exhibited a decrease while the vertical dimensions were maintained. Compared with infants without clefts, those with UCLP treated by NAM exhibited sagittal and vertical alveolar growth deficiencies and tissue insufficiency.
ABSTRACT
OBJECTIVE: The aim of this study was to compare the buccolingual inclination of maxillary and mandibular molars in adults with different vertical facial types. METHODS: Cone-beam computed tomography images of 135 adult patients (age, 20–45 years) with skeletal Class I maxillomandibular relationships were assigned to normodivergent (n = 46), hypodivergent (n = 49), and hyperdivergent groups (n = 40) according to linear and angular sella-nasion/gonion-menton measurements. The normodivergent group consisted of 24 females and 22 males, hypodivergent group of 26 females and 23 males, and hyperdivergent group of 24 females and 16 males. Buccolingual inclination of the maxillary and mandibular first and second molars was measured relative to the occlusal plane. One-way analysis of variance was used for intergroup comparison. Gender differences were evaluated using independent t-tests. RESULTS: Buccolingual molar inclinations did not differ significantly between females and males (p > 0.05). There were no statistically significant differences among the buccolingual inclinations of the first and second maxillary and mandibular molars of the groups (p > 0.05). CONCLUSIONS: Buccolingual inclinations of maxillary and mandibular molars are similar in normodivergent, hyperdivergent, and hypodivergent adults with Class I sagittal relationships.
Subject(s)
Adult , Female , Humans , Male , Cone-Beam Computed Tomography , Dental Occlusion , MolarABSTRACT
OBJECTIVE: The purpose of this study was to quantitatively evaluate the cortical bone densities of the maxillary and mandibular alveolar processes in adults with different vertical facial types using cone-beam computed tomography (CBCT) images. METHODS: CBCT images (n = 142) of adult patients (20-45 years) were classified into hypodivergent, normodivergent, and hyperdivergent groups on the basis of linear and angular S-N/Go-Me measurements. The cortical bone densities (in Hounsfield units) at maxillary and mandibular interdental sites from the distal aspect of the canine to the mesial aspect of the second molar were measured on the images. RESULTS: On the maxillary buccal side, female subjects in the hyperdivergent group showed significantly decreased bone density, while in the posterior region, male subjects in the hyperdivergent group displayed significantly decreased bone density when compared with corresponding subjects in the other groups (p<0.001). Furthermore, the subjects in the hyperdivergent group had significantly lower bone densities on the mandibular buccal side than hypodivergent subjects. The maxillary palatal bone density did not differ significantly among groups, but female subjects showed significantly denser palatal cortical bone. No significant difference in bone density was found between the palatal and buccal sides in the maxillary premolar region. Overall, the palatal cortical bone was denser anteriorly and buccal cortical bone was denser posteriorly. CONCLUSION: Adults with the hyperdivergent facial type tend to have less-dense buccal cortical bone in the maxillary and mandibular alveolar processes. Clinicians should be aware of the variability of cortical bone densities at mini-implant placement sites.
Subject(s)
Adult , Female , Humans , Male , Alveolar Process , Bicuspid , Bone Density , Cone-Beam Computed Tomography , Evaluation Studies as Topic , MolarABSTRACT
OBJECTIVE: Bonding forces of brackets to enamel surfaces may be affected by the procedures used for bleaching and enamel etching. The aim of this study was to investigate the bonding strength of orthodontic brackets to laser-etched surfaces of bleached teeth. METHODS: In a nonbleached control group, acid etching (group A) or Er:YAG laser application (group B) was performed prior to bracket bonding (n = 13 in each group). Similar surface treatments were performed at 1 day (groups C and D; n = 13 in each subgroup) or at 3 weeks (groups E and F; n = 13 in each subgroup) after 38% hydrogen peroxide bleaching in another set of teeth. The specimens were debonded after thermocycling. RESULTS: Laser etching of bleached teeth resulted in clinically unacceptable low bonding strength. In the case of acid-etched teeth, waiting for 3 weeks before attachment of brackets to the bleached surfaces resulted in similar, but not identical, bond strength values as those obtained with nonbleached surfaces. However, in the laser-etched groups, the bonding strength after 3 weeks was the same as that for the nonbleached group. CONCLUSIONS: When teeth bleached with 38% hydrogen peroxide are meant to be bonded immediately, acid etching is preferable.