Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J. venom. anim. toxins incl. trop. dis ; 27: e20210001, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1351017

ABSTRACT

Phα1ß is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1ß to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1ß (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1ß antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.


Subject(s)
Pain , Peptides/isolation & purification , Reactive Oxygen Species , Analgesics/adverse effects , Neurotoxins/isolation & purification
2.
J. venom. anim. toxins incl. trop. dis ; 27: e20210001, 2021. tab, graf, ilus
Article in English | LILACS, VETINDEX | ID: biblio-1484769

ABSTRACT

Phα1ß is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Phα1ß to treat chronic pain reverted opioid tolerance with a safer profile than ω-conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Phα1ß (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Phα1ß antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.


Subject(s)
Analgesics/adverse effects , Pain , Reactive Oxygen Species , Neurotoxins/isolation & purification , Peptides/isolation & purification
3.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484774

ABSTRACT

Abstract Ph1 is a neurotoxin purified from spider venom that acts as a high-voltage-activated (HVA) calcium channel blocker. This spider peptide has shown a high selectivity for N-type HVA calcium channels (NVACC) and an analgesic effect in several animal models of pain. Its activity was associated with a reduction in calcium transients, glutamate release, and reactive oxygen species production from the spinal cord tissue and dorsal ganglia root (DRG) in rats and mice. It has been reported that intrathecal (i.t.) administration of Ph1 to treat chronic pain reverted opioid tolerance with a safer profile than -conotoxin MVIIA, a highly selective NVACC blocker. Following a recent development of recombinant Ph1 (CTK 01512-2), a new molecular target, TRPA1, the structural arrangement of disulphide bridges, and an effect on glial plasticity have been identified. CTK 01512-2 reproduced the antinociceptive effects of the native toxin not only after the intrathecal but also after the intravenous administration. Herein, we review the Ph1 antinociceptive activity in the most relevant pain models and its mechanisms of action, highlighting the impact of CTK 01512-2 synthesis and its potential for multimodal analgesia.

4.
Article in English | LILACS-Express | LILACS, VETINDEX | ID: biblio-1484780

ABSTRACT

Abstract Background: Phoneutria nigriventer venom contains Ph1. This toxin and its recombinant form have a remarkable analgesic potential that is associated with blockage of voltage-gated calcium channels and TRPA1 receptors. Although morphine is a mainstay drug to treat moderate and severe pain related to cancer, it has serious and dose-limiting side effects. Combining recombinant Ph1 and morphine to treat pain is an interesting approach that has been gaining attention. Therefore, a quantitative and reliable method to establish the strength of the antinociceptive interaction between these two substances is necessary. The present study was designed to investigate the nature of the functional antinociceptive (analgesic) interaction between Ph1 recombinant toxin and morphine in a model of cancer pain. Methods: Melanoma was produced by intraplantar inoculation of B16-F10 cells into the right paw of C57BL/6J mice. Von Frey filaments measured the paw-withdrawal threshold after intrathecal administration of morphine, recombinant Ph1, and their combination. Thermal hyperalgesia was assessed using Hargreaves apparatus. The degree of interaction was evaluated using isobolographic analysis. Spontaneous and forced motor performance was assessed with the open-field and rotarod tests, respectively. Results: Co-administration of recombinant Ph1 and morphine synergistically reverses the melanoma-induced mechanical hyperalgesia. The potency of the mixture, measured as the effective dose to reach 50% of maximum possible effect (MPE) in ameliorating mechanical hyperalgesia, was about twice fold higher than expected if the interaction between morphine and recombinant Ph1 was merely additive. Treatment with the combination at doses necessary to reach 50% of MPE caused no spontaneous nor forced motor alterations. Conclusion: The combinatorial use of recombinant Ph1 and morphine allows significant and effective dose reduction of both agents, which has translational potential for opioid-sparing approaches in pain management related to cancer.

5.
J. venom. anim. toxins incl. trop. dis ; 26: e20190070, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1101267

ABSTRACT

Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1ß exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1ß in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. Methods: Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1ß using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. Results: Intravenous administration of recombinant Phα1ß toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. Conclusion: Our data suggest that intravenous administration of recombinant Phα1ß may be feasible for drug-induced analgesia, without causing any severe side effects.(AU)


Subject(s)
Animals , Mice , Rats , Peptides , Injections, Spinal , Recombinant Proteins , Analgesia , Biochemical Phenomena , Pharmaceutical Preparations
6.
J. venom. anim. toxins incl. trop. dis ; 26: e20190070, 2020. tab, graf
Article in English | LILACS, VETINDEX | ID: biblio-1484764

ABSTRACT

Background: Intrathecal injection of voltage-sensitive calcium channel blocker peptide toxins exerts analgesic effect in several animal models of pain. Upon intrathecal administration, recombinant Phα1β exerts the same analgesic effects as the those of the native toxin. However, from a clinical perspective, the intrathecal administration limits the use of anesthetic drugs in patients. Therefore, this study aimed to investigate the possible antinociceptive effect of intravenous recombinant Phα1β in rat models of neuropathic pain, as well as its side effects on motor, cardiac (heart rate and blood pressure), and biochemical parameters. Methods: Male Wistar rats and male Balb-C mice were used in this study. Giotto Biotech® synthesized the recombinant version of Phα1β using Escherichia coli expression. In rats, neuropathic pain was induced by chronic constriction of the sciatic nerve and paclitaxel-induced acute and chronic pain. Mechanical sensitivity was evaluated using von Frey filaments. A radiotelemeter transmitter (TA11PA-C10; Data Sciences, St. Paul, MN, USA) was placed on the left carotid of mice for investigation of cardiovascular side effects. Locomotor activity data were evaluated using the open-field paradigm, and serum CKMB, TGO, TGP, LDH, lactate, creatinine, and urea levels were examined. Results: Intravenous administration of recombinant Phα1β toxin induced analgesia for up to 4 h, with ED50 of 0.02 (0.01-0.03) mg/kg, and reached the maximal effect (Emax = 100% antinociception) at a dose of 0.2 mg/kg. No significant changes were observed in any of the evaluated motor, cardiac or biochemical parameters. Conclusion: Our data suggest that intravenous administration of recombinant Phα1β may be feasible for drug-induced analgesia, without causing any severe side effects.


Subject(s)
Male , Animals , Rats , Analgesics , Sciatic Neuropathy/therapy , Paclitaxel , Toxins, Biological/administration & dosage , Toxins, Biological/adverse effects , Spider Venoms/chemistry , Administration, Intravenous , Mice, Inbred BALB C , Rats, Wistar
7.
Ciênc. rural ; 46(1): 150-156, jan. 2016. graf
Article in English | LILACS | ID: lil-766991

ABSTRACT

This study aimed to investigate the neuroprotective effect of ω-conotoxin MVIIA (MVIIA) intralesional application in rats submitted to spinal cord injury. Male Wistar rats, weighing 300g±23.4, were distributed in five groups: negative control (SHAM), placebo (PLA), 5μM MVIIA, 10μM MVIIA and 20μM MVIIA MVIIA. After laminectomy of the 12th thoracic vertebra (SHAM), the PLA, 5μM MVIIA, 10μM MVIIA and 20μM MVIIA groups were subjected to acute compressive spinal cord trauma for five minutes, and then five minutes later, the animals received specific treatment in a standard total volume of 2µL, by intralesional route, using sterile PBS as placebo. Locomotor activity was assayed using Basso Beattie Bresnahan (BBB) scale to show the patterning of SCI. With 48 hours of injury, the animals were euthanized, the liquor sample was collected in atlantooccipital space, and also the spinal segment, including the epicenter and caudal region to injury. Assays were performed for mitochondrial viability, serum glutamate, production of reactive oxygen species (ROS) and lipid peroxidation (LP) were performed. The study design was randomized and the data submitted to ANOVA and comparison of means by SNK test, and data from BBB scale were evaluated using Kruskal-Wallis test (P<0.05). There was no significant difference between groups in BBB scores. The MVIIA did not promote decrease in the levels of glutamate, ROS, LP, and did not preserve the mitochondria in the intralesional application five minutes after spinal cord injury in rats.


Objetivou-se investigar o efeito neuroprotetor da aplicação intralesional da MVIIA em ratos submetidos ao trauma medular. Foram utilizados ratos Wistar, machos, com peso entre 300g±23.4, distribuídos em cinco grupos: controle negativo (SHAM), placebo (PLA), 5µM MVIIA, 10µM MVIIA e 20µM MVIIA. Após a laminectomia da vértebra torácica 12 (SHAM), os grupos PLA, 5µM MVIIA, 10µM MVIIA e 20µM MVIIA foram submetidos ao trauma medular agudo compressivo por cinco minutos e, cinco minutos após o trauma, receberam o tratamento específico em volume total padrão de 2µL, pela via intralesional, sendo utilizado como placebo o PBS estéril. A atividade locomotora foi avaliada pela escala proposta por Basso Beattie Bresnahan (BBB), com intuito de mostrar a padronização do trauma medular. Com 48 horas do trauma, os animais foram submetidos à eutanásia, coletou-se amostra do líquor no espaço atlantooccipital e um segmento medular, incluindo o epicentro e região caudal à lesão. Foram realizados ensaios de viabilidade mitocondrial, dosagem de glutamato, produção de espécies reativas de oxigênio (ERO) e peroxidação lipídica (PL). O delineamento do estudo foi inteiramente casualizado e os dados submetidos ao ANOVA, com comparação de médias pelo teste de SNK e os dados do teste BBB foram comparados utilizando o teste Kruskal-Wallis (P<0.05). Em relação aos escores do BBB, não houve diferença entre os grupos. A MVIIA não promoveu a diminuição dos níveis do glutamato, ERO, PL e não preservou a mitocôndria na aplicação intralesional, cinco minutos após o trauma medular em ratos.

8.
Rev. méd. Minas Gerais ; 25(S4): S11-S16, jan. 2015.
Article in Portuguese | LILACS | ID: lil-761201

ABSTRACT

Objetivo do estudo: avaliar se a titulação de drogas guiada pelo índice bispectral em pacientes submetidos à cirurgia oftalmológica ambulatorial está associada a uma redução no tempo de alta. Método: foram selecionados 111 pacientes submetidos a procedimentos oftalmológicos realizados sob sedação intravenosa associada ao bloqueio peribulbar. Ospacientes foram randomizados em dois grupos. Nos pacientes do grupo controle, o anestesista responsável administrou a sedação de acordo com parâmetros clínicos: manter o paciente entre 2 a 4 pontos na escala de sedação de Ramsay. No outro grupo, o índice bispectral foi monitorizado e a sedação foi administrada para manter os valores entre 70 e 85. Foram comparados entre os grupos os dados demográficos, a dosagem de drogas, a duração dos procedimentos, as complicações pós-operatórias e o tempo de alta. Resultados: os grupos não apresentaram diferenças estatísticas em relação aos dados demográficos, à dosagem das drogas intravenosas e à dose administrada de anestésico local. Não se observou diferença entre os grupos em relação à duração dos procedimentos e ao tempo de alta para casa. As complicações pós-operatórias detectadas foram náuseas e vômitos e dor pós-operatória, no entanto, sem diferença estatística significante entre os grupos. Conclusões: a monitorização com o índice bispectral não foi mais eficaz que à monitorização clínica, em reduzir o tempo de alta para casa de pacientes submetidos a cirurgias oftalmológicas ambulatoriais sob sedação e bloqueio peribulbar.


Study objective: assessing whether drug titration guided by the bispectral index in patients submitted to outpatient ophthalmological surgeries is associated with a decreased time of hospital discharge. Method: one hundred and eleven patients submitted to outpatient ophthalmological procedures performed under intravenous sedation associated with peribulbar block were selected for this study. Patients were randomized in two groups. In the control group, the anesthetist in charge administered sedation according to clinical parameters: maintaining the patient between 2 and 4 points in the Ramsay?s sedation scale. In the other group, the bispectral index was monitored and sedation was performed with the purpose of maintaining its values between 70 and 85. Demographic data, drug dosage, length of procedures, post-surgical complications and time of hospital discharge were compared between the two groups. Results: groups have not shown statistical differences regarding demographic data, dosage of intravenous drugs and the dosage of local anesthetic administered. No difference was observed between groups regarding the length of the procedures, and the time of hospital discharge. The post-surgical complications detected were nausea and vomiting and post-surgical pain, however, with no statistically significant difference between groups. Conclusions: bispectral index monitoring has not been more effective than clinical monitoring to reduce the time of hospital discharge of patients submitted to outpatient ophthalmological surgeries under sedation and peribulbar block.


Subject(s)
Ophthalmologic Surgical Procedures , Anesthesia Recovery Period , Consciousness Monitors/statistics & numerical data , Anesthesia, Intravenous/methods , Patient Care Team , Patient Discharge , Electromyography , Ambulatory Care , Anesthesia, General
9.
Braz. J. Psychiatry (São Paulo, 1999, Impr.) ; 34(1): 82-91, Mar. 2012. ilus
Article in English | LILACS | ID: lil-617134

ABSTRACT

Psychiatric disorders are among the most common human illnesses; still, the molecular and cellular mechanisms underlying their complex pathophysiology remain to be fully elucidated. Over the past 10 years, our group has been investigating the molecular abnormalities in major signaling pathways involved in psychiatric disorders. Recent evidences obtained by the Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (National Institute of Science and Technology - Molecular Medicine, INCT-MM) and others using behavioral analysis of animal models provided valuable insights into the underlying molecular alterations responsible for many complex neuropsychiatric disorders, suggesting that "defects" in critical intracellular signaling pathways have an important role in regulating neurodevelopment, as well as in pathophysiology and treatment efficacy. Resources from the INCT have allowed us to start doing research in the field of molecular imaging. Molecular imaging is a research discipline that visualizes, characterizes, and quantifies the biologic processes taking place at cellular and molecular levels in humans and other living systems through the results of image within the reality of the physiological environment. In order to recognize targets, molecular imaging applies specific instruments (e.g., PET) that enable visualization and quantification in space and in real-time of signals from molecular imaging agents. The objective of molecular medicine is to individualize treatment and improve patient care. Thus, molecular imaging is an additional tool to achieve our ultimate goal.


Os transtornos psiquiátricos estão entre as doenças humanas mais comuns. Os mecanismos celulares e moleculares subjacentes à sua complexa fisiopatologia ainda não estão totalmente esclarecidos. Nosso grupo está envolvido na investigação de anormalidades moleculares nas principais vias de sinalização das doenças psiquiátricas nos últimos 10 anos. Evidências recentemente obtidas pelo Instituto Nacional de Ciência e Tecnologia de Medicina Molecular (INCT-MM), utilizando análise comportamental de modelos animais, forneceram informações valiosas sobre as alterações moleculares subjacentes responsáveis por muitos distúrbios neuropsiquiátricos complexos, sugerindo que os "defeitos" nas vias de sinalização intracelular têm um papel importante na regulação do neurodesenvolvimento, bem como na fisiopatologia e eficácia do tratamento. Recursos do INCT nos permitiram iniciar pesquisas na área de imagem molecular. A imagem molecular é uma disciplina de investigação que visualiza, caracteriza e quantifica processos biológicos que ocorrem em níveis celular e molecular em seres humanos, e em outros sistemas vivos, através dos resultados de imagem dentro da realidade do ambiente fisiológico. A fim de reconhecer alvos, a imagem molecular aplica instrumentos específicos (PET, por exemplo) que permitem a visualização e quantificação em espaço e tempo real dos sinais dos agentes de imagem molecular, fornecendo medições de processos a nível molecular e celular. O objetivo da medicina molecular é individualizar o tratamento e melhorar a assistência ao paciente. Desse modo, a imagem molecular consiste em mais uma ferramenta para atingirmos nosso objetivo final.


Subject(s)
Animals , Humans , Mental Disorders/diagnosis , Molecular Imaging/methods , Neuroimaging/methods , Animals, Genetically Modified , Biomedical Research , Disease Models, Animal , Mental Disorders/genetics , Mental Disorders/metabolism , Mental Disorders/therapy , Zebrafish
10.
Arq. neuropsiquiatr ; 68(4): 597-602, Aug. 2010. graf, ilus
Article in English | LILACS | ID: lil-555241

ABSTRACT

OBJECTIVE: Hepatic encephalopathy (HE) is a neuropsychiatric syndrome resulting from liver failure. In the present study, we aimed to standardize an animal model of HE induced by thioacetamide (TAA) in C57BL/6 mice evaluating behavioral symptoms in association with liver damage and alterations in neurotransmitter release. METHOD: HE was induced by an intraperitoneal single dose of TAA (200 mg/kg, 600 mg/kg or 1,200 mg/kg). Behavioral symptoms were evaluated using the SHIRPA battery. Liver damage was confirmed by histopathological analysis. The glutamate release was measured using fluorimetric assay. RESULTS: The neuropsychiatric state, motor behavior and reflex and sensory functions were significantly altered in the group receiving 600 mg/kg of TAA. Biochemical analysis revealed an increase in the glutamate release in the cerebral cortex of HE mice. CONCLUSION: HE induced by 600mg/kg TAA injection in C57BL/6 mice seems to be a suitable model to investigate the pathogenesis and clinical disorders of HE.


OBJETIVO: A encefalopatia hepática (EH) é uma síndrome neuropsiquiátrica resultante da falência hepática. O objetivo do presente estudo foi estabelecer um modelo de EH induzida por tioacetamida (TAA) em camundongos C57BL/6 avaliando transtornos comportamentais, falência hepática e alterações na liberação de neurotransmissores. MÉTODO: A EH foi induzida por meio de uma única dose intraperitoneal de TAA (200 mg/kg, 600 mg/kg, 1.200 mg/kg). As alterações comportamentais foram avaliadas utilizando a bateria SHIRPA. A falência hepática foi confirmada através de análises histopatológicas e a liberação de glutamato medida, por ensaio fluorimétrico. RESULTADOS: Foram encontradas alterações significativas no estado neuropsiquiátrico, comportamento motor e função reflexa e sensorial no grupo que recebeu 600 mg/kg de TAA. Análises bioquímicas revelaram aumento na liberação de glutamato no córtex cerebral dos camundongos com EH. CONCLUSÃO: A EH induzida por 600 mg/kg de TAA em camundongos C57BL/6 parece ser um modelo apropriado para a investigação da patogênese e dos transtornos clínicos da EH.


Subject(s)
Animals , Male , Mice , Behavior, Animal/drug effects , Hepatic Encephalopathy/chemically induced , Liver Failure, Acute/chemically induced , Motor Activity/drug effects , Thioacetamide/toxicity , Disease Models, Animal , Glutamic Acid/analysis , Liver Failure, Acute/metabolism
11.
Braz. dent. j ; 13(3): 162-165, 2002. ilus, graf
Article in English | LILACS, BBO | ID: lil-338535

ABSTRACT

The purpose of the present study was to evaluate the influence of short course topical application of carbamide peroxide on proliferating cell nuclear antigen (PCNA) immunohistochemical expression in the oral tongue mucosa of rats. Twelve male Wistar rats were submitted to topical application of 10 percent carbamide peroxide on one side of the dorsal tongue once a week for three consecutive weeks. Only distilled water was applied on the control side. The animals were killed on days 0, 10, and 20 after the last application. The tongue was fixed in buffered formalin for 24 h and embedded in paraffin. Tissue blocks (3 æm) were subjected to the biotin-streptavidin amplified system for identification of PCNA. The percentage of epithelial-positive basal cells in each side of the tongue mucosa was calculated. The results demonstrated that topical application of 10 percent carbamide peroxide increases PCNA immunohistochemical expression on the basal layer of the oral mucosa epithelium of rats on day 0 after treatment. In conclusion, short-course use of carbamide peroxide induces transient epithelial cell proliferation of the oral mucosa of rats


Subject(s)
Animals , Male , Rats , Proliferating Cell Nuclear Antigen/biosynthesis , Epithelial Cells , Mouth Mucosa , Peroxides/toxicity , Tooth Bleaching , Cell Division , Tongue/cytology , Rats, Wistar
12.
Säo Paulo; Atheneu; 2 ed; 1995. xii,414 p. ilus, tab, graf.
Monography in Portuguese | LILACS | ID: lil-185005
SELECTION OF CITATIONS
SEARCH DETAIL