Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Experimental Neurobiology ; : 147-155, 2016.
Article in English | WPRIM | ID: wpr-78641

ABSTRACT

Although accumulating evidence suggests that microglia-mediated neuroinflammation may be crucial for the initiation and progression of Parkinson's disease (PD), and that the control of neuroinflammation may be a useful strategy for preventing the degeneration of nigrostriatal dopaminergic (DA) projections in the adult brain, it is still unclear what kinds of endogenous biomolecules initiate microglial activation, consequently resulting in neurodegeneration. Recently, we reported that the increase in the levels of prothrombin kringle-2 (pKr-2), which is a domain of prothrombin that is generated by active thrombin, can lead to disruption of the nigrostriatal DA projection. This disruption is mediated by neurotoxic inflammatory events via the induction of microglial Toll-like receptor 4 (TLR4) in vivo , thereby resulting in less neurotoxicity in TLR4-deficient mice. Moreover, inhibition of microglial activation following minocycline treatment, which has anti-inflammatory activity, protects DA neurons from pKr-2-induced neurotoxicity in the substantia nigra (SN) in vivo. We also found that the levels of pKr-2 and microglial TLR4 were significantly increased in the SN of PD patients compared to those of age-matched controls. These observations suggest that there may be a correlation between pKr-2 and microglial TLR4 in the initiation and progression of PD, and that inhibition of pKr-2-induced microglial activation may be protective against the degeneration of the nigrostriatal DA system in vivo . To describe the significance of pKr-2 overexpression, which may have a role in the pathogenesis of PD, we have reviewed the mechanisms of pKr-2-induced microglial activation, which results in neurodegeneration in the SN of the adult brain.


Subject(s)
Adult , Animals , Humans , Mice , Brain , Microglia , Minocycline , Neurons , Parkinson Disease , Prothrombin , Substantia Nigra , Thrombin , Toll-Like Receptor 4
2.
Experimental Neurobiology ; : 124-129, 2014.
Article in English | WPRIM | ID: wpr-41689

ABSTRACT

Parkinson's disease is the second most common neurodegenerative disorder characterized by the progressive degeneration of dopaminergic neurons and a biochemical reduction of striatal dopamine levels. Despite the lack of fully understanding of the etiology of Parkinson's disease, accumulating evidences suggest that Parkinson's disease may be caused by the insufficient support of neurotrophic factors, and by microglial activation, resident immune cells in the brain. Naringin, a major flavonone glycoside in grapefruits and citrus fruits, is considered as a protective agent against neurodegenerative diseases because it can induce not only anti-oxidant effects but also neuroprotective effects by the activation of anti-apoptotic pathways and the induction of neurotrophic factors such as brain-derived neurotrophic factor and vascular endothelial growth factor. We have recently reported that naringin has neuroprotective effects in a neurotoxin model of Parkinson's disease. Our observations show that intraperitoneal injection of naringin induces increases in glial cell line-derived neurotrophic factor expression and mammalian target of rapamycin complex 1 activity in dopaminergic neurons of rat brains with anti-inflammatory effects. Moreover, the production of glial cell line-derived neurotrophic factor by naringin treatment contributes to the protection of the nigrostriatal dopaminergic projection in a neurotoxin model of Parkinson's disease. Although the effects of naringin on the nigrostriatal dopaminergic system in human brains are largely unknown, these results suggest that naringin may be a beneficial natural product for the prevention of dopaminergic degeneration in the adult brain.


Subject(s)
Adult , Animals , Humans , Rats , Antioxidants , Brain , Brain-Derived Neurotrophic Factor , Citrus , Citrus paradisi , Dopamine , Dopaminergic Neurons , Glial Cell Line-Derived Neurotrophic Factor , Injections, Intraperitoneal , Nerve Growth Factors , Neurodegenerative Diseases , Neuroprotective Agents , Parkinson Disease , Sirolimus , Vascular Endothelial Growth Factor A
SELECTION OF CITATIONS
SEARCH DETAIL