Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add filters








Language
Year range
1.
Biol. Res ; 56: 11-11, 2023. ilus, tab, graf
Article in English | LILACS | ID: biblio-1429912

ABSTRACT

BACKGROUND: Nonalcoholic fatty pancreatitis (NAFP) is one of the metabolic syndrome manifestations that need further studies to determine its molecular determinants and find effective medications. We aimed to investigate the potential effect of benzyl propylene glycoside on NAFP management via targeting the pancreatic cGAS-STING pathway-related genes (DDX58, NFκB1 & CHUK) and their upstream regulator miRNA (miR-1976) that were retrieved from bioinformatics analysis. METHODS: The rats were fed either normal chow or a high-fat high-sucrose diet (HFHS), as a nutritional model for NAFP. After 8 weeks, the HFHS-fed rats were subdivided randomly into 4 groups; untreated HFHS group (NAFP model group) and three treated groups which received 3 doses of benzyl propylene glycoside (10, 20, and 30 mg/kg) daily for 4 weeks, parallel with HFHS feeding. RESULTS: The molecular analysis revealed that benzyl propylene glycoside could modulate the expression of the pancreatic cGAS-STING pathway-related through the downregulation of the expression of DDX58, NFκB1, and CHUK mRNAs and upregulation of miR-1976 expression. Moreover, the applied treatment reversed insulin resistance, inflammation, and fibrosis observed in the untreated NAFP group, as evidenced by improved lipid panel, decreased body weight and the serum level of lipase and amylase, reduced protein levels of NFκB1 and caspase-3 with a significant reduction in area % of collagen fibers in the pancreatic sections of treated animals. CONCLUSION: benzyl propylene glycoside showed a potential ability to attenuate NAFP development, inhibit pancreatic inflammation and fibrosis and reduce the pathological and metabolic disturbances monitored in the applied NAFP animal model. The detected effect was correlated with modulation of the expression of pancreatic (DDX58, NFκB1, and CHUK mRNAs and miR-1976) panel.


Subject(s)
Animals , Rats , Pancreatic Diseases , MicroRNAs , Glycosides/pharmacology , Pancreas/pathology , Fibrosis , Signal Transduction , Models, Animal , Inflammation , Nucleotidyltransferases/metabolism
2.
Braz. arch. biol. technol ; Braz. arch. biol. technol;60: e17160210, 2017. tab, graf
Article in English | LILACS | ID: biblio-839070

ABSTRACT

ABSTRACT Response surface methodology was used to optimize lincomycin production by Streptomyces lincolnensis NRRL ISP-5355 in submerged fermentation. Screening of fermentation medium components to find their relative effect on lincomycin production was done using Plackett-Burman design. Malt extract, dextrin, soluble starch and (NH4)2SO4 were the most significant nutrient influenced on lincomycin production. Central composite design was applied to determine optimal concentrations of these factors and the effect of their mutual interactions. The interaction between soluble starch and (NH4)2SO4 was found to enhance the production, whereas malt extract and dextrin exhibited an influence independent from the other two factors. Using this statistical optimization method, maximum lincomycin concentration of 1345 μg/ml was obtained which represented a 40.5 % increase in titer than that acquired from the non-optimized medium. This statistically optimized medium was employed for lincomycin production through immobilization of Streptomyces lincolnensis by adsorption on synthetic cotton fibers. Immobilization technique improved the concentration to 1350 μg/ml higher than that produced from free cells cultures and could be maintained for longer than 17 days in a repeated batch system.

3.
Braz. arch. biol. technol ; Braz. arch. biol. technol;57(1): 145-154, Jan.-Feb. 2014. graf, tab
Article in English | LILACS | ID: lil-702581

ABSTRACT

The aim of this work was to study the production of polyhydroxyalkanoates (PHAs) by Bacillus subtilis and Escherichia coli isolated from the industrial contaminated soil samples using cane molasses as an inexpensive substrate. The amount of PHA accumulated followed a similar pattern to its growth for each of treatment indicating a growth-related production, yielding maximum PHA production of 54.1 and 47.16% for B. subtilis and E. coli, respectively after 96 h cultivation in the medium containing 6 and 8 % molasses, respectively and decreased thereafter. The growth and PHA yields were improved by introducing 1% ethanol into the molasses medium. Ammonium sulphate and ammonium nitrate at a concentration of 1 g/L served as the best nitrogen sources for bacterial growth, allowing B. subtilis and E. coli cells to accumulate PHA up to 62.21 and 58.7%, respectively. The optimum environmental conditions that influenced the PHA production by the two strains were inoculum concentration of 8%, pH 7.0 and a temperature of 35°C. The functional groups of the extracted PHA granules were identified by Fourier transform infrared (FTIR) spectroscopy analysis.

4.
Braz. arch. biol. technol ; Braz. arch. biol. technol;56(2): 259-268, Mar.-Apr. 2013. graf, tab
Article in English | LILACS | ID: lil-675644

ABSTRACT

The aim of the present study was to investigate the antimicrobial effect of the lipopeptide biosurfactants produced by Bacillus licheniformis strain M104 grown on whey. The biosurfactant was investigated for potential antimicrobial activity by using the disc-diffusion method against different Gram-positive bacteria {B subtilis, B. thuringiensis (two strains), B. cereus, Staphylococcus aureus (two strains) and Listeria monocytogenes)}, Gram-negative bacteria {(Pseudomonas aeruginosa, Escherichia coli (two strains), Salmonella typhimurium, Proteous vulgaris and Klebsiella pneumoniae) and a yeast (Candida albicans)}. The biosurfactant showed profoundly distinct antibacterial activity toward tested bacteria and displayed an antifungal activity against the tested yeast. Maximum antimicrobial activity of the biosurfactant was shown against S. aureus ATCC 25928. The biosurfactant had a broad inhibition effect on intracellular components of S. aureus ATCC 25928. The antimicrobial effect of lipopeptide biosurfactant produced by B. licheniformis strain M104 was time and concentration dependent. When biosurfactant was added to S. aureus medium in a concentration of (48 μg / ml), the maximum reduction of acid soluble phosphorous (53.06 %), total lipid (90.47 %) total proteins (53.43%), RNA (83.29 %) and DNA (48.50%) were recorded after 12 h of incubation period. From the preliminary characterization results, it could be concluded that biosurfactants were a suitable alternative in potential applications of medical fields.

5.
Braz. j. microbiol ; Braz. j. microbiol;44(2): 529-537, 2013. graf, tab
Article in English | LILACS | ID: lil-688598

ABSTRACT

The potentiality of 23 bacterial isolates to produce alkaline protease and carboxymethyl-cellulase (CMCase) on Ficus nitida wastes was investigated. Bacillus pumillus ATCC7061 was selected as the most potent bacterial strain for the production of both enzymes. It was found that the optimum production of protease and CMCase were recorded at 30 °C, 5% Ficus nitida leaves and incubation period of 72 h. The best nitrogen sources for protease and CMCase production were yeast extract and casein, respectively. Also maximum protease and CMCase production were reported at pH 9 and pH 10, respectively. The enzymes possessed a good stability over a pH range of 8-10, expressed their maximum activities at pH10 and temperature range of 30-50 °C, expressed their maximum activities at 50 °C. Ions of Hg2+, Fe2+ and Ag+ showed a stimulatory effect on protease activity and ions of Fe2+, Mg2+, Ca2+, Cu2+ and Ag+ caused enhancement of CMCase activity. The enzymes were stable not only towards the nonionic surfactants like Triton X-100 and Tween 80 but also the strong anionic surfactant, SDS. Moreover, the enzymes were not significantly inhibited by EDTA or cystein. Concerning biotechnological applications, the enzymes retained (51-97%) of their initial activities upon incubation in the presence of commercials detergents for 1 h. The potential use of the produced enzymes in the degradation of human hair and cotton fabric samples were also assessed.


Subject(s)
Bacillus/enzymology , Bacillus/growth & development , Bacterial Proteins/metabolism , Carboxymethylcellulose Sodium/metabolism , Endopeptidases/metabolism , Ficus/microbiology , Industrial Waste , Bacterial Proteins/chemistry , Carboxymethylcellulose Sodium/chemistry , Enzyme Stability , Endopeptidases/chemistry , Enzyme Activators/metabolism , Hydrogen-Ion Concentration , Metals/metabolism , Temperature , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL