Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
An. acad. bras. ciênc ; 80(2): 311-321, June 2008. graf, tab
Article in English | LILACS | ID: lil-482885

ABSTRACT

For the development of safe live attenuated flavivirus vaccines one of the main properties to be established is viral replication. We have used real-time reverse transcriptase-polymerase chain reaction and virus titration by plaque assay to determine the replication of yellow fever 17DD virus (YFV 17DD) and recombinant yellow fever 17D viruses expressing envelope proteins of dengue virus serotypes 2 and 4 (17D-DENV-2 and 17D-DENV-4). Serum samples from rhesus monkeys inoculated with YFV 17DD and 17D-DENV chimeras by intracerebral or subcutaneous route were used to determine and compare the viremia induced by these viruses. Viral load quantification in samples from monkeys inoculated by either route with YFV 17DD virus suggested a restricted capability of the virus to replicate reaching not more than 2.0 log10 PFU mL-1 or 3.29 log10 copies mL-1. Recombinant 17D-dengue viruses were shown by plaquing and real-time PCR to be as attenuated as YF 17DD virus with the highest mean peak titer of 1.97 log10 PFU mL-1 or 3.53 log10 copies mL-1. These data serve as a comparative basis for the characterization of other 17D-based live attenuated candidate vaccines against other diseases.


Uma das principais propriedades a serem estabelecidas para o desenvolvimento de vacinas seguras e atenuadas de flavivirus,é a taxa de replicação viral. Neste trabalho, aplicamos a metodologia de amplificação pela reação em cadeia da polimerase em tempo real e titulação viral por plaqueamento para determinação da replicação do vírus 17DD (FA 17DD) e recombinantes, expressando proteínas do envelope de dengue sorotipos 2 e 4 (17D-DENV-2 e 17D-DENV-4). As amostras de soros de macacos inoculados por via intracerebral ou subcutânea com FA 17DD ou 17D-DENV foram usadas para determinar e comparar a viremia induzida por estes vírus. A quantificação da carga viral em amostras de macacos inoculados por ambas as vias com FA 17DD sugere restrita capacidade de replicação com taxa não superior a 2,0 log10 PFU mL-1 ou 3,29 log10 cópias/mL-1. Os vírus recombinantes 17D-DENV mostraram-se tão atenuados quanto o vírus 17DD, tanto porRT-PCR em tempo real quanto por plaqueamento, com título médio máximo de 1,97 log10 PFU mL-1 ou 3,53 log10 cópias/mL-1. Estes dados servem como base comparativapara caracterização de outros vírus vivos atenuados, derivados do vírus 17D, candidatos a vacinas contra outras doenças.


Subject(s)
Animals , Antibodies, Viral , Dengue Virus/physiology , RNA, Viral/immunology , Virus Replication , Viremia/immunology , Yellow fever virus/physiology , Dengue Vaccines/immunology , Dengue Virus/immunology , Macaca mulatta , Reverse Transcriptase Polymerase Chain Reaction , RNA, Viral/blood , Recombination, Genetic/immunology , Viral Load , Vaccines, Attenuated/immunology , Yellow Fever Vaccine/immunology , Yellow fever virus/immunology
2.
Mem. Inst. Oswaldo Cruz ; 95(supl.1): 215-23, 2000. ilus
Article in English | LILACS | ID: lil-274884

ABSTRACT

The Flaviviridae is a family of about 70 mostly arthropod-borne viruses many of which are major public health problems with members being present in most continents. Among the most important are yellow fever (YF), dengue with its four serotypes and Japanese encephalitis virus. A live attenuated virus is used as a cost effective, safe and efficacious vaccine against YF but no other live flavivirus vaccines have been licensed. The rise of recombinant DNA technology and its application to study flavivirus genome structure and expression has opened new possibilities for flavivirus vaccine development. One new approach is the use of cDNAs encopassing the whole viral genome to generate infectious RNA after in vitro transcription. This methodology allows the genetic mapping of specific viral functions and the design of viral mutants with considerable potential as new live attenuated viruses. The use of infectious cDNA as a carrier for heterologous antigens is gaining importance as chimeric viruses are shown to be viable, immunogenic and less virulent as compared to the parental viruses. The use of DNA to overcome mutation rates intrinsic of RNA virus populations in conjunction with vaccine production in cell culture should improve the reliability and lower the cost for production of live attenuated vaccines. The YF virus despite a long period ignored by researchers probably due to the effectiveness of the vaccine has made a come back, both in nature as human populations grow and reach endemic areas as well as in the laboratory being a suitable model to understand the biology of flaviviruses in general and providing new alternatives for vaccine development through the use of the 17D vaccine strain


Subject(s)
Humans , Flavivirus/immunology , Viral Vaccines , Yellow Fever/immunology , Flavivirus/genetics , Genome, Viral
SELECTION OF CITATIONS
SEARCH DETAIL